SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2013-14

UNITED STATES OF AMERICA V. FALLBROOK PUBLIC UTILITY DISTRICT, ET AL. CIVIL NO. 51-CV-1247-GPC-RBB

CHARLES W. BINDER
WATERMASTER
P. O. BOX 631
FALLBROOK, CA 92088
(760) 728-1028
FAX (760) 728-1990

August 2015

3			

TABLE OF CONTENTS

		<u>Page No</u>
	ON 1 – SUMMARY	
	ON 2 – INTRODUCTION	
	Background	
	Authority	
	Scope	
SECTIO	ON 3 – SURFACE WATER AVAILABILITY AND USE	7
3.1	Surface Flow	7
3.2	Surface Water Diversions	13
3.3	Water Storage	13
SECTIO	ON 4 – SUBSURFACE WATER AVAILABILITY	19
4.1	General	19
4.2	Extractions	19
4.3	Water Levels	21
4.4.	Groundwater Storage	26
4.4.	.1 Santa Margarita Groundwater Basin	26
4.4.	2 Murrieta-Temecula Groundwater Basin	28
4.4.	3 Anza Groundwater Basin	31
SECTIO	ON 5 – IMPORTS/EXPORTS	33
5.1	General	33
5.2	Water Year 2013-14	37
5.3	Water Years 1966 through 2014	37
5.4	Lake Skinner	42
5.5	Diamond Valley Lake	43
	ON 6 – WATER RIGHTS	
	General	
6.2	Appropriative Surface Water Rights	47
	Fallbrook PUD Changes of Point of Diversion and Place of Use for Permit No. 11356	
6.4	Federal Reserved Water Rights for Cahuilla and Ramona Indian Rese	ervations.52
6.5	Federal Reserved Water Rights for Pechanga Indian Reservation	53

WATERMASTER SANTA MARGARITA RIVER WATERSHED

SECTI	ON 7	7 – WATER PRODUCTION AND USE	55
7.1	Ger	neral	55
7.2	Wa	ter Purveyors	56
7.2	2.1	Anza Mutual Water Company	56
7.2	2.2	Eastern Municipal Water District	59
7.2	2.3	Elsinore Valley Municipal Water District	62
7.2	2.4	Fallbrook Public Utility District	62
7.2	2.5	Lake Riverside Estates	63
7.2	2.6	Metropolitan Water District of Southern California	63
7.2	2.7	Rainbow Municipal Water District	63
7.2	2.8	Rancho California Water District	63
		Vail Appropriation	64
		Imported Water Return Flows	66
		Division of Local Water	69
7.2	2.9	Western Municipal Water District	72
		Murrieta Division	72
		Improvement District A	73
7.2	2.10	U. S. Marine Corps - Camp Pendleton	73
7.2	2.11	U. S. Naval Weapons Station, Fallbrook Annex	74
7.3	Indi	an Reservations	74
7.3	3.1	Cahuilla Indian Reservation	75
7.3	3.2	Pechanga Indian Reservation	75
7.3	3.3	Ramona Indian Reservation	76
7.4	Sm	all Water Systems	76
7.5	Irrig	ation Water Use	76
SECTI	ON 8	B – UNAUTHORIZED WATER USE	77
8.1	Ger	neral	77
8.2	Una	authorized Small Storage Ponds	77
8.3	Rar	ncho California Water District Water Use	77
8.4	Exc	ortation of Treated Wastewater Derived from Native Waters	78

WATERMASTER SANTA MARGARITA RIVER WATERSHED

SECTI	ON 9 – THREATS TO WATER SUPPLY	79
9.1	General	79
9.2	High Nitrate Concentrations	79
9.3	Potential Overdraft Conditions	80
9.4	Salt Balance	81
9.5	High Arsenic Concentrations	83
9.6	High Fluoride Concentrations	83
9.7	High Manganese Concentrations	83
9.8	Quagga Mussel	84
SECTI	ON 10 – WATER QUALITY	87
10.1	Surface Water Quality	87
10.2	Groundwater Quality	87
	ON 11 – COOPERATIVE WATER RESOURCE MANAGEMENT	
	EMENT	
11.1	General	93
11.2	Required Flows	96
11.3	Water Quality	97
11.4	Monitoring Programs	97
	ON 12 – FIVE YEAR PROJECTION OF WATERMASTER OFFICE TASKS, NDITURES AND REQUIREMENTS	. 101
12.1	General	.101
12.2	Normal Tasks	.101
12.3	Additional Tasks	.101
12.4	Projected Expenditures	.102
SECTI	ON 13 – WATERMASTER OFFICE BUDGET	. 103
13.1	Comparison of Budget and Actual Costs for 2013-14	.103
13.2	Proposed Budget for 2015-16	. 103

LIST OF TABLES

		Page No.
Table 3.1	Stream Gaging Stations	8
Table 3.2	Measured Surface Water Flow 2013-14	9
Table 3.3	Surface Diversions to Storage for Vail Lake	14
Table 3.4	Surface Water Diversions to Storage for Lake O'Neill	15
Table 3.5	Surface Water Diversions to Use	16
Table 3.6	Water in Storage	17
Table 4.1	Water Production by Substantial Users	20
Table 4.2	Groundwater Storage at Camp Pendleton	27
Table 4.3	Changes in Groundwater Storage Murrieta-Temecula Groundwater Area (Water Budget Method)	29
Table 4.4	Changes in Groundwater Storage Murrieta-Temecula Groundwater Area (Groundwater Level Method)	30
Table 5.1	Storage in State Water Project and Colorado River Reservoirs	34
Table 5.2	Imports/Exports 2013-14	38
Table 5.3	Total Dissolved Solids Concentration of Imported Water	39
Table 5.4	Imports/Exports 1966 through 2014	40
Table 6.1	Appropriative Water Rights, Permits & Licenses	48
Table 6.2	Pre-1914 Appropriative Water Rights	50
Table 7.1	Water Production and Use	57
Table 7.2	Definitions of Water Use by Municipal Water Purveyors	58
Table 7.3	Water Deliveries to Temecula Valley Regional Water Reclamation Facility Service Area	
Table 7.4	Rancho California Water District, Permit 7032 Operations	65
Table 7.5	Rancho California Water District, Rancho Division Return Flow Credits 2013-14	67
Table 7.6	Rancho California Water District, Santa Rosa Division Return Flow Credits 2013-14	68
Table 7.7	Percent Production from Younger Alluvium In Rancho California Water District Wells	70
Table 7.8	Rancho California Water District Well Production From Younger and Older Alluvium	71

WATERMASTER SANTA MARGARITA RIVER WATERSHED

Table 10.1	Ranges in Average Daily Concentration of Dissolved Oxygen, pH, Specific Conductance and Temperature at Santa Margarita River Near Temecula	88
Table 11.1	Monthly Summary of Required Flows, Discharges, Credits and Accounts, Cooperative Water Resource Management Agreement 2014 calendar year	,
Table 11.2	Monthly Summary of Required Flows, Discharges, Credits and Accounts, Cooperative Water Resource Management Agreement 2013 calendar year	
	2013 Caleridar year	95
Table 13.1	Comparison of Watermaster Budget and Actual Costs for 2013-14	104
Table 13.2	Proposed Watermaster Budget for 2015-16	105

LIST OF FIGURES

		Page No.
1.1	Local Production 2005 through 2014	2
1.2	Imports 2005 through 2014	2
1.3	Total Production 2005 through 2014	3
3.1	Annual Streamflow for Santa Margarita River Near Temecula	
3.2	Annual Precipitation for Wildomar Gage	12
4.1	Water Level Elevations Well No. 8S/2W-12H1	21
4.2	Water Level Elevations Well No. 10S/4W-7J1	
4.3	Water Level Elevations Well No. 7S/3W-20C9	23
4.4	Water Level Elevations Well No. 7S/3E-21G1	24
4.5	Water Level Elevations Pechanga Indian Reservation Wells	25
5.1	Storage in State Water Project 2005 through 2014	35
5.2	Storage in Colorado River Reservoirs 2005 through 2014	35
10.1	Total Dissolved Solids Concentration RCWD Well 8S/2W-12K	89
10.2	Total Dissolved Solids Concentration Camp Pendleton Well 10S/4W-7	7A2 90
10.3	Nitrate Concentration Camp Pendleton Well 10S/4W-7A2	91
	APPENDICES	
Appe	ndix A - Production and Use Water Year 2013-14	

Α

Table A-1	Eastern Municipal Water District
Table A-2	Elsinore Valley Municipal Water District
Table A-3	Fallbrook Public Utility District
Table A-4	Metropolitan Water District
Table A-5	Pechanga Indian Reservation
Table A-6	Rainbow Municipal Water District
Table A-7	Rancho California Water District
Table A-8	U.S.M.C Camp Pendleton
Table A-9	U. S. Naval Weapons Station, Fallbrook Annex
Table A-10	Western Municipal Water District - Murrieta Division
Table A-11	Miscellaneous Water Production and Import

Appendix B - Production and Use Water Years 1965-66 through 2013-14

Table B-1	Eastern Municipal Water District
Table B-2	Elsinore Valley Municipal Water District
Table B-3.1	Fallbrook Public Utility District
Table B-3.2	Fallbrook Public Utility District
Table B-4	Fallbrook Public Utility District (Wastewater)
Table B-5	Metropolitan Water District
Table B-6	Pechanga Indian Reservation
Table B-7	Rainbow Municipal Water District
Table B-8	Rancho California Water District
Table B-9	U.S.M.C Camp Pendleton
Table B-10	U. S. Naval Weapons Station, Fallbrook Annex
Table B-11	Western Municipal Water District – Murrieta Division
Table B-12	Miscellaneous Water Production and Import

Appendix C - Substantial Water Users 2013-14

Appendix D - Water Quality Data

		<u>Last Published</u>
Table D-1 Table D-2	Surface Streams Sampled by Camp Pendleton Surface Streams Sampled by Rancho California	1992-93
	Water District	1998-99
Table D-2.1	Nutrient Sampling by Rancho California Water District	2002-03
Table D-3	Wells in Western Municipal Water District -	004044
Table D 4	Murrieta Division	2013-14
Table D-4	Wells in Rancho California Water District	2013-14
Table D-5	Wells on Indian Reservations	2013-14
Table D-6	Wells on Camp Pendleton	2013-14
Table D-7	Eastern Municipal Water District	1992-93
Table D-8	Eastern Municipal Water District	1992-93
Table D-9	Eastern Municipal Water District	1992-93
Table D-10	Eastern Municipal Water District	1993-94
Table D-11	Wells in Domenigoni Valley	1994-95
Table D-12	Surface Water Sampled by USGS on	
	Cahuilla Creek	2013-14

Appendix E – Cooperative Water Resource Management Agreement Required Flows and Accounts – Calendar Year 2014

Appendix F – Annual Report Issues Subordinated During Effective Period of the Cooperative Water Resource Management Agreement

Appendix G – Independent Auditor's Report for Water Year 2013-14 and Report to the Steering Committee, dated January 21, 2015

MAP

Major Water Purveyors

Bound at back of Report

SECTION 1 – SUMMARY

Section 1 - A summary of the Santa Margarita River Watershed Annual Watermaster Report for the 2013-14 Water Year.

Section 2 - This Annual Watermaster Report is prepared pursuant to the U. S. District Court Order dated March 13, 1989. The Court has retained jurisdiction over all surface flows of the Santa Margarita River Watershed and all underground waters determined by the Court to be subsurface flow of streams or creeks or which are determined by the Court to add to, support, or contribute to the Santa Margarita River stream system. The Watershed is adjudicated, as to all underground waters, basins, surface flow, streams and subsurface flows that add to, support, or contribute to the Santa Margarita River stream system. Local vagrant groundwaters that do not support the Santa Margarita River stream system are outside Court jurisdiction.

Section 3 - Surface water flows varied in Water Year 2013-14. Flows for long-term stations on Murrieta Creek at Temecula, Santa Margarita River near Temecula, and Santa Margarita River at Ysidora were 40%, 59% and 20% of their long-term averages, respectively. Flows at Temecula Creek near Aguanga were 9% of the long-term average. Direct surface diversions to use totaled 695 acre feet, which reflects a decline of 27 acre feet from the prior year. The total quantity of water in storage in the Watershed on September 30, 2014, was 456,393 acre feet, of which 17,884 acre feet were Santa Margarita River water and 438,509 acre feet were imported water.

Section 4 - Groundwater extractions were 41,636 acre feet during 2013-14 as shown on Table 4.1, compared to 42,621 acre feet in 2012-13. Water purveyors pumped 35,457 acre feet, and 6,179 acre feet were pumped by other substantial users. Total local production, including groundwater extractions and surface diversions in 2013-14 was 42,331 acre feet. This compares with 43,343 acre feet in 2012-13, and represents a decline of two percent. Total annual local production for use for the period 2005 through 2014 is shown on Figure 1.1.

Section 5 - During 2013-14, 81,785 acre feet of net imports were distributed for use within the Watershed, as shown on Table 5.2. This compares with 74,889 acre feet in 2012-13, and represents an increase of nine percent. Annual imports for the period 2005 through 2014 are shown on Figure 1.2 and Table 5.4. Exports of wastewater and native water for use outside the Watershed in 2013-14 were 18,518 acre feet. This compares with 18,325 acre feet in 2012-13, and represents an increase of one percent.

Section 6 - Water rights consist primarily of riparian and overlying rights. Other rights include appropriative rights and federal reserved rights. Water purveyors in the Santa Margarita River Watershed also exercise groundwater appropriative rights. Except for surface water appropriative rights, water rights generally have not been quantified in the Watershed. Appropriative surface water rights on file with the State Water Resources Control Board amount to 990,719 gallons per day. This corresponds to 1.53 cubic feet per second (cfs) or 3.04 acre feet per day of direct diversion rights and 54,313.5 acre feet of active storage rights.

Figure 1.1

SANTA MARGARITA RIVER WATERSHED

LOCAL PRODUCTION 2005 THROUGH 2014

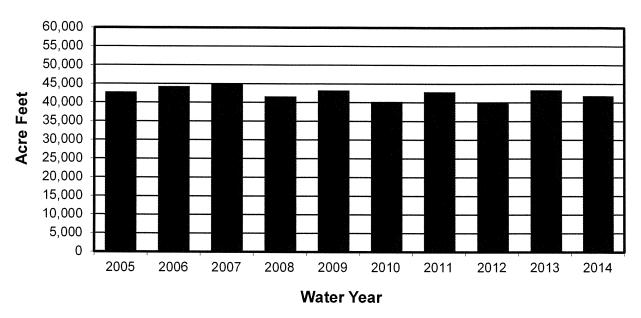
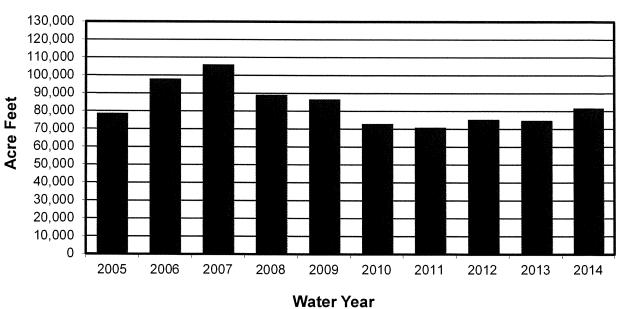
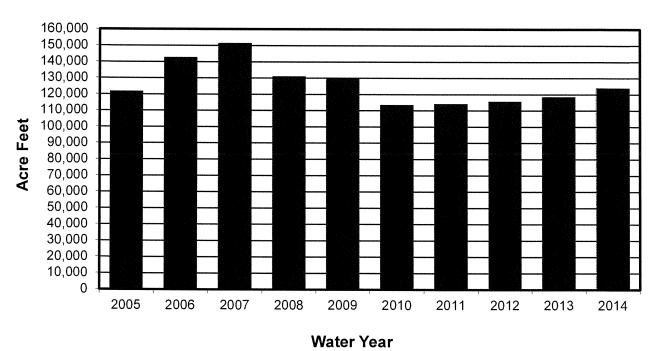



Figure 1.2

SANTA MARGARITA RIVER WATERSHED IMPORTS 2005 THROUGH 2014



Section 7 – Total imported supplies plus local production during Water Year 2013-14 totaled 123,617 acre feet compared to 118,232 acre feet reported in 2012-13. Of that quantity, 40,288 acre feet were used for agriculture; 19,276 acre feet were used for commercial purposes; 52,587 acre feet were used for domestic purposes; 24 acre feet were discharged to Murrieta Creek; 51 acre feet were discharged to Santa Gertrudis Creek; and 4,051 acre feet were discharged by Rancho California WD from Metropolitan Water District of Southern California (MWD) Outlet WR-34 during 2013-14, pursuant to the Cooperative Water Resource Management Agreement (CWRMA). It is noted, commercial use includes 442 acre feet of recycled water and thus the commercial use of production is 18,834 acre feet. The overall system loss was 4,755 acre feet. System gain or loss is the result of many factors including errors in measurement, differences between periods of use and periods of production, leakage and unmeasured uses. These data are shown on Table 7.1.

Total annual production for the period 2005 through 2014 is shown on Figure 1.3.

Figure 1.3

SANTA MARGARITA RIVER WATERSHED TOTAL PRODUCTION 2005 THROUGH 2014

Section 8 - Use of water from small storage ponds may be unauthorized. Camp Pendleton has taken the position that exportation of treated wastewater, the source of which is the native waters of the Santa Margarita River system, without legal authority for such exportation, is an unauthorized use of water.

Section 9 - Threats to water supply include high nitrate levels in Rainbow Creek and Anza Valley in past years, potential overdraft conditions in the Murrieta-Temecula and Anza groundwater basins, and salt balance issues in the upper Watershed. Additional threats have been recently identified, including high concentrations of nitrates, arsenic, fluoride and manganese in the Murrieta-Temecula area, as well as the discovery of the Quagga mussel in imported supplies.

Section 10 - The U. S. Geological Survey (USGS) monitored surface water quality at the Temecula gaging station on the Santa Margarita River.

Groundwater samples from wells were analyzed for water quality by Camp Pendleton, Western MWD - Murrieta Division, Rancho California WD, and the Pechanga Band during 2013-14. The two primary constituents of interest are nitrates and total dissolved solids (TDS). The Basin Plan Objective for TDS of 750 mg/l was exceeded in all seven of the wells sampled at Camp Pendleton. One well sampled by Rancho California WD showed concentrations exceeding 750 mg/l.

Section 11 - The Cooperative Water Resource Management Agreement between Camp Pendleton and Rancho California Water District was approved by the District Court on August 20, 2002. During the 2014 calendar year, Rancho California WD discharged 4,009 acre feet into the Santa Margarita River to meet flow requirements under the Agreement.

Section 12 - Projected Watermaster expenditures for the next five years are listed.

Section 13 – The actual Watermaster costs for Water Year 2013-14 were \$653,001 compared to the Court approved budget of \$658,840, resulting in a favorable variance of \$5,839. A total Watermaster budget for Water Year 2015-16 is proposed to be \$716,100. This budget includes \$473,625 for the Watermaster Office and \$242,475 for operation of gaging stations and groundwater monitoring by USGS.

SECTION 2 - INTRODUCTION

2.1 Background

On January 25, 1951, the United States of America filed Complaint No. 1247 in the United States District Court for the Southern District of California to seek an adjudication of all respective water rights within the Santa Margarita River Watershed. The Final Judgment and Decree was entered on May 8, 1963, and appealed to the U.S. Court of Appeals. A Modified Final Judgment and Decree was entered on April 6, 1966. Among other things, the Decree provides that the Court:

. . . retains continuing jurisdiction of this cause as to the use of all surface waters within the watershed of the Santa Margarita River and all underground or sub-surface waters within the watershed of the Santa Margarita River, which are determined in any of the constituent parts of this Modified Final Judgment to be a part of the sub-surface flow of any specific river or creek, or which are determined in any of the constituent parts of this Modified Final Judgment to add to, contribute to, or support the Santa Margarita River stream system.

In March 1989, the Court issued an Order appointing the Watermaster to administer and enforce the provisions of the Modified Final Judgment and Decree and subsequent orders of the Court. The appointing Order described the Watermaster's powers and duties as well as procedures for funding and operating the Watermaster's office. Also in 1989, the Court appointed a Steering Committee that at the conclusion of 2013-14 was comprised of representatives from the United States, Eastern Municipal Water District, Fallbrook Public Utility District, Metropolitan Water District of Southern California, Pechanga Band of Luiseño Mission Indians, Western Municipal Water District, and Rancho California Water District. The purposes of the Steering Committee are to assist the Court, to facilitate litigation, and to assist the Watermaster.

2.2 Authority

Section II of the appointing Order requires that the Watermaster submit a written report containing findings and conclusions to the Court promptly after the end of each water year.

2.3 Scope

The subjects addressed in this report are responsive to Section II of the appointing Order. Information and data contained in this report are based on information reported to the Watermaster by the various water users within the Watershed and others. Therefore, the Watermaster does not guarantee the completeness and accuracy of the information presented in this report, although most of the data presented are based on measurements. Estimates by the Watermaster are so noted.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

Page Intentionally Blank

SECTION 3 - SURFACE WATER AVAILABILITY AND USE

3.1 Surface Flow

Over the years, flows in the Santa Margarita River Watershed have been measured at the stations listed on Table 3.1. A number of these stations have been discontinued. During Water Year 2013-14, the USGS operated 13 stations under an agreement with the Watermaster. These include three stations where Riverside County Flood Control and Water Conservation District shares the local costs with the Watermaster. In addition to stream flows, the USGS also measures water surface elevation and precipitation at Vail Lake.

The USGS also operates several stations in the Watershed under contract with Camp Pendleton. These include stream gaging stations on Fallbrook Creek and on the outlet channel and spillway for Lake O'Neill. The USGS operated a tidal water level recorder at the mouth of the Santa Margarita River from October 1989 until October 20, 2010, when it was removed.

Monthly flows for stations in Water Year 2013-14 are shown on Table 3.2. Those flows consist of final USGS discharge determinations approved for publication by the USGS. Official USGS discharges for Water Year 2013-14 are published by the USGS at the following website: http://waterdata.usgs.gov/ca/nwis/sw.

In considering the historical record of flow at these stations, it should be recognized that the long-term averages include variations in Watershed conditions such as level of development, groundwater production, return flows, impoundments and vegetative use as well as hydrologic conditions, changes in gaging station locations and other factors. Descriptions of the various historical locations of gaging stations may be found in the publication, Water Resources Data - California, which was published annually by the USGS in hard copy form through Water Year 2003-04. For subsequent years, the gaging station descriptions can be found at the website provided above.

TABLE 3.1

SANTA MARGARITA RIVER WATERSHED

STREAM GAGING STATIONS THROUGH WATER YEAR 2013-14

Station Name	Station No.	Area Sq. Miles	Entity	Period Of Record
Temecula Creek Near Aguanga	11042400	131	USGS	August 1957 to Present
Wilson Creek Above Vail Lake Near Radac	11042490	122	USGS	October 1989 to September 1994
Temecula Creek At Vail Dam	11042520	320	USGS	February 1923 to October 1977
Vail Lake Near Temecula (Reservoir Storage)	11042510	320	USGS	October 1948 to Present
Pechanga Creek Near Temecula	11042631	13.1	USGS	October 1987 to Present
Warm Springs Creek Near Murrieta	11042800	55.4	USGS	October 1987 to Present
Murrieta Creek Near Murrieta	11042700	30.0	USGS	October 1997 to Present
Santa Gertrudis Creek Near Temecula	11042900	90.2	USGS	October 1987 to Present
Murrieta Creek At Temecula	11043000	222	USGS	October 1924 to Present
Santa Margarita River Near Temecula	11044000	588	USGS	February 1923 to Present
Rainbow Creek Near Fallbrook	11044250	10.3	USGS	November 1989 to Present
Santa Margarita River At FPUD Sump 1/	11044300	620	USGS	October 1989 to Present
Sandia Creek Near Fallbrook	11044350	21.1	USGS	October 1989 to Present
Santa Margarita River Tributary Near Fallbrook	11044600	0.52	USGS	October 1961 to September 1965
DeLuz Creek Near DeLuz	11044800	33.0	USGS	October 1992 to Present
DeLuz Creek Near Fallbrook 2/	11044900	47.5	USGS/ USMC	October 1951 to September 1967 October 1989 to September 1990 April 2002 to February 2003
Santa Margarita River Near DeLuz Station	11045000	705	USGS	October 1924 to September 1926
Fallbrook Creek Near Fallbrook 3/	11045300	6.97	USGS/ USMC	October 1993 to Present
Santa Margarita River At Ysidora 4/	11046000	723	USGS	February 1923 to Present

^{1/} Record includes measurements for Santa Margarita near Fallbrook (#11044500) for October 1924 to September 1980.

^{2/} Recorded by USMC, Camp Pendleton October 1967 to 1977.

^{3/} Recorded by USMC, Camp Pendleton for October 1964 to September 1977 and October 1989 to September 1993.

^{4/} Station temporarily operated as SMR at USMC Diversion Dam near Ysidora (#11045050) from February 26, 1999 to September 27, 2001.

TABLE 3.2

SANTA MARGARITA RIVER WATERSHED

MEASURED SURFACE WATER FLOW

2013-14

GAGING STATION	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	WATER YEAR TOTAL	ANNUAL AVERAGE THROUGH 2013	YEARS OF RECORD THROUGH 2013
Temecula Creek Near Aguanga (11042400)	14	35	60	59	69	172	48	11	1	0	0	0	469	5,440	56
Pechanga Creek Near Temecula 1/ (11042631)	0	0	0	0	2	0	0	0	0	0	0	0	2	444	26
Warm Springs Creek Near Murrieta (11042800)	1	1	51	0	180	997	5	3	0	0	9	0	1,247	3,050	26
Murrieta Creek Near Murrieta 2/, 3/ (11042700)	0	0	0	0	347	493	0	0	0	0	0	0	840	3,064 4,430	6 (2008-2013 8 (1998-2005
Santa Gertrudis Creek Near Temecula (11042900)	0	16	33	0	173	225	0	0	0	0	1	0	448	2,680	26
Murrieta Creek At Temecula (11043000)	30	7	6	3	983	3,006	10	4	4	3	3	0	4,059	10,191	89
Santa Margarita River Near Temecula (11044000)	185	179	202	606	1,996	3,822	589	326	274	264	272	244	8,959	15,292 20,390	65 (1949-2013 26 (1923-48)
Rainbow Creek Near Fallbrook (11044250)	10	17	33	14	119	94	15	3	4	2	1	8	320	2,580	24
Santa Margarita River At FPUD Sump (11044300)	228	238	326	696	1,772	4,667	656	390	310	223	248	226	9,980	29,540	24
Sandia Creek Near Fallbrook (11044350)	66	83	105	115	140	652	202	139	96	70	81	44	1,793	6,660	24
DeLuz Creek Near DeLuz (11044800)	0	0	0	0	12	557	0	0	0	0	0	0	569	8,060	21
Fallbrook Creek Near Fallbrook (11045300)	0	1	1	0	10	84	11	1	1	1	2	1	113	1,144 1,462 5/	25 (1989-2013 12 (1965-76)
Santa Margarita River At Ysidora (11046000)	0	0	0	0	292	5,479	295	173	0	0	0	124	6,363	31,952 4/ 31,390	65 (1949-2013 26 (1923-48)

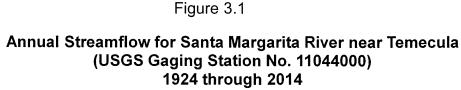
^{1/} In summer 2006, gaging location was moved upstream 0.4 miles from prior location to current location 100 feet upstream of Metropolitan Water District pipe crossing, 0.4 miles upstream of the Rainbow Canyon Road/Old Highway 395 Bridge.

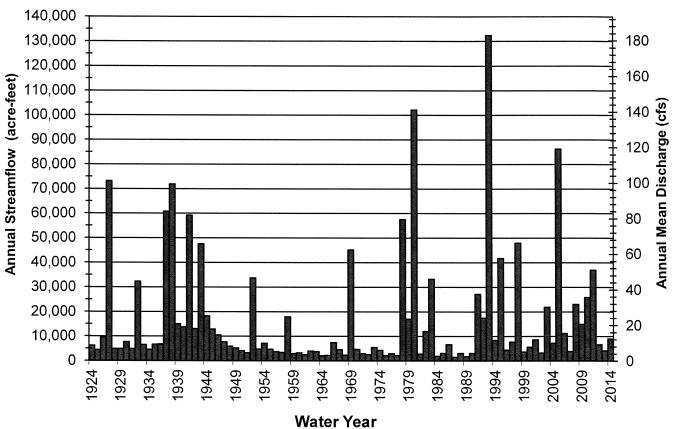
^{2/} Previously published as Murrieta Creek at Tenaja Road.

^{3/} Continuous record stopped on February 22, 2005, due to bridge construction. Only discharge measurements were taken from February 2005 until September 2007.

^{4/} Includes record of two years at Santa Margarita River at USMC Diversion Dam near Ysidora station.

^{5/} Includes wastewater flows.

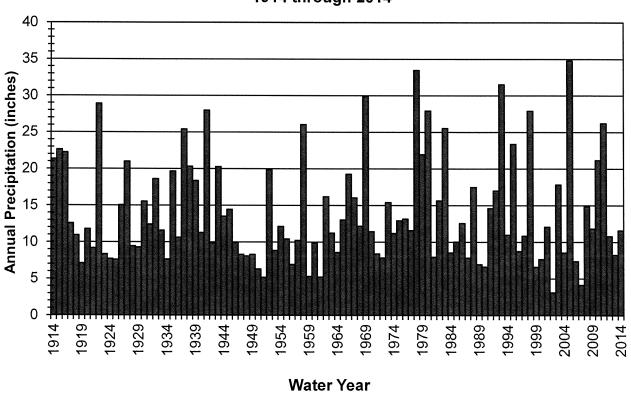

Total flows at four long-term stations, for Water Years 2012-13 and 2013-14, are compared with their averages in the tabulation below. Average flows for the Santa Margarita River stations near Temecula and near Ysidora are shown for two periods: before and after Vail Dam was constructed (1923 to 1948, and 1949 to 2013).


	TOTAL FLOW		<u>AVERAG</u>	E FLOW
	2012-13 Acre Feet	2013-14 <u>Acre Feet</u>	•	h 2013 Feet
Temecula Creek Near Aguanga	861	469	5,440	(1957-2013)
Murrieta Creek At Temecula	1,287	4,059	10,191	(1925-2013)
Santa Margarita River Near Temecula	4,220	8,959	•	(1949-2013) (1923-1948)
Santa Margarita River At Ysidora*	2,266	6,363	31,952 31,390	(1949-2013) (1923-1948)

^{*} At various locations

The foregoing tabulation indicates the flows for Water Year 2013-14 were below normal for three of the four stations. Flows for long-term stations on Temecula Creek near Aguanga, Murrieta Creek at Temecula, Santa Margarita River near Temecula and Santa Margarita River at Ysidora were 9%, 40%, 59% and 20% of their long-term averages, respectively.

The Santa Margarita River near Temecula station is of particular interest relative to discharge requirements specified in the CWRMA between Camp Pendleton and Rancho California WD, as described in Section 11. The long-term time series for annual streamflow for Santa Margarita River near Temecula is provided on Figure 3.1, showing the 2013-14 flows were in the third quartile and 212% greater than the flows for the prior year.



It is also interesting to review long-term precipitation records relative to long-term streamflow. Figure 3.2 shows the long-term time series for annual precipitation for the Wildomar gage maintained by the Riverside County Flood Control and Water Conservation District. The Wildomar gage is specified in the CWRMA for determining hydrologic year types in establishing Rancho California WD discharge requirements to meet flows for the Santa Margarita River near Temecula. The long-term average precipitation for the Wildomar gage for the period 1914 through 2014 is 14.03 inches. The reported precipitation for Water Year 2013-14 is 11.60 inches, which is in the second quartile for the period of record.

Monthly flows shown on Table 3.2 consist primarily of naturally occurring surface runoff, including return flows, except for Rancho California WD discharges into the Santa Margarita River and Murrieta Creek. Most of the Rancho California WD discharges are pursuant to the CWRMA. During Water Year 2013-14, the total discharges from MWD Meter WR-34 into the Santa Margarita River equaled 4,051 acre feet. The outlet from WR-34 is located just upstream from the Santa Margarita River near Temecula gaging station. In 2009, Rancho California WD extended a pipeline from its distribution system to discharge at the same location as the outlet WR-34. During Water Year 2013-14, there were no discharges from the potable connection to the Santa Margarita River and no discharges to Murrieta Creek from the System River Meter.

Figure 3.2

Annual Precipitation for Wildomar Gage
1914 through 2014

During 2013-14, Rancho California WD also released 24 acre feet from wells into Murrieta Creek, and 51 acre feet from wells into Santa Gertrudis Creek.

3.2 Surface Water Diversions

Surface diversions to surface water storage and groundwater storage are shown on Table 3.3 for Vail Lake and Table 3.4 for Lake O'Neill. In general, diversions to surface storage at Vail Lake and Lake O'Neill are computed as being equal to inflow less spill, however, diversion to surface storage at Vail Lake excludes inflow during the period from May 1 through October 31 when Permit 7032 does not allow such diversions. Inflow to Vail Lake is calculated as the sum of evaporation, spill, releases and change of storage. Inflow into Vail Lake during the period when diversions are not permitted is released and not credited to groundwater storage.

Direct surface diversions for Water Year 2013-14 are shown on Table 3.5. The use is primarily irrigation. Estimated consumptive uses, losses and returns are also shown.

3.3 Water Storage

Major water storage facilities in the Santa Margarita River Watershed are listed on Table 3.6, together with the water in storage on September 30, 2013 and September 30, 2014. Total Santa Margarita River stream system water in storage at the end of Water Year 2013-14 totaled 17,884 acre feet, compared to 21,224 acre feet at the end of the previous year. Imported water in storage in Lake Skinner and Diamond Valley Lake, both operated by MWD, is also shown on Table 3.6.

TABLE 3.3

SANTA MARGARITA RIVER WATERSHED SURFACE WATER DIVERSIONS TO STORAGE FOR VAIL LAKE 2013-14

Quantities in Acre Feet

Surface \	Water	Storage
-----------	-------	---------

	2011-12	2012-13	2013-14	
Storage End of Prior Year	29,390	26,560	20,780	
Inflow - Total	2,964	1,947	1,662	
Inflow to be Bypassed 1/	906	645	726	
Spill	0	0	0	
Diversions to Surface Storage 2/	2,058	1,302	936	
Annual Evaporation	4,893	4,468	4,161	
Releases - Total	901	3,259	811	
Release to GW Storage 3/4/	(5)	2,614	85	
Change of Storage	(2,830)	(5,780)	(3,310)	
Storage End of Year	26,560	20,780	17,470	
	Groundwater Storage			
Recharge Release from Vail Lake	0	2,614	85	
Recovered Vail Lake Recharge Water from GW Storage ^{5/}	5	2,614	85	

Data reported by Rancho California WD except end of year storage reported by USGS.

^{1/} Inflow to be bypassed Oct 1 through Oct 31 and May 1 through Sept 30.

^{2/} Inflow less Spill less Inflow to be Bypassed.

^{3/} Total Release less Inflow to be Bypassed.

^{4/} Vail Lake operations shown in Table 3.3 reflect water year operations to be consistent with reporting in the Annual Watermater Report. However, Permit 7032 specifies calendar year reporting and a continuous operating season of May through October for bypasses overlapping two water years. The value of 85 acre feet for Release to GW Storage is correct but misleading because the bypass season continues into October 2014. Inspection of Rancho California WD records for May through October 2014 shows total Inflow to be Bypassed in the amount of 650 acre feet with total Releases of 749 acre feet, resulting in 99 acre feet of excess releases during the Permit bypass season of May through October 2014.

^{5/} See Table 7.4.

TABLE 3.4

SANTA MARGARITA RIVER WATERSHED

SURFACE WATER DIVERSIONS TO STORAGE FOR LAKE O'NEILL 2013-14

_	Surface Water Storage				
_	2011-12 7/	2012-13 7/	2013-14		
Storage End of Prior Year	642	646	444		
Inflow - Total	2,248 1/	1,832 2/	1,669 ^{3/}		
Spill	8	0	0		
Diversions to Surface Storage	2,240 4/	1,832 4/	1,669 4/		
Annual Evaporation	364	379	405		
Releases - Total	107	792	825		
Release to GW Storage	107	792	825		
Apparent Seepage to GW	1,765 5/	863 5/	469 ^{5/}		
Change of Storage	4	(202)	(30)		
Storage End of Year	646	444	414		
_	Groundwater Storage				
Recharge Release from Lake O'Neill	1,872 6/	1,655 ^{6/}	1,294 6/		
Deliveries to Recharge Ponds	559	420	156		
Indirect Recharge from Ditch System	881	1,170	1,236		
TOTAL	3,312	3,245	2,686		

^{1/ 1,657} AF diverted from the Santa Margarita River, 341 AF estimated inflow from Fallbrook Creek, 141 AF from local runoff, and 109 AF from rainfall on lake surface.

^{2/ 1,505} AF diverted from the Santa Margarita River, 159 AF estimated inflow from Fallbrook Creek, 77 AF from local runoff, and 91 AF from rainfall on lake surface.

^{3/ 1,449} AF diverted from the Santa Margarita River, 113 AF estimated inflow from Fallbrook Creek, 36 AF from local runoff, and 71 AF from rainfall on lake surface.

^{4/} Inflow less Spill.

^{5/} Includes seepage losses, leakage through flashboards and gates, and unaccounted for water.

^{6/} Includes Release to GW Storage and Apparent Seepage to GW from Lake O'Neill.

^{7/} Dredging operations for Lake O'Neill occurred during Water Year 2012. The preparation for and the actual dredging operation affected various operations for Lake O'Neill during Water Years 2011, 2012, and 2013 to varying levels within each particular year, including timing and amount of diversions from Santa Margarita River for both deliveries to Lake O'Neill and the recharge ponds, and Recharge Release from Lake O'Neill.

TABLE 3.5

SANTA MARGARITA RIVER WATERSHED

SURFACE WATER DIVERSIONS TO USE

2013-14

DIVERTER	Surface Diversions	Consumptive Use 1/	Loss 2/	Return 3/
Blue Bird Ranch	31.5	21.2	3.2	7.1
James Carter	52.0	35.1	5.2	11.7
Chambers Family, LLC	8.0	5.4	8.0	1.8
Serafina Holdings, LLC	0.0	0.0	0.0	0.0
Sage Ranch Nursery	100.0	67.5	10.0	22.5
Rose Lake, LLC	0.0	0.0	0.0	0.0
Val Verde Partners	56.8	38.3	5.7	12.8
Wilson Creek Development, LLC	400.0	270.0	40.0	90.0
Cahuilla Indian Reservation	5.6	3.8	0.6	1.2
San Diego State University	41.3	27.9	4.1	9.3
TOTAL	695.2	469.2	69.6	156.4

^{1/} Consumptive Use equals 75% of Diversions less Losses.

^{2/} Losses equal 10% of Diversions.

^{3/} Returns equal 25% of Diversions less Losses.

TABLE 3.6

SANTA MARGARITA RIVER WATERSHED WATER IN STORAGE

2013-14

		Water in Storage			
Santa Margarita River Storage	Total Capacity 1/	9/30/2013	9/30/2014		
Dunn Ranch Dam	90	0	0		
Upper Chihuahua Creek Reservoir	47	0	0		
Vail Lake	49,370	20,780	17,470		
Lake O'Neill	1,670	444	414		
SUBTOTAL	51,177	21,224	17,884		
Imported Water Storage					
Lake Skinner	44,000	39,741	33,547		
Diamond Valley Lake	810,000	603,304_R	404,962		
SUBTOTAL	854,000	643,045	438,509		
TOTAL STORAGE	905,177	664,269	456,393		

^{1/} Capacity shown is current capacity reported by owner. Original capacity or decreed capacity may not be reflected in this table.

R - Revised

WATERMASTER SANTA MARGARITA RIVER WATERSHED

Page Intentionally Blank

SECTION 4 - SUBSURFACE WATER AVAILABILITY

4.1 General

Much of the water from the Santa Margarita River stream system is obtained by pumping subsurface water. The Court has identified two basic types of subsurface water in the interlocutory judgments incorporated into the 1966 Modified Final Judgment and Decree. One type is vagrant, local, percolating waters that do not add to, support or contribute to the Santa Margarita River or its tributaries. Such waters have been determined to be outside the continuing jurisdiction of the Court. These waters are typically found in the basement complex and/or residuum deposits in the Watershed.

Other subsurface waters were found by the Court to add to, support and contribute to the Santa Margarita River and/or its tributaries. Aquifers containing such waters have been designated by the Court as younger alluvium and older alluvium. Younger alluvial deposits are commonly exposed along streams and in valleys. Older alluvium may be found underneath younger alluvium and is not limited to areas along stream channels. Older alluvium may or may not be exposed at ground surface. The use of subsurface water found in younger and older alluvium is generally under the continuing jurisdiction of the Court and is reported upon in this report.

4.2 Extractions

Total production of Santa Margarita River water by substantial water users in the Watershed from all sources is listed on Table 4.1 by hydrologic area, along with estimated consumptive use and return flows. Recovery of imported water that has been directly recharged is not included on Table 4.1. Substantial water users include water purveyors as well as private irrigators who irrigate eight acres or more or use an equivalent quantity of water.

In 2013-14, production by water purveyors totaled 35,457 acre feet, compared to 35,998 acre feet in 2012-13. Monthly quantities are shown in Appendix A and annual production for the period 1966 through 2014 is shown in Appendix B.

The quantities of subsurface extractions by private irrigators are based on the irrigated acreage and the crop type. These quantities are reported in Appendix C to total 6,179 acre feet in 2013-14. Of the subsurface extractions, 75 percent is estimated to have been consumptively used and 25 percent to have been return flow. Return flow is that portion of the total deliveries that is not consumed. Although return flows average about 25 percent, such flows are affected with the type of use (domestic, commercial and irrigation), the type of irrigation application (drip, micro-sprinkler, furrow), and exports from watersheds.

TABLE 4.1

SANTA MARGARITA RIVER WATERSHED

SANTA MARGARITA RIVER WATER PRODUCTION BY SUBSTANTIAL USERS
2013-14

HYDROLOGIC AREA	WATER PURVEYOR PRODUCTION ACRE FEET	OTHER IRRIGATED ACRES *	OTHER IRRIGATION PRODUCTION ACRE FEET *	TOTAL GROUNDWATER PRODUCTION ACRE FEET	SURFACE WATER DIVERSIONS ACRE FEET *	TOTAL PRODUCTION ACRE FEET	ESTIMATED CONSUMPTIVE USE ACRE FEET 1/, 2/	ESTIMATED RETURN FLOW ACRE FEET 2/
Wilson Creek Above Aguanga GWA Includes Anza Valley	465 (Lake Riverside, (Anza MWC, Cahui,	689 ^{3/} lla, Ramona)	1,769	2,234	6	2,240	1,680	560
Temecula Creek Above Aguanga GWA	27 (Quiet Oaks MHP)	310	961	988	0	988	741	247
Aguanga GWA	635 (Outdoor Resorts, Jojoba Hills)	483	1,612	2,247	457	2,704	1,994	710
Upper Murrieta Creek (Warm Springs Creek above	0	0	0	0	0	0	0	0
Lower Murrieta Creek (Santa Gertrudis/Tucalota Cr Includes FPUD Diversion from		310	44	44	100	144	100	44
Murrieta-Temecula GWA	28,516 (RCWD**, WMWD EMWD, Pechanga	•	1,175 n),	29,691	52	29,743	22,303	7,440
Santa Margarita River Be	elow the Gorge							
DeLuz Creek	0	326	484	484	39	523	389	134
Sandia Creek	0	65	130	130	0	130	98	32
Rainbow Creek	0	0	0	0	0	0	0	0
Santa Margarita River	5,814 (USMC)	20	4	5,818	41	5,859	1,923	645
TOTAL	35,457	2,913	6,179	41,636	695 ⁴	42,331	29,228	9,812

^{1/} Estimated consumptive use is equal to 75% of Total Groundwater Production plus 75% of Surface Diversions less 10% (CU = .75{GW + .90 * SW}).

^{2/} Camp Pendleton consumptive use and return flow calculated for portion of production used within Santa Margarita River Watershed.

^{3/} Includes lands overlying deep aquifer in Anza Valley.

^{4/} Includes surface water diversion for irrigation, commercial and domestic use.

^{*} Data taken from Appendix C.

^{**} RCWD pumped an additional 289 AF that was exported to the San Mateo Watershed.

4.3 Water Levels

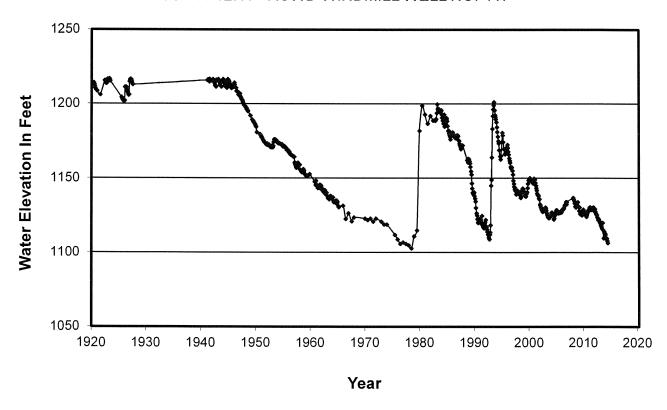

Water levels in selected wells in the Watershed are measured periodically by various entities. Historical water levels in five wells at various locations in the Watershed are shown in this report on Figures 4.1, 4.2, 4.3, 4.4 and 4.5.

Figure 4.1 shows water levels in Well No. 8S/2W-12H1 (Windmill Well) located in the Rancho California WD service area downstream from Vail Lake. Note the extended drawdown from 1945 to 1978, the major recoveries during the wet years in 1980 and 1993, and the effect of relatively dry years after 1980 and after 1993. Water levels declined by 13.7 feet between September 30, 2013 and September 30, 2014. It should be noted that the Windmill Well is located in Pauba Valley about 1.5 miles downslope from the Valle de los Caballos (VDC) recharge area, where releases from Vail Lake as well as imported water are recharged. In Water Year 2013-14, 12,069 acre feet of imported water were recharged in the VDC of which 100 percent was recovered in the same year. As shown on Appendix Table A-7, an additional 264 acre feet of previously recharged import water was recovered from groundwater storage in Water Year 2013-14.

Figure 4.1

WATER LEVEL ELEVATIONS

8S/2W-12H1 - RCWD WINDMILL WELL NO. 417

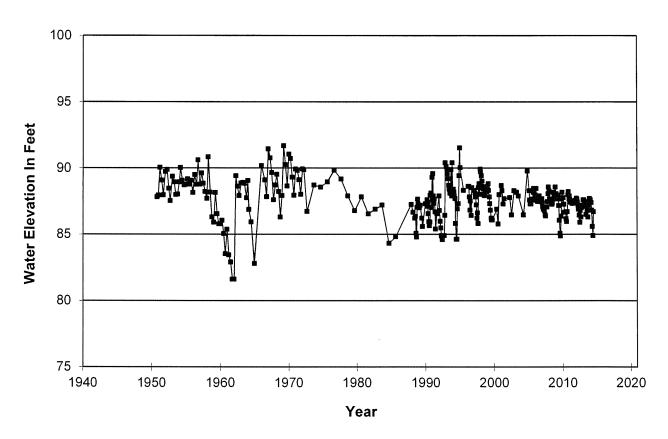
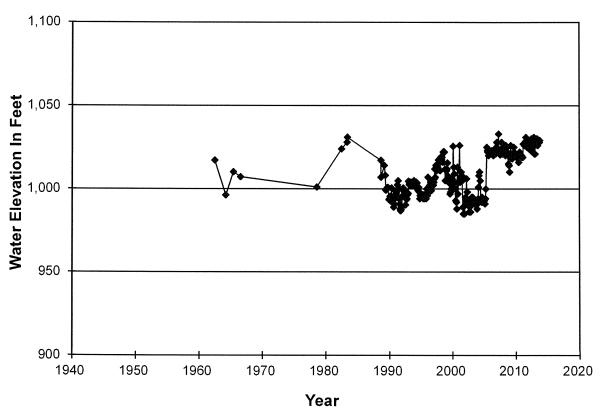

Collar El. 1216.7 Feet; Depth 515 Feet; Drilled in Alluvium Ref: RCWD reports (1920-2013)

Figure 4.2 shows water levels at Camp Pendleton in Well No. 10S/4W-7J1, a monitoring well located in the Upper Sub-basin. Fluctuations in recent years illustrate recharge during the winter months and drawdown each summer, with the water levels ranging from approximately 82 to 92 feet in elevation. Water levels in Well 7J1 declined 0.5 feet in the period between September 2013 and September 2014.

Figure 4.2

WATER LEVEL ELEVATIONS

10S/4W-7J1 - CAMP PENDLETON *


Ground El. 93.8 Feet; Depth 141 Feet; Perf. Unknown; Drilled in Alluvium Camp Pendleton Records (1950-72) (1988-2013); Leeds Hill Study (1973-85) Dates Estimated

^{*} Data shown for Well No. 10S/4W-7J1 except for period October 1999 through September 2007 data shown for Well No. 10S/4W-7J4.

Figure 4.3 shows water levels from Holiday Well No. 7S/3W-20C9 in the Murrieta Division service area of Western MWD. The Holiday Well was used as a production well until February 2006, but now is used only as a monitoring well. Water levels in this well rose by three feet between September 30, 2013 and September 30, 2014.

Figure 4.3

WATER LEVEL ELEVATIONS
7S/3W-20C9 - WMWD HOLIDAY WELL

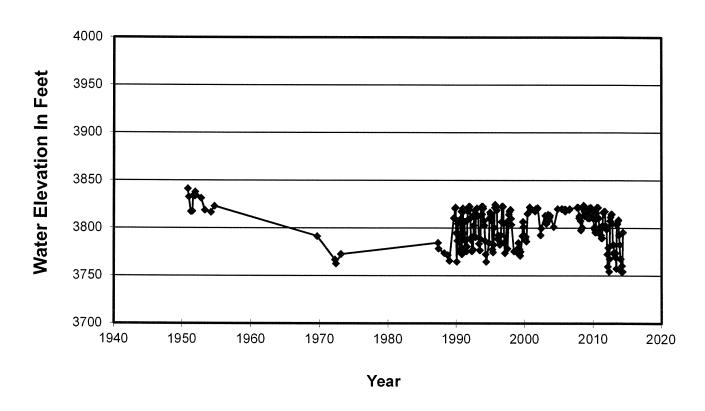

Ground El. 1090 Feet; Depth 307 Feet; Perf. 60 - 307 Feet Western Municipal Water District

Figure 4.4 shows water levels for Well No. 7S/3E-21G1, Anza Mutual Water Company Well No. 1, a production well located in the Anza Valley. Water levels in this well rose by 38 feet between September 30, 2013 and September 30, 2014. As may be noted from Figure 4.4, recent measurements show annual 50 foot fluctuations in groundwater levels at this well, partly in response to the operation of nearby irrigation wells.

Figure 4.4

WATER LEVEL ELEVATIONS

7S/3E-21G1 - ANZA MUTUAL WATER COMPANY WELL NO. 1

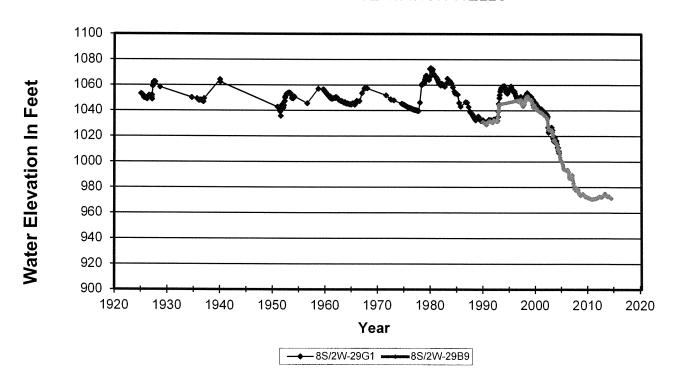

¹ Static water levels plotted after April 1999 Ground El. 3862.6 Feet; Depth 260 Feet; Perf. 20 - 260 Feet; Drilled in Alluvium Anza Mutual Water Co. Well No. 1 (1987-2013); DWR Bulletin 91-22 (1950-73)

Figure 4.5 shows water levels at Well No. 8S/2W-29G1, located in Wolf Valley on the Kelsey Tract of the Pechanga Indian Reservation. The well is not used for water production. Water levels collected since 1925 reflect unconfined groundwater levels. As shown on Figure 4.5, the groundwater levels have fluctuated within an approximate 40 foot range above and below elevation 1,050 feet in response to wet years and dry periods until recently. In November 2004, this well went dry due to the preceding relatively dry hydrological conditions and pumping of the nearby New Kelsey Well on the Pechanga Reservation. In order to continue to monitor water levels on the Pechanga Indian Reservation, water levels for Well No. 8S/2W-29B9 are also shown on Figure 4.5. Well No. 8S/2W-29B9 is completed in the younger alluvium. As shown on Figure 4.5, water levels for Well No. 8S/2W-29B9 coincide with water levels for the common period of record for Well No. 8S/2W-29G1. Water levels in Well 8S/2W-29B9 declined by 2.7 feet in 2013-14.

Figure 4.5

WATER LEVEL ELEVATIONS

PECHANGA INDIAN RESERVATION WELLS

8S/2W-29G1: Ground El. 1091.1 Feet; Depth 159.1 Feet 8S/2W-29B9: Ground El. 1075.93 Feet; Depth 113.0 Feet

U.S. Geological Survey Records

Changes in water levels in the above noted wells between the end of the previous water year and the end of the 2013-14 Water Year are shown below:

Well	Water Elevation 2013 <u>Feet</u>	Water Elevation 2014 <u>Feet</u>	Chanç Water <u>Fe</u>	•
RCWD 8S/2W-12H1	1,120.0	1,106.3	Down	13.7
USMC 10S/4W-7J1	87.2	86.7	Down	0.5
WMWD 7S/3W-20C9	1,026.0	1,029.0	Up	3.0
Anza MWC 7S/3E-21G1	3,757.6	3,795.6	Up	38.0
Pechanga IR 8S/2W-29B9	*974.1	971.4	Down	2.7

^{*} Revised

4.4. Groundwater Storage

Bulletin 118 Update 2003 prepared by the State of California Department of Water Resources describes three groundwater basins in the Santa Margarita River Watershed: Santa Margarita Valley, Temecula Valley, and Coahuila (Cahuilla) Valley. These basins are also known as the Santa Margarita Groundwater Basin, the Murrieta-Temecula Groundwater Basin, and the Anza Groundwater Basin. Groundwater storage in each of these basins is described in this section.

4.4.1 Santa Margarita Groundwater Basin

The Santa Margarita Groundwater Basin is located along the Santa Margarita River at Camp Pendleton and includes three sub-basins: Upper, Chappo, and Ysidora. Useable groundwater storage is summarized on Table 4.2. Table 4.2 shows that the total combined storage for all the sub-basins between the depths of 5 and 100 feet is 48,100 acre feet. However, much of that storage is below sea level. Thus, the useable capacity is considered to be 28,700 acre feet as shown on Table 4.2. In 2013-14, useable groundwater storage in place was computed for all three sub-basins to be 24,911 acre feet. The useable storage in place for the three sub-basins amounted to 24,677 acre feet in 2012-13. Thus, there was an increase in groundwater storage in place of 234 acre feet for the water year. It may be noted that classification of storage as useable is made without allowances for maintenance of riparian habitat.

TABLE 4.2

SANTA MARGARITA RIVER WATERSHED

GROUNDWATER STORAGE AT CAMP PENDLETON
2013-14

Quantities in Acre Feet

		Sub-ba	asin	
I. Available Storage	Upper	Chappo	Ysidora	Total
A. Total Storage 1/	12,500	27,000	8,600	48,100
B. Useable Storage	12,500	15,000 ^{2/}	1,200 ^{3/}	28,700
II. Unused Storage				
A. Wells used for Depth	10S/4W-7J1	10S/4W-18L1 4/	11S/5W-11D4	
B. Land Surface Elevation - Feet 5/	93.8	75.9	18.8	
C. Depth to Water - Feet 6/	7.1	13.8	10.5	
D. Depth below 5 Feet	2.1	8.8	5.5	
E. Average Area - Acres 7/	840	2,520	1,060	
F. Specific Yield 8/	0.216	0.130	0.090	
G. Unused Storage below 5 Feet	381	2,883	525	3,789
III. Useable Storage in Place 9/	12,119	12,117	675	24,911
IV. Useable Storage in Place 2012-13	12,210	11,782	685	24,677
V. Change in Storage 2013-14	(91)	335	(10)	234

^{1/} Computed by USGS (Worts, F. C., Jr. and Boss, R. F., Geology and Ground-Water Resources of Camp Pendleton, CA, July 1954) as the storage between depths of 5 and 100 feet.

^{2/} Storage between 5 foot depth and sea level.

^{3/} Storage between 5 foot depth and 10 feet above sea level.

^{4/} Well 10S/4W-18L1 was destroyed during 2012, depth to water extrapolated from measurements for Well 10S/5W-13G1.

^{5/} Reported by Camp Pendleton based on NAVD88 datum.

^{6/} Reported by Camp Pendleton as average values for month of September unless noted otherwise.

^{7/} Average area estimated over depth interval for unused storage.

^{8/} From Worts and Boss for depth interval of 5 to 50 feet.

^{9/} Useable storage includes stored water reserved for riparian habitat; however specific amount stored for such purposes not delineated.

4.4.2 Murrieta-Temecula Groundwater Basin

The Murrieta-Temecula Groundwater Basin is located along Murrieta and Temecula creeks in the Upper Santa Margarita River Watershed. Total groundwater storage at the end of Water Year 2001 was computed for each of 22 hydrologic sub-areas that make up the Groundwater Basin. These computations were based on the areal extent of each sub-area, the thickness of each of three aquifers, (younger alluvium, Pauba aquifer and Temecula aquifer), a specific yield for each aquifer, and the depth to water in each aquifer at the end of the water year. Specific yields were based on unconfined conditions for all aquifers. The total groundwater storage in the uppermost 500 feet as of September 30, 2001, was estimated at 1,340,556 acre feet.

Since 2001, annual changes in groundwater storage have been computed using two different methodologies for comparison; a water budget method and a groundwater level method.

The water budget method determines the change in storage as the difference between the major elements of inflow and outflow for the groundwater area. Table 4.3 shows the changes for Water Years 2010 through 2014. The change in groundwater storage for Water Year 2013-14, using the water budget method, is calculated as a decline of 12,895 acre feet.

The groundwater level method is based on the changes in water levels in key wells in hydrologic sub-areas. Changes in storage under the groundwater level method for Water Years 2010 through 2014 are shown on Table 4.4. The change in groundwater storage for Water Year 2013-14, using the groundwater level method, is calculated as a decline of 10,477 acre feet.

The foregoing two methods are based on independent measurements and estimates. The estimates from the two methods are generally comparable for the period 2001 through 2014. However, the estimates from the two methods for certain years indicate differences in the results. It will take testing over a number of years under varying hydrologic conditions to refine these approaches. Such testing may include comparing the estimates obtained from these two methods with values computed with the groundwater model that is used for implementation of the CWRMA between Camp Pendleton and Rancho California WD.

TABLE 4.3

SANTA MARGARITA RIVER WATERSHED CHANGES IN GROUNDWATER STORAGE

MURRIETA-TEMECULA GROUNDWATER AREA

Water Budget Method Quantities in Acre Feet

Elements of Inflow		Wat	er Year End	ding	
<u>-</u>	2010	2011	2012	2013	2014
Releases from Vail 1/	1,372	3,732	901	3,259	811
Releases from Lake Skinner ^{2/}	156	471	0	51	61
Freshwater Releases to Stream 3/	3,913	4,399	3,708	2,530	4,126
Reclaimed Water Released to Stream 4/	0	0	. 0	0	0
Recharged Imported Water 5/	12,858	13,873	14,643	11,395	12,069
Return Flow from RCWD Groundwater Production 6/	8,441	8,409	8,984	8,904	9,048
Return Flow from Import Direct Use 7/	2,999	2,668	3,015	3,457	3,920
Return Flow from Applied Wastewater 8/	1,582	1,391	1,288	1,349	1,399
Underflow and Tributary Inflow ^{9/}	30,674	47,957	4,119	2,149	6,777
Subtotal	61,995	82,900	36,658	33,094	38,211
Elements of Outflow					
Riparian Evapotranspiration and Underflow 10/	508	508	508	508	508
Total RCWD Groundwater Production 11/	36,698	36,560	39,060	38,763	39,413
Net Pumping by Others 12/	2,042	2,002	2,138	2,277	2,226
Surface Outflow ^{13/}	25,894	36,922	6,737	4,220	8,959
Subtotal	65,142	75,992	48,443	45,768	51,106
Change in Groundwater Storage	(3,147)	6,908	(11,785)	(12,674)	(12,895)

- 1/ Table 3.3, Total Releases.
- 2/ Section 5.4.
- 3/ Table A-7, SMR Release.
- 4/ Table A-7, Reclaimed Wastewater, Murrieta Creek Discharge (ceased October 18, 2002).
- 5/ Table A-7, Footnote 3.
- 6/ Table 7.8, Total Production less releases to streams, times 0.23.
- 7/ Rancho Division Direct Use Imports, Table A-7 Footnote 4, times 0.23.
- 8/ The sum of: (Reclaimed Wastewater Table A-7, Reuse in SMRW) plus (Table A-1, Reuse in SMRW), times 0.23.
- 9/ Murrieta Creek at Temecula Flow times 1.6697 which is based on a correlation between Murrieta Creek at Temecula flow and Tributary Inflow, Areal Recharge and Subsurface Inflow for the period 1977-1998 as shown in Table II-10, Vol. II, Geology and Hydrology, Surface and Ground Water Model of the Murrieta-Temecula Ground Water Basin, California, dated January 31, 2003.
- 10/ Table II-10, Vol. II, Geology and Hydrology, Surface and Ground Water Model of the Murrieta-Temecula Ground Water Basin, California, dated January 31, 2003.
- 11/ Table 7.8 Total Production.
- 12/ The sum of Groundwater Production from: [Table A-1 (EMWD), A-5 (Pechanga IR), A-10 (WMWD Murieta Division, previously A-5), Appendix C, Murrieta-Temecula Groundwater Area], times .77.
- 13/ Table 3.2 Santa Margarita River near Temecula.

TABLE 4.4

CHANGES IN GROUNDWATER STORAGE MURRIETA-TEMECULA GROUNDWATER AREA SANTA MARGARITA RIVER WATERSHED Groundwater Level Method

Change in Storage in Water Year Acre Feet	2 2013 2014	(47) (42) (42) (127) (95)	(147)	(4) 472	7 (723) (2,066)	898	8 7 (15)		5 (16) (56)	(16)	(16) (11) (23) ((16) (11) (23) (29)	(16) (11) (23) (129 39	(16) (11) (23) (129 39 (618) (1,	(16) (11) (23) (23) (23) (23) (618) (618) (14)	(16) (11) (23) (23) (129 39 (618) (1,727) (1,323) (6,18)	(16) (11) (23) (23) (129 (618) (1,197) (1,323) (6,119)	(16) (11) (23) (23) (129 (618) (1,197) (1,323) (5,119) (1,333)	(16) (11) (23) (23) (129 39 (618) (1,197) (1,323) (5,6) (3,935)	(16) (11) (23) (129 39 (149) (1,323) (5,618) (119) (119) (173) (173)	(16) (11) (23) (23) (129 39 (1473) (1,323) (5,235) (3,935) (173) (173) (3)	(16) (11) (23) (23) (129 39 (618) (1,323) (1,323) (3,935) (36) (36) (36)	(16) (11) (23) (23) (129 (39,035) (1,323) (6,197) (1,323) (6,035) (173) (173) (86) (35) (78) (78)	(16) (11) (23) (23) (129 (39) (4197) (1,323) (5,149) (1,323) (1,323) (1,19) (1,323) (1,19) (1,10) (1	(16) (11) (23) (23) (129 (39) (4197) (1,323) (5,149) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (1,323) (2,323) (3,323) (3,223) (4,223) (4,223) (4,223) (5,223) (5,223) (6,223) (7,223) ((16) (11) (23) (23) (129 (34) (4197) (1,323) (5,119) (4173) (173) (86) (36) (78) (78) (677) (6577) (78) (78) (78) (78) (78) (78)	(16) (11) (23) (23) (129 (34) (419) (419) (4132) (513) (513) (513) (618) (78) (78) (78) (78) (78) (78) (78) (7
in Storage in Acre Feet	1 2012) (18) 31 (91)	59 (84)	3) (341)	296 29	0 1130	30	e) 55		3) 36		(2,0	(2,0	(2,0	(2)	(2)	(2, 6, 6, 6, 7)	(2)	(2)	(2) (3) (4) (4) (5) (6) (7) (7) (7) (8) (7) (8) (7) (8) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(2)	(2, 5) (2, 4) (3, 4) (4	2.5 6.6 7.7 7.7 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7	2.2)	5.9 9.7 7.8 9.9 9.9	(5) (4) (7) (4) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	
Change) 2011) (60) 5 51		t (1,993)	1457	5 810		(6)		(9)	٠	_						•	•	•	•	•		, ,		, , ,	
	2010	(8) 116	143	834		1025	9	(8)		(2)	(5)	(5) 5 814	(5) 5 814 814	(5) 5 814 246 (301)	(5) 5 814 814 246 (301)	(5) 814 814 246 (301) (96)	(5) 814 814 246 (301) (96) (517)	(5) 5 814 246 (301) (96) (517) (46)	(5) 5 8144 246 (301) (96) (517) (46)	(5) 5 814 246 (301) (96) (517) (46) (2) (2)	(5) 5 814 814 246 (301) (96) (517) (46) (2) (2) (2) (3)	(5) 5 814 814 (301) (96) (517) (46) (46) (2) (2) (3) (3) (3)	(57) (301) (301) (301) (46) (46) (46) (57) (57) (57) (67)	(5) 814 814 246 (301) (96) (96) (617) (46) (2) (3) (3) (37) (4) (3) (6) (6) (6) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9	(5) 814 814 814 (301) (96) (97) (46) (2) (2) (3) (3) (3) (6) (3) (6) (6) (9) (92)	(5) 814 814 (301) (96) (96) (517) (46) (2) (3) (3) (67) (67) (67) (67) (67) (67) (67) (67)	(5) 814 814 (301) (96) (97) (46) (7) (8) (92) (92) (92) (92)
	2014	(8.50)	(5.92)	19.45	(48.98)	00.9	(17.00)	(0.82)		(0.82)	(0.82)	(0.82) (15.72) 0.90	(0.82) (15.72) 0.90 0.90	(0.82) (15.72) 0.90 0.90 (3.99)	(0.82) (15.72) 0.90 (3.99)	(0.82) (15.72) 0.90 (3.99) (3.99) (14.41)	(0.82) (15.72) 0.90 (3.99) (14.41) (14.41)	(0.82) (15.72) 0.90 (3.99) (14.41) (14.41)	(0.82) (15.72) 0.90 (3.99) (3.99) (14.41) (14.41) 3.04	(0.82) (15.72) 0.90 (3.99) (14.41) (14.41) 3.04 56.63	(0.82) (15.72) 0.90 0.90 (3.99) (14.41) 3.04 56.63 (2.20)	(0.82) (15.72) 0.90 0.90 (3.99) (14.41) 3.04 3.04 56.63 (2.20) (11.50)	(0.82) (15.72) 0.90 0.90 (3.99) (14.41) (14.41) 3.04 3.04 56.63 (2.20) (11.50)	(0.82) (15,72) 0.90 0.90 (3.99) (14.41) (14.41) 3.04 56.63 (2.20) (11.50) (6.37)	(0.82) (15,72) 0.90 0.90 (3.99) (14.41) (14.41) 3.04 56.63 (2.20) (11.50) (6.37) (15.55)	(0.82) (15.72) 0.90 0.90 (3.99) (14.41) (14.41) 3.04 56.63 (2.20) (11.50) (6.37) (6.63)	(0.82) (15.72) 0.90 0.90 (3.99) (14.41) (14.41) 3.04 3.04 56.63 (2.20) (11.50) (6.37) (1.55)
	2013	(9.60)	(3.91)	(0.17)	(17.15)	7.96	7.66	(0.24)		(0.24)	(0.24)	(0.24) (3.08) 0.45	(0.24) (3.08) 0.45	(0.24) (3.08) 0.45 0.45 (2.20)	(0.24) (3.08) 0.45 (2.20) (2.20)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (21.91)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (21.91)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (21.91) (21.91)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (21.91) (21.91) (11.40)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (21.91) (21.91) (11.40) (0.60)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (3.74) (21.91) (21.91) (21.91) (11.40) (16.80)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (3.74) (21.91) (21.91) (21.91) (11.40) (0.60) (10.84)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (3.74) (21.91) (21.91) (21.91) (11.40) (0.60) (10.84) (3.86)	(0.24) (3.08) 0.45 0.45 (2.20) (2.20) (3.74) (3.74) (21.91) (21.91) (21.91) (11.40) (0.60) (10.84) (3.86) 10.96	(0.24) (3.08) (3.08) (0.45) (2.20) (2.20) (2.20) (3.74) (21.91) (21.91) (21.91) (11.40) (0.60) (10.84) (3.86) (10.96) (10.96)
Change in Depth Feet	2012	(3.69)	(3.39)	(14.04)	22.93	10.36	9.34	0.81		0.81	0.81	0.81 20.00 (7.01)	0.81 20.00 (7.01)	0.81 20.00 (7.01) (7.01) (2.40)	0.81 20.00 (7.01) (7.01) (2.40)	0.81 20.00 (7.01) (7.01) (2.40) (2.40) (5.34)	0.81 20.00 (7.01) (7.01) (2.40) (5.34)	0.81 20.00 (7.01) (7.01) (2.40) (2.40) (5.34) (5.34)	0.81 20.00 (7.01) (7.01) (2.40) (2.40) (5.34) (27.77)	0.81 20.00 (7.01) (7.01) (2.40) (5.34) (5.34) (27.77) (27.77)	20.00 (7.01) (7.01) (2.40) (5.34) (5.34) (27.77) (27.77) (1.30)	0.81 20.00 (7.01) (7.01) (2.40) (5.34) (5.34) (27.77) (1.30) (1.10)	20.00 (7.01) (7.01) (2.40) (5.34) (5.34) (27.77) (27.77) (27.77) (1.30) (1.10) (5.70)	0.81 20.00 (7.01) (7.01) (2.40) (2.40) (5.34) (5.34) (27.77) (27.77) (1.30) (1.10) (5.70) (6.51)	0.81 20.00 (7.01) (7.01) (2.40) (2.40) (2.34) (5.34) (5.34) (27.77) (27.77) (1.30) (1.10)	0.81 20.00 (7.01) (7.01) (7.01) (2.40) (2.40) (5.34) (5.34) (5.34) (6.77) (1.10) (6.51) (4.29) (4.29)	0.81 20.00 (7.01) (7.01) (2.40) (2.40) (2.41) (2.7.77) (2.7.77) (2.7.77) (1.30) (4.29) (4.29) (4.13)
Char	2011	(12.11)	2.40	(82.07)	34.54	7.43	35.00	(0.13)	101	(0.13)	(0.13)	(0.13) (4.04) 5.25	(0.13) (4.04) 5.25 5.25	(0.13) (4.04) 5.25 5.25 0.79	(0.13) (4.04) 5.25 5.25 0.79	(0.13) (4.04) 5.25 5.25 0.79 0.79	(0.13) (4.04) 5.25 5.25 0.79 0.79 4.99	(0.13) (4.04) 5.25 5.25 0.79 0.79 4.99 4.99	(0.13) (4.04) 5.25 5.25 0.79 0.79 4.99 4.99 23.10	(0.13) (4.04) 5.25 5.25 0.79 0.79 4.99 4.99 23.10 23.10	(0.13) (4.04) 5.25 5.25 0.79 4.99 4.99 23.10 23.10 8.30 (2.50)	(0.13) (4.04) 5.25 5.25 0.79 4.99 4.99 23.10 23.10 (2.50) (9.90)	(0.13) (4.04) 5.25 5.25 0.79 0.79 4.99 23.10 23.10 (2.50) (3.90)	(0.13) (4.04) 5.25 5.25 0.79 4.99 4.99 23.10 23.10 8.30 (2.50) (17.65)	(0.13) (4.04) 5.25 5.25 0.79 4.99 4.99 23.10 8.30 (2.50) (17.65) (4.52)	(0.13) (4.04) 5.25 5.25 0.79 4.99 4.99 23.10 23.10 8.30 (2.50) (17.65) (11.22) (0.73)	(6.13) (4.04) (5.25) (6.79) (6.79) (6.73) (6.73) (6.73) (6.73) (6.73) (6.73) (6.73)
	2010	(1.58) 6.06	5.76	34.33	0.22	9.40	7.02	(0.12)		(0.12)	(0.12)	(0.12) 0.64 2.83	(0.12) 0.64 2.83 2.83	(0.12) 0.64 2.83 2.83 (1.07)	(0.12) 0.64 2.83 2.83 (1.07) (1.07)	(0.12) 0.64 2.83 2.83 (1.07) (1.07)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (0.01)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (1.46) (0.01)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (1.46) (0.01) (0.01)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (1.46) (0.01) 6.40 (0.70)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (1.46) (0.01) (0.01) 6.40 (0.70)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (1.46) (0.01) (0.01) (0.01) (0.70)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (0.01) (0.01) (0.01) (0.70) (8.10)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (0.01) (0.01) (0.01) (0.70) (8.10) (4.05)	(0.12) 0.64 2.83 2.83 (1.07) (1.07) (1.46) (0.01) (0.01) (0.01) (0.70) (8.10) (8.10) (4.05) (16.30) (4.03)	(0.12) (0.64) 2.83 2.83 (1.07) (1.07) (1.46) (0.01) (0.01) (0.01) (0.70) (0.70) (0.70) (16.30) (16.30) (1.65)
	2014	233.50 42.40	39.44	155.87	128.18	64.80	118.00	28.85		28.85	28.85 336.80	28.85 336.80 38.70	28.85 336.80 38.70 38.70	28.85 336.80 38.70 38.70 71.19	28.85 336.80 38.70 71.19 71.19	28.85 336.80 38.70 71.19 71.15	28.85 336.80 38.70 38.70 71.19 71.15	28.85 336.80 38.70 38.70 71.19 71.15 111.15	28.85 336.80 38.70 71.19 71.15 111.15 74.12	28.85 336.80 38.70 71.19 71.15 111.15 74.12 74.12	28.85 336.80 38.70 71.19 71.11 74.12 74.12 74.12 384.57	28.85 336.80 38.70 71.19 71.11 74.12 74.12 74.12 332.40 543.70	28.85 38.70 38.70 71.19 71.11 74.12 74.12 74.12 332.40 550.91	28.85 38.70 38.70 71.19 71.11 74.12 74.12 74.12 364.57 332.40 543.70 240.48	28.85 336.80 38.70 71.19 71.11 74.12 74.12 74.12 364.57 332.40 543.70 570.91 240.48	28.85 336.80 38.70 71.19 71.11 74.12 74.12 74.12 364.57 332.40 543.70 570.91 240.48	28.85 38.70 38.70 71.19 71.11 74.12 74.12 74.12 364.57 332.40 543.70 557.03 286.12 57.40
ater Depth at End of Water Year Feet	2013	225.00 37.40	33.52	175.32	79.20	70.80	101.00	28.03		28.03	28.03 321.08	28.03 321.08 39.60	28.03 321.08 39.60 39.60	28.03 321.08 39.60 39.60 67.20	28.03 321.08 39.60 39.60 67.20	28.03 321.08 39.60 39.60 67.20 67.20	28.03 321.08 39.60 39.60 67.20 96.74	28.03 321.08 39.60 39.60 67.20 96.74 96.74	28.03 321.08 39.60 67.20 67.20 96.74 96.74 77.16	28.03 321.06 39.60 39.60 67.20 96.74 96.74 77.16 421.20	28.03 321.08 39.60 67.20 67.20 96.74 96.74 77.16 421.20 330.20	28.03 321.08 39.60 67.20 67.20 96.74 77.16 421.20 3330.20 532.20	28.03 321.08 39.60 67.20 67.20 96.74 96.74 77.16 77.16 421.20 330.20 532.20 547.74	28.03 321.08 39.60 67.20 67.20 96.74 96.74 77.16 77.16 421.20 330.20 532.20 547.74	28.03 321.08 39.60 67.20 67.20 96.74 96.74 77.16 77.16 421.20 330.20 532.20 547.74 330.20	28.03 321.08 39.60 97.20 96.74 96.74 77.16 77.16 421.20 330.20 532.20 547.74 234.11	28.03 321.08 39.60 67.20 67.20 96.74 77.16 77.16 421.20 330.20 532.20 547.74 234.11 325.26 547.74 234.11
h at End of Feet	2012	215.40 30.75	29.61	175.15	62.05	78.76	108.66	27.79		27.79	(1)	(1)	(1)	6)	0)	6)	()	(1)	6)	4	4	ω 4 ω τ	9 4 6 m m	0 4 6 10 10 0	6 4 6 6 6 6	6 4 6 10 10 4 6 4	6 4 6 6 6 6 6 6
Water Dept	2011	211.71	26.22	161.11	84.98	89.12	118.00	. 28.60		28.60	(*)	(*)	6)	6)	6)	(*)	(*)	63	63	4	4	θ 4 θ ψ	6 4 6 6 6	6 4 6 6 6 7	6 4 6 6 6 8 6	6 4 6 6 6 6 6 6	6 4 6 6 6 6 6 6
	2010	1 199.60 9 28.67	28.62	4 79.04	2 119.52	2 96.55	9 153.00	3 28.47		3 28.47	(,,									•	• •	• • • • • • • • • • • • • • • • • • • •			, , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , ,
	Aquifer Area Acres	1371 479	802	, 694	1322	1562	719	339		496	496 2066	496 2066 1438	496 2066 1438 1165	496 2066 1438 1165	496 2066 1438 1165 1405	496 2066 1438 1165 1405 1413	4	W + + + + +	(((14444	44444 44	4		44444	00000	44444	detet detate
	Key Well	510 ^{6/} 439	146	101 2/, 3/	102 2/, 4/	495	211	492		492	492 410	492 410 426	492 410 426 426	492 410 426 426	492 410 426 426 422	492 410 426 426 422 422											
	Specific Yield/ K Storativity V	0.0036	0.0309	0.0350	0.0319	0.0698	0.0012	0.20		0.0891	0.0891	0.0891 0.0036 0.20	0.0891 0.0036 0.20 0.0746	0.0891 0.0036 0.20 0.0746 0.20	0.0036 0.003 0.20 0.0746 0.20 0.0634	0.0036 0.0036 0.0746 0.20 0.0634 0.20	0.0036 0.0036 0.0746 0.20 0.0634 0.20 0.0632	0.0891 0.0036 0.20 0.0746 0.20 0.0634 0.20 0.0422	0.0891 0.0036 0.20 0.0746 0.0634 0.0634 0.0422 0.0422 0.0402	0.0036 0.0036 0.20 0.0746 0.0634 0.0634 0.00422 0.00422 0.0036	0.0036 0.0036 0.0746 0.0634 0.0634 0.0422 0.0422 0.0422 0.0036	0.0036 0.0036 0.0746 0.0634 0.0634 0.0422 0.0422 0.0422 0.0036 0.0036	0.00391 0.0036 0.20 0.0746 0.0634 0.0632 0.0422 0.0422 0.0036 0.0036 0.0036	0.0036 0.20 0.0746 0.20 0.0634 0.0422 0.0422 0.0198 0.0036 0.0036	0.00391 0.0036 0.20 0.0746 0.0634 0.0022 0.0036 0.0036 0.0036 0.0036 0.0036	0.00391 0.0036 0.20 0.0746 0.20 0.0634 0.20 0.0422 0.0036 0.0036 0.0036 0.0036 0.0036	0.00391 0.0036 0.20 0.0746 0.0634 0.0022 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036
	S Key Aquifer St	Temecula Pauba	Pauba	Pauba	Pauba	Pauba	Pauba	Qyal		Pauba	Pauba Temecula	Pauba Temecula Qyal	Pauba Temecula Qyal Pauba	Pauba Temecula Qyal Pauba Qyal	Pauba Temecula Qyal Pauba Qyal	Pauba Temecula Qyal Pauba Qyal Pauba	Pauba Temecula Qyal Pauba Qyal Pauba	Pauba Temecula Qyal Pauba Qyal Pauba Qyal Pauba Qyal	Pauba Temecula Qyal Pauba Qyal Pauba Qyal Pauba Qyal	Pauba Temecula Qyal Pauba Qyal Pauba Qyal Pauba Qyal Pauba Cyal	Pauba Temecula Oyal Pauba Oyal Pauba Oyal Pauba Temecula Temecula	Pauba Temecula Dyal Pauba Dyal Dyal Dauba Dyal Dauba Temecula Temecula Temecula	Pauba Temecula Qyal Pauba Qyal Pauba Qyal Pauba Temecula Temecula Temecula	Pauba Temecula Qyal Pauba Qyal Pauba Qyal Pauba Qyal Temecula Temecula Temecula	Pauba Temecula Qyal Pauba Qyal Pauba Qyal Pauba Qyal Temecula Temecula Temecula Temecula	Pauba Temecula Qyal Pauba Qyal Pauba Qyal Pauba Qyal Temecula Temecula Temecula Temecula Temecula	Pauba Temecula Qyal Pauba Qyal Pauba Qyal Pauba Qyal Temecula Temecula Temecula Pauba
	Sub-area	⊢ 0.	ů.	O.	ıπ	α.	a.	J		Œ.	a –	_ , _	_,	_,	_,						9						

Well not measured for year with dashes; Sub-area a knowled for change in storage calculation for years with no measurement.
 Data for Wells 101, 102, and 484 were revised for years 2009 and 2010.
 Key Well 101 designated for Sub-area 4 in Year 2011; previously Well 401 designated as the Key Well.
 Key Well 102 designated for Sub-area 5 in Year 2011; previously Well 414 designated as the Key Well.
 Key Well 500 for Sub-area 13 in Year 2011; previously Well 414 designated as the Key Well.
 Key Well 500 for Sub-area 16 renamed in Year 2012; previously the well was named as Well 209.
 Sub-area is located within Murriet Division of Western MWD; Sub-areas 1 through 21 are located in Rancho California WD.
 Sub-area is located within Murriet Division of Western Municipal Water District for Water Year 2012-13, due to incorrect groundwater level readings.

4.4.3 Anza Groundwater Basin

The Anza Groundwater Basin is located along Cahuilla Creek in the upper portion of the Santa Margarita River Watershed.

The most recent study that determined storage volumes was conducted by Riverside County in 1990. That study concluded that the groundwater storage of about 182,200 acre feet in 1950 had decreased to about 165,000 acre feet in 1986. The study also concluded that "... basin hydrogeologic features, production facilities' conditions, and locations/depths of storage . . ." limited the useable portion to 40% of the groundwater storage or about 56,200 acre feet in 1986.

During Water Years 2005 through 2009, groundwater level measurements were made by the USGS in Anza Valley under contract with the Bureau of Indian Affairs. In 2013, the USGS resumed groundwater level measurements as part of a study on behalf of the High Country Conservancy as the Local Project Sponsor under a California Department of Water Resources Integrated Regional Water Management (IRWM) Planning Grant. Rancho California WD is the managing agency for the Upper Santa Margarita Watershed IRWM Planning Region and contracted with the USGS to conduct the groundwater level measurements. The data from these measurements are available at the USGS website: http://nwis.waterdata.usgs.gov/ca/nwis/gwlevels.

The wells included in the program can be located by selecting the latitude-longitude box selection criteria and specifying the following bounds:

North Latitude - 33° 37' 00" South Latitude - 33° 30' 00" West Longitude - 116° 48' 00" East Longitude - 116° 38' 00" WATERMASTER SANTA MARGARITA RIVER WATERSHED

Page Intentionally Blank

SECTION 5 - IMPORTS/EXPORTS

5.1 General

Court Orders require the Watermaster to determine the quantities of imported water used in the Watershed. Most of the water imported into the Santa Margarita River Watershed is delivered by Metropolitan Water District of Southern California (MWD) to local districts. MWD obtains its water from the State Water Project (SWP) and the Colorado River. Both the SWP and the Colorado River system have major storage reservoirs to provide long-term carryover storage. The quantities of water in storage at the end of the water year in the major reservoirs in each system are indicated on Table 5.1. Total storage in the SWP for the last ten years is shown graphically on Figure 5.1. Similarly, total storage for the Colorado River Reservoirs for the last ten years is shown on Figure 5.2. It may be seen from Table 5.1 that during Water Year 2013-14, water in storage in the SWP decreased from 2.51 million acre feet on September 30, 2013, to 1.69 million acre feet on September 30, 2014. Storage on September 30, 2014 corresponds to about 32 percent of the total SWP storage capacity.

Water in storage in the Colorado River system remained at the same level as the prior year at 29.6 million acre feet on September 30, 2014. On September 30, 2014, those reservoirs contained 46 percent of their total combined capacity.

The California Department of Water Resources prepares projections of water availability in the SWP for the coming year (2015) on a monthly basis from February through May. The report DWR Bulletin 120-4-15 dated May 1, 2015, indicated that statewide precipitation October 1 through April 30, 2015 was 70 percent of average compared to 50 percent last year. As of May 1, 2015, the SWP allocation for 2015 will meet twenty percent of contractors' requests.

The following entities imported water directly or indirectly from MWD into the Santa Margarita River Watershed:

Eastern Municipal Water District
Elsinore Valley Municipal Water District
Fallbrook Public Utility District
Rainbow Municipal Water District
Rancho California Water District
U. S. Naval Weapons Station – Fallbrook Annex
Western Municipal Water District

TABLE 5.1

SANTA MARGARITA RIVER WATERSHED

STORAGE IN STATE WATER PROJECT AND COLORADO RIVER RESERVOIRS

Thousands of Acre Feet 1/

STATE WATER PROJECT RESERVOIRS

	Total										
Reservoir	Capacity	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Oroville	3,540	2,877	2,833	1,568	1,097	1,337	1,755	3,045	1,977	1,633	1,076
San Luis (State Share)	1,060	925	911	445	200	224	415	874	389	283	214
Pyramid	171	160	163	166	163	166	164	164	169	167	168
Castaic	324	306	266	313	268	200	260	284	264	285	108
Silverwood	73	72	72	73	71	70	70	71	71	72	71
Perris	132	82	72	66	69	62	61	66	72	73	55
Total	5,300	4,422	4,317	2,631	1,868	2,059	2,725	4,504	2,942	2,513	1,692
Percent of Capa	acity	83%	81%	50%	35%	39%	51%	85%	56%	47%	32%
		MA	JOR CO	DLORAD	O RIVEF	R RESEF	RVOIRS				

Reservoir	Total Capacity	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Flaming Gorge	3,789	3,177	3,130	3,063	3,024	3,394	3,154	3,467	3,030	2,818	3,284
Blue Mesa	941	588	667	687	650	651	609	699	340	348	599
Navajo	1,709	1,516	1,420	1,510	1,319	1,314	1,412	1,327	1,035	933	1,081
Powell	27,000	11,939	11,917	11,929	14,509	15,463	15,267	17,593	13,929	10,934	12,286
Mead	28,537	15,219	13,887	12,505	12,013	10,933	10,092	12,977	13,135	12,362	10,121
Mohave	1,818	1,573	1,584	1,545	1,586	1,501	1,575	1,610	1,606	1,624	1,645
Havasu	648	554	555	576	584	564	560	585	561	560	583
Total	64,442	34,566	33,160	31,815	33,685	33,820	32,669	38,258	33,636	29,579	29,599
Percent of Capac	city	54%	51%	49%	52%	52%	51%	59%	52%	46%	46%

^{1/} Storage reported for end of water year on September 30.

Figure 5.1

STORAGE IN STATE WATER PROJECT
Water Years 2005 through 2014
Total Capacity is 5.3 Million Acre Feet

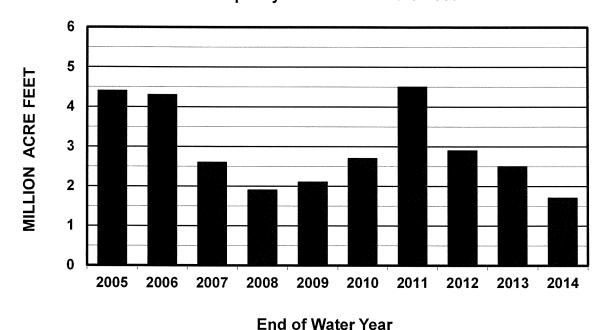
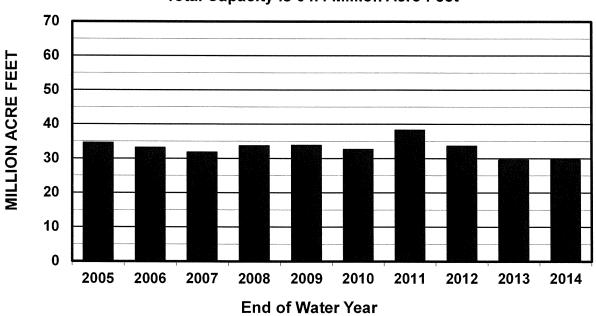



Figure 5.2

STORAGE IN COLORADO RIVER RESERVOIRS

Water Years 2005 through 2014

Total Capacity is 64.4 Million Acre Feet

In addition to net deliveries through member agencies, MWD, pursuant to a Court Order, imported 1,074 acre feet of water into the Santa Margarita River Watershed for irrigation of lands in Domenigoni Valley during 2013-14.

Water is also imported into the Santa Margarita River Watershed from adjacent watersheds. Such importation occurs from the Santa Ana Watershed where Elsinore Valley MWD delivers water to a portion of its service area that is inside the Santa Margarita River Watershed. Elsinore Valley MWD obtains its supply from imports or from wells outside the Santa Margarita River Watershed.

At Camp Pendleton there is a pipeline connection to wells located in the Las Flores Creek Watershed to the north of the Santa Margarita River Watershed. Water can be either imported or exported through that line, depending on relative water demands and pumping capacities.

Exportations from the Santa Margarita River Watershed include water pumped at Camp Pendleton that is used in the San Luis Rey River Watershed to the south or in the Las Flores Creek Watershed to the north. The wastewater that is derived from the exported potable water is returned to the Watershed for treatment at the Southern Region Tertiary Treatment Plant. Recycled water is used for irrigation both within and outside the Watershed. Treated wastewater in excess of recycled use is exported for discharge at the Oceanside Outfall. Wastewater from the Fallbrook area and the Naval Weapons Station is exported by the Fallbrook Public Utility District and wastewater in the Elsinore Valley MWD is exported by Elsinore Valley MWD. Rancho California WD exports water into the San Mateo Creek Watershed.

Eastern MWD uses a 24-inch pipeline along Winchester Road to transport wastewater from the Temecula Valley Regional Water Reclamation Facility to areas within the Watershed for reuse as well as for export of up to 10 MGD from the Watershed. Eastern MWD uses a second, 48-inch pipeline along Palomar Valley for delivery of recycled water for reuse and export from the Watershed. Rancho California WD also delivers wastewater to the Palomar Pipeline under an agreement with Eastern MWD to provide coordinated operation of their respective wastewater systems and thus such wastewater originating from Rancho California WD can also be reused or exported through the operation of the Palomar Pipeline by Eastern MWD. The exported wastewater can be reused outside the Watershed, delivered to storage facilities or discharged to Temescal Creek. In 2013-14, Eastern MWD did not export wastewater for discharge to Temescal Creek. During 2013-14, Rancho California WD had no deliveries of wastewater to the Palomar Pipeline and thus no export of wastewater for discharge to Temescal Creek can be attributed to wastewater originating from Rancho California WD.

The following paragraphs of this report describe imports and exports during Water Year 2013-14 and during the period 1966 through 2014. A discussion of MWD's Lake Skinner and Diamond Valley Lake operations is also provided.

5.2 Water Year 2013-14

During Water Year 2013-14, a total of 81,785 acre feet of net imported supplies were distributed for use in the Watershed. This compares with 74,889 acre feet in 2012-13 and represents an increase of approximately nine percent. The term net imports is used because several entities report gross imports into the Santa Margarita River Watershed but due to system configurations and operations, a portion of the gross imports may be transported to serve areas outside of the Watershed. Thus, the net imports reflect the quantities of imported supplies used within the Santa Margarita River Watershed. Net imports into the Watershed are listed on Table 5.2 for Water Year 2013-14.

The water exported from the Watershed for 2013-14 primarily includes wastewater except for Camp Pendleton and Rancho California WD. As described in Section 7, Camp Pendleton exports native water for use outside the Watershed. Also, Rancho California WD exports groundwater as part of a blended water supply to serve customers in the San Mateo Watershed. Exports from the Watershed for 2013-14 were 18,518 acre feet as shown on Table 5.2. This compares to 18,325 acre feet in 2012-13 and represents an increase of about one percent.

The quality of the water supplies imported through the MWD system in 2013-14 is indicated by the average monthly total dissolved solids at the Skinner Treatment Plant effluent line as shown on Table 5.3. The table also shows the percent of imported water obtained from the SWP.

5.3 Water Years 1966 through 2014

Water quantities imported by districts into the Santa Margarita River Watershed during Water Years 1966 through 2014 are shown on Table 5.4. Total imports to these districts are measured; however some districts serve lands outside the Watershed. For these districts, which include Eastern MWD, Elsinore Valley MWD, Fallbrook PUD and Rainbow MWD, the portion delivered in the Santa Margarita River Watershed must be estimated.

Review of the historical trend of total imports shown on Table 5.4 indicates significant year-to-year variations with relatively low imports in wet years and higher imports in dry years, combined with an underlying growth rate to serve increasing municipal water demands in the Murrieta-Temecula area.

Exports over the period 1966 through 2014 are also shown on Table 5.4. These include estimated water exports on Camp Pendleton less estimated wastewater returns, as well as an estimate of exports by Fallbrook PUD and the Naval Weapons Station after 1983, and Elsinore Valley MWD after 1986. Exports by Eastern MWD were initiated in 1992-1993, and Rancho California WD began quantifying export of water in 2002-03. Exports do not include water that naturally flows from the Santa Margarita River into the Pacific Ocean.

TABLE 5.2

SANTA MARGARITA RIVER WATERSHED

IMPORTS/EXPORTS

2013-14

Quantities in Acre Feet

NET IMPORTS

EXPORTS

	TOTAL EXPORTS	1 633	1,617	1,634		1,562	1,337	1,663	1,485	1,575	1,492	1,561	1,531	1,428	18,518
	RANCHO CAL WD E	35	36	17		19	31	17	13	50	18	22	36	25	289
	FALLBROOK F PUD	2	82	9/		77	62	83	77	77	79	74	70	28	968
	ELSINORE VALLEY MWD	<u>, , , , , , , , , , , , , , , , , , , </u>	106	110		108	26	109	104	108	103	119	119	113	1,307
5	EASTERN MWD 6/	1 034	1,058	1,112		1,010	832	1,124	296	686	886	928	937	867	11,744
	U.S. NAVAL WS	C	0	0		0	0	_	0	τ-	τ-	_	τ-	-	9
	N NET EXPORT	372	335	319		348	315	329	324	380	405	417	368	364	4,276
	EXPORTS WASTEWATER NE ALL SINS EXP	26	78	75		79	72	82	83	114	109	112	96	102	1,099
	XPORTS V	469	413	394		427	387	411	407	494	514	529	464	466	5,375
	TOTAL . NET IMPORTS E	7 086	4,866	3,513		5,426	4,536	4,070	6,521	8,885	9,371	9,948	8,902	8,659	81,785
	WESTERN MWD 2/	er.	5 0	2		က	7	7	3	က	4	4	4	ဗ	35
	U.S. NAVAL	4	· ന	2		4	က	4	4	5	9	9	7	7	58
	RANCHO CAL WD	3 438	2,221	1,782		3,080	2,252	2,268	4,084	5,499	5,733	6,152	4,997	5,097	46,603
	RAINBOW MWD	192	161	89		95	103	104	98	135	197	180	211	167	1,732
	MURRIETA DIVISION WESTERN MWD	133	107	99		95	79	87	127	190	136	141	120	124	1,407
	MWD 1/	9	61	22		45	51	62	111	150	110	120	141	105	1,074
	FALLBROOK PUD	733	009	372		514	571	362	464	675	793	788	871	835	7,578
	ELSINORE F VALLEY MWD	1 071	503	259		538	456	380	208	663	771	798	748	718	7,413
	EASTERN H	1 416	1,208	914		1,053	1,020	801	1,122	1,565	1,621	1,759	1,803	1,602	15,884
	YEAR	2013 OCT) NON	DEC	2014	NAC	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL

^{1/} Metropolitan Water District direct deliveries in Domenigoni Valley as shown on Table A-4.

^{2/} Improvement District A - Rainbow Canyon Only (WR-13).

^{3/} All exports are wastewater except as noted for Camp Pendleton and Rancho California WD.

^{4/} Agricultural and Camp Supply use outside the SMRW, recycled use outside the SMRW, plus export to Oceanside Outfall as shown on Table A-8.

^{5/} Estimated as recycled percentage of Camp Supply use outside the Sivirw as אוייים אייים אייים אייים אייים איי 6/ Includes Other Reuse shown on Table A-1, which includes changes of storage in Winchester and Sun City storage ponds, evaporation and percolation losses,

^{7/} Includes groundwater used in San Mateo Watershed and wastewater exported via Palomar Valley pipeline.

TABLE 5.3

SANTA MARGARITA RIVER WATERSHED

TOTAL DISSOLVED SOLIDS

CONCENTRATION OF IMPORTED WATER

	·			
YEAR MONTH	SOLID	ISSOLVED S MG/L 1/	PERCENT PROJECT 2/	
2013	2012-13	<u>2013-14</u>	<u>2012-13</u>	<u>2013-14</u>
OCT NOV DEC	358 342 336	513 520 526	66 77 78	18 15
2014				12
JAN FEB MAR	345 391 399	560 576 538	80 65 64	10 0 15
APR MAY	482 523	574 574	36 22	6 8
JUNE JULY AUG	528 522 524	493 411 451	18 20 18	32 55 46
SEPT	516	551	21	25

^{1/} As measured in the Skinner Treatment Effluent line.

^{2/} Skinner Plant treated a blend of California State Project Water and Colorado River water.

TABLE 5.4

SANTA MARGARITA RIVER WATERSHED IMPORTS/EXPORTS Quantities in Acre Feet

NET IMPORTS

EXPORTS

	TOTAL	2,277	1,937	2,154	2,106	2,696	2,437	2,375	2,357	2,392	1,568	2,122	1,778	1,788	3,329	2,246	2,643	2,488	2,787	3,181	3,263	3,457	2,805	2,820	3,250	2,932	2,056	2,108	2,529	5,603	6,428	6,330	6,165	7,919	7,197	7,311	7,745	8,722	11,631	16,315	20,235	19,538	17,809
	RANCHO CAL WD 1	N N	N N	N/R	N/R	N/N	N/R	N/R	N/R	N/R	N/R	N/R	N/N	N/R	N N	N/R	N/R	N/R	N/R	N/R	N/R	N N	N/R	N/R	N N	N/R	N/R	N/R	N/R	N/R	N/N	N/R	N N	N/R	N R	N/R	N R	N N	64	312	1,574	1,379	364
	FALLBROOK FUD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,003	1,032	1,060	1,096	1,129	1,154	1,181	1,271	096	1,083	1,255	1,068	1,153	1,035	1,021	1,482	1,377	1,419	1,392	1,225	1,359	1,329	1,417	1,395	891
	ELSINORE F VALLEY MWD	 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	22	74	114	134	140	150	170	185	213	226	247	254	279	310	412	483	009	927	938	837
2/	EASTERN E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	705	3,159	3,908	2,993	3,201	4,513	4,133	3,649	4,457	5,325	7,636	9,115	11,676	10,906	10,553
100000000000000000000000000000000000000	U.S. NAVAL WS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			26 E	16 P	56	56	23	27	13	7	16	2	12	2	9	80	2	7	80	6	10	œ	16	80	12
	NET EXPORT	2,277	1,937	2,154	2,106	2,696	2,437	2,375	2,357	2,392	1,568	2,122	1,778	1,788	3,329	2,246	2,643	2,488	1,758	2,123	2,177	2,345	1,645	1,585	1,972	1,520	949	878	403	1,201	1,170	2,084	1,711	1,669	1,428	1,957	1,578	1,751	2,079	4,951	4,625	4,912	5,152
	CAMP PENDLETON TS WASTEWATER TS RETURNS	974	1,243	1,214	1,170	1,113	1,090	1,168	1,187	1,140	1,530	1,497	1,416	1,283	1,427	1,405	1,249	1,273	1,242	1,120	1,200	981	1,799	1,872	1,446	1,451	1,219	1,548	1,926	1,501	1,611	1,493	1,932	2,073	2,130	2,115	2,075	1,950	1,688	0	0	0	0
	CAMP	3,251	3,180	3,368	3,276	3,809	3,527	3,543	3,544	3,532	3,098	3,619	3,194	3,071	4,756	3,651	3,892	3,761	3,000	3,243	3,377	3,326	3,444	3,457	3,418	2,971	2,168	2,426	2,329	2,702	2,781	3,577	3,643	3,742	3,558	4,072	3,653	3,701	3,767	4,951 6/	4,625 6/	4.912 6/	5,152 6/
1000	TOTAL	6,287	5,597	6,291	5,856	6,675	6,548	7,572	6,504	7,768	6,962	9,628	12,486	16,425	17,824	21,047	28,642	24,856	16,672	19,946	20,015	24,474	21,855	32,108	40,202	43,974	44,134	38,008	28,806 R	35,779 R			47,555 R	42,935	58,040 R	82,279 R	65,009 R	81,873	78,264	94,840	77,138	29,367	106,079
	WESTERN MWD 4/	24	20	27	25	31	34	34	30	36	34	35	24	56	24	25	34	34	56	56	27	34	36	36	23	22	21	25	31	37	59	35	30	31	41	42	29	64	42	20	62	99	45
	U.S. NAVAL WS	0	0	0		0 E	76 E	115 E	115 E	115 E			115 E		115 E	102	94	116	120	128	145	109	66	117	73	125	100	109	26	111	104	73	26	88	73	40	64	20					
	RANCHO CAL WD 3/	0	0	0	0	0	0	0	0	0	0	119	1,845	5,774	600'2	10,126	15,282	13,378	5,752	6,716	7,158	11,174	7,564	17,854	22,895	22,030	21,238	16,931	11,411	16,386	15,108	23,600	26,982	19,584	34,490	55,409	41,823	54,148	50,744	62,408	47,614	60.611	63,818
	RAINBOW	1,308	1,095	1,377	1,253	1,689	1,650	2,037	1,616	2,049	1,247	2,239	2,343	2,188	2,348	2,489	3,153	2,460	2,190	3,068	3,410	2,945	3,390	2,985	3,003	3,818	2,904	2,277	1,965	1,651	1,661	1,815	1,429	1,601	1,727	2,217	1,804	1,676	1,510	1,888	1,610	1.851	2,262
	MURRIETA DIVISION I WESTERN MWD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	102	330	75	316	723
	MWD N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	547	1,005	3,521	5,023	3,781	712	689	595	495	992	556	506	099
	FALLBROOK PUD 1/	3,351	2,852	3,423	2,837	3,538	3,405	3,916	3,210	3,967	3,597	4,627	5,212	5,202	5,723	6,404	8,543	7,079	6,720	8,506	7,831	8,585	8,656	8,033	990'6	10,103	7,962	7,893	6,925	7,250	6,538	7,993	7,894	6,382	7,430	9,365	8,398	9,580	9,130	11,749	8,108	10,573	12,292
	ELSINORE VALLEY MWD	Y ! Ž	N/N	N/R	N/N	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	569	712	969	798	678	658	816	808	882	938	1,032	1,341	2,255	2,421	2,190	2,964 R	3,232 R	3,127 R	4,197 R	4,296 R	5,100	6,133 R	7,174 R		7,596	7,091	8,438	8,215	9 8 19	10,811
	EASTERN E	1,604	1,630	1,464	1,741	1,417	1,383	1,470	1,533	1,601	1,969	2,493	2,947	2,551	1,894	1,192	716	1,112	1,211	669	629	760	1,155	2,047	3,746	5,601	9,479	8,593	5,393	7,150	4,625	4,960	3,284	5,117	4,327	7,256	5,948	8,117	9,062	9.138	10.858	14 161	15,398
	WATER I	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007

TABLE 5.4

SANTA MARGARITA RIVER WATERSHED

IMPORTS/EXPORTS

Quantities in Acre Feet

NET IMPORTS

EXPORTS

		XPORTS	,635	,547	,268	1,797	868'	,325	18,518
		ш	Ì	•			•	•	•
	RANCHO	CAL WD 7/	361	367	318	302	284	286	286
		PUD	799	829	926	901	928	006	896
2/	ELSINORE	VALLEY	901	1,069	1,120	1,130	1,205	1,245	1,307
4,	FASTERN	MWD	12,789	12,027	11,829	12,381	12,550	11,775	11,744
	U. S.	NAVAL WS	1	12	7	œ	6	က	9
		NET EXPORT	4,774	4,243	4,068	4,075	3,923	4,113	4,276
	CAMP PENDLETON	WASTEWATER RETURNS	0	1,119	1,075	1,441	1,672	1,254	1,099
	CAMP	EXPORTS	4,774 6/	5,362 8/	5,143 8/	5,516 8/	5,595 8/	5,367 8/	5,375 8/
	TOTAL	IMPORTS	89,105	86,612	72,986	71,029	75,440	74,889	81,785
	WESTERN	MWD 4/	54	21	62	52	48	35	35
	U.S.	NAVAL WS	82	74	69	45	48	47	28
	RANCHO	CAL WD 3/	50,683	50,270	40,894	39,411	41,900	40,571	46,603
	RAINBOW	MWD	1,790	1,852	1,453	1,492	1,892	1,713	1,732
	MURRIETA	WESTERN MWD	2,180	1,654	1,462	1,642	1,371	1,365	1,407
	MWD	77	493	607	385	336	466	892	1,074
	FALLBROOK	PUD 1/	8,920	8,557	7,183	6,234	7,254	7,357	7,578
	ELSINORE	VALLEY	9,951	9,075	7,926	7,425	7,398	7,158	7,413
	EASTERN	MWD	14,952	14,472	13,552	14,392	15,063	15,751	15,884
	WATER	YEAR	2008	2009	2010	2011	2012	2013	2014

Includes DeLuz Heights MWD prior to 1991.
 Metropolitan Water District direct deliveries in Domenigoni Valley plus miscellaneous maintenance releases beginning 2009.
 For period 2003 to present, values shown are net imports excluding imported water delivered to San Mateo Watershed.

â	
5	
Only (WR-13)	
≥	
≥	
Ξ	
_	
/ Canyon	
Canyo	
ပ	
Rainbov	
Ξ.	
Rainb	
⋖	
nt District	
st	
t Dist	
Ħ	
e	
e	
ó	
ğ	
Ξ	
_	
4	

 ^{5/} All exports are wastewater except as noted for Camp Pendleton and Rancho Cal WD.
 6/ Includes export of native water plus wastewater from in-basin use.
 7/ Includes groundwater used in San Mateo Watershed and wastewater exported to Santa Ana Watershed.
 8/ Includes export of native water plus recycled water.

N/R - Not Reported P - Partial year data E - Estimate R - Revised

5.4 Lake Skinner

Lake Skinner is a 44,000 acre foot reservoir constructed by MWD on Tucalota Creek, within the Santa Margarita River Watershed. The purpose of Lake Skinner is to provide regulatory and emergency storage capacity for water imported to southern California. MWD does not have a water right to store or divert local water in Lake Skinner. Accordingly, a Memorandum of Understanding and Agreement on Operation of Lake Skinner (MOU), dated November 12, 1974, approved by the Court on January 16, 1975, contains provisions to protect Santa Margarita River Watershed water users from potential effects of Lake Skinner on either subsurface or surface flows.

Protection against a decrease in subsurface flows caused by the dam is afforded by a provision in the MOU that requires MWD release water from Lake Skinner into Tucalota Creek if groundwater levels in Well AV-28B fall below an elevation of 1356.64 feet. During Water Year 2013-14, MWD released 61 acre feet for the specific purpose of groundwater replenishment to ensure the groundwater elevation in Well AV-28B was maintained above the indicated threshold elevation. For comparison purposes, the groundwater elevation was 1357.45 feet on September 26, 2014, a decline of 0.05 feet compared to 1357.50 feet on September 27, 2013.

In addition, operations at Lake Skinner periodically require miscellaneous maintenance releases from Lake Skinner into Tucalota Creek that also replenish groundwater levels. In 2013-14, MWD did not release any additional maintenance releases from Lake Skinner into Tucalota Creek. Also MWD periodically makes maintenance releases from various points throughout the MWD distribution system. In 2013-14, MWD did not discharge any maintenance releases from the distribution system.

The MOU also provides that all local surface inflow that enters Lake Skinner will be released into Tucalota Creek. In its 1980 modification, the MOU provides that local surface inflow is to be determined by using the hydrologic equation for Lake Skinner that is specified in the MOU. That equation is used to determine inflow and the related release for large flood events. However, in many years the local inflow is small compared to the large quantities of imported water inflow and outflow at Lake Skinner. The error of measurement for these large inflows and outflows is larger than the local inflow in many instances. Accordingly, MWD also monitors the flow in Tucalota Creek, Rawson Creek and Middle Creek during storms and uses those observations to supplement the hydrologic equation.

On February 16, 2005, the Court approved an Order Amending the MOU to provide for diversion from Lake Skinner on Fallbrook PUD's behalf after specified releases are made, according to State Water Resource Control Board Permit 11356 and the amended Lake Skinner MOU. In 2013-14, MWD records show no local inflow to Lake Skinner and subsequently there were no required releases in accordance with the MOU. In 2013-14, no water was accumulated in Lake Skinner for diversion to Fallbrook PUD.

5.5 Diamond Valley Lake

Diamond Valley Lake is located in Diamond and Domenigoni Valleys within the Santa Margarita River Watershed. The lake was created by three dams, one each at the east and west ends of Domenigoni/Diamond Valley and a saddle dam at the low point on the north rim. The West Dam intercepts flows in the headwaters of Warm Springs Creek, a tributary of the Santa Margarita River through Murrieta Creek. The drainage area for the headwaters of Warm Springs Creek above the West Dam is 17.2 square miles.

MWD does not have a water right to store local waters in the reservoir, now known as Diamond Valley Lake, so a Memorandum of Understanding and Agreement on Operation of Domenigoni Valley Reservoir (MOU) was developed and approved by the Court on January 19, 1995. Among other things, the MOU provides:

The quantity and quality of surface runoff that would flow past the West Dam in the absence of the Reservoir will be determined and a like quantity of water of similar quality will be released from the Reservoir or San Diego Canal (SDC) into Warm Springs Creek.

The MOU specifies that the required releases into Warm Springs Creek will be determined by measuring the surface water inflows into Goodhart Canyon Detention Basin. The detention basin receives surface water inflows from Goodhart Creek, which is located in an adjoining watershed that is tributary to the Santa Ana River. The drainage area of Goodhart Creek upstream of the detention basin is 4.2 square miles. The rainfall-runoff characteristics of the Goodhart Creek drainage area were determined to be the same as the rainfall-runoff characteristics of the Warm Springs Creek headwaters above the West Dam. Thus the required releases into Warm Springs Creek are equal to 4.1 times the measured inflow into Goodhart Canyon Detention Basin, as determined as the ratio of the drainage areas for the respective watersheds.

The total required releases into Warm Springs Creek during 2013-14 were 1.442 acre feet.

Although all surface waters within the Santa Margarita River Watershed in Domenigoni Valley and Diamond Valley are subject to the continuing jurisdiction of the Court, groundwater contained within the alluvium, north of the south line of Section 9, Township 6 South, Range 2 West, SBM is not considered by the Court to be a part of the Santa Margarita River system as long as groundwater levels are below an elevation of 1400 feet. During 2013-14, groundwater elevations in Well MO-6, which is located along the south line of Section 9, rose 1.29 feet from 1364.93 feet at the beginning of the water year to 1366.22 feet on October 2, 2014.

During 2013-14, there were no injections into the Domenigoni Valley groundwater basin pursuant to Agreements for Mitigation of Groundwater. However, pursuant to a Court Order, MWD imported 1,074 acre feet of water into the Santa Margarita River Watershed for irrigation of lands in Domenigoni Valley. As previously noted, the groundwater in the Domenigoni Valley groundwater basin is outside this Court's jurisdiction when groundwater levels are below an elevation of 1400 feet.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

Page Intentionally Blank

SECTION 6 - WATER RIGHTS

6.1 General

The Santa Margarita River Watershed is adjudicated in accordance with the Modified Final Judgment and Decree filed on April 6, 1966, in the U.S. District Court, Southern District of California in U.S.A. v. Fallbrook Public Utility District, et al. Water is used in the Watershed under a variety of water rights, as more specifically described in the Interlocutory Judgments incorporated into the Modified Final Judgment and Decree, as primarily riparian rights and overlying rights. Riparian rights belong to owners of land parcels located adjacent to streams in the Watershed or overlying younger alluvium deposits generally along the stream channels. Overlying rights were divided by the Court into two categories based on the location where the water is obtained and used. Water extracted from lands where subsurface waters add to, contribute to and support the Santa Margarita River stream system was found to be subject to the continuing jurisdiction of the Court. Lands in this category were identified by the Court and listed in Interlocutory Judgments. In general, these parcels of land overlie younger or older alluvium deposits. The Court has stated that the issue of apportionment of water rights has not been presented to the Court, but the Court would litigate the apportionment if and when in the future it becomes necessary to do so.

The other category of overlying use applies to parcels of land where subsurface flows do not add to, contribute to or support the Santa Margarita River stream system. These parcels were also identified by the Court and found to be outside the continuing jurisdiction of the Court. In general, these lands overlie basement complex or residuum deposits.

The Court also described a number of other rights in the Watershed. These included surface water appropriative water rights that have been administered by the State of California since 1914. These rights are discussed in the following subsection of this report.

In Interlocutory Judgment No. 41, the Court found that the United States reserved rights to the use of the waters of the Santa Margarita River stream system which under natural conditions would be physically available on the Cahuilla, Pechanga and Ramona Indian Reservations, including rights to the use of groundwater, sufficient for the present and future needs of the Indians residing thereon. In Interlocutory Judgment No. 44, the Court recognized and reserved water rights for lands within the Cleveland and San Bernardino National Forests and for lands being administered pursuant to the Taylor Grazing Act.

Since the early 1960's, there have been substantial changes in water use in the Watershed, especially in the Murrieta-Temecula Groundwater Area. During the 1950's and early 1960's, when this case was under active litigation, most of the water use in the Murrieta-Temecula area consisted of individual property owners pumping water for use on their own properties. In 1965, the Rancho California WD was formed. The District developed Agency Agreements with most of the landowners within the District. In these Agency Agreements, the landowners "...without transferring any water rights and privileges pertaining to said land..." designated the District as their exclusive agent for the development and management of their water supply. Thus, many landowners within the

Rancho California WD are not exercising their overlying rights. Instead, Rancho California WD pumps groundwater and uses it throughout the District area as agent on behalf of the landowners.

The resulting change is that Rancho California WD presently produces groundwater in the Murrieta-Temecula Groundwater Area under a variety of rights: (1) recovery of water appropriated at Vail Lake, (2) recovery of import return flows and recharged imported water, (3) groundwater appropriative rights, and (4) as agent on behalf of the overlying landowners. Classification of Rancho California WD supplies into these various water right categories is discussed in Section 7 of this Report. Related to the change associated with Rancho California WD production is the increased production by Western MWD within its Murrieta Division. As discussed in Section 7 of this Report, all groundwater production in the Murrieta Division by Western MWD is classified as production from the older alluvium under a groundwater appropriative right.

Another change from the early 1960's is the large scale importation of water into the Santa Margarita River Watershed by Rancho California WD. A portion of such importation finds its way into the groundwater aquifers. The legal status of return flows from imported supplies as well as direct recharge of imported water was clarified by the final judgment in *City of Los Angeles v. City of San Fernando*, et al., 1975 14 Cal.3rd 199. This decision in the Supreme Court of the State of California made two major findings with respect to imported water.

The first was that agencies have the right to recharge and store imported water in a groundwater basin and to extract the imported water for use, subject to applicable state and federal laws. In addition, agencies that import and deliver water to lands overlying a groundwater basin have a continuing right to extract the return flow from such water. The return flow is that portion of the imported supply that percolates into the groundwater basin. In the San Fernando case this portion was found to range from 20 percent to 35.7 percent of the imported supplies.

The Rancho Division of the Rancho California WD overlies the Murrieta-Temecula Groundwater Area. Thus a portion of the import supply delivered to the Rancho Division of Rancho California WD percolates into the underlying aquifers. Imported water is also supplied to the Santa Rosa Division within Rancho California WD, however only a relatively small part of this division overlies the Murrieta-Temecula Groundwater Area. Thus there is less imported water return flow from the Santa Rosa Division.

Camp Pendleton representatives contend that the Court has jurisdiction over imported water to the full extent that imported water, as well as its use, its returns and its products, affects in any significant manner the water rights within the Watershed over which the Court has traditionally asserted its jurisdiction. Other parties dispute the Court's jurisdiction over imported water.

6.2 Appropriative Surface Water Rights

Another broad category of water rights used in the Watershed is surface water appropriative rights. Since 1914, these rights have been administered by the State Water Resources Control Board (SWRCB).

A list of current permits, licenses and other active rights obtained from the SWRCB is shown on Table 6.1. A permit by the SWRCB authorizes water diversion, sets terms for the water project's completion and development of water use, and may impose other conditions. After the permittee demonstrates that construction is complete, water is being put to use and the permit conditions have been met, the SWRCB can issue a license. The license remains in effect as long as the license conditions are met and the water is put to beneficial use.

Active direct diversion rights and storage rights from creeks in the Watershed are summarized below:

	Direct Diversions Gallons Per Day	Storage Acre Feet
Cahuilla Valley	720	5
Cottonwood Creek	485,000	60
Cutca Creek	5,825	
DeLuz Creek	4,700	100
Fern Creek	213,000	100
Kohler Canyon	158,000	40
Long Canyon Spring	89	
Rainbow Creek		0.5
Rattlesnake Canyon	12,000	100 Feb. 100
Temecula Creek	13,050	40,000
Tucalota Creek		10,000
Sandia Canyon		8
Sourdough Spring	55	100 100 100
Santa Margarita River	96,730	4,000
Nelson Creek	<u>1,550</u>	
TOTAL	990,719	54,313.5

These direct diversion rights of 990,719 gallons per day correspond to 1.53 cfs or 3.04 acre feet per day.

TABLE 6.1

SANTA MARGARITA RIVER WATERSHED

APPROPRIATIVE WATER RIGHTS

PERMITS AND LICENSES

		DATE	WATER	DIVERSION	AMOUNT	USE	STATUS
A006629	William H. & Sandra J. Cyrus	4/9/30	Coahuila Valley	Sec. 4, 7S, 3E	DD-720 gpd	D	License
A007035	Nyla Lawler Trust	8/10/31	Cutca Creek	Sec. 29, 9S, 1E	DD-5725 gpd	D/I	License
A009137	JR SA, LLC	10/07/37	Temecula Creek	Sec. 12, 9S, 1E	DD-400 gpd	D	License
A009291	Richard W. Long	5/13/38	Nelson Creek	Sec. 23, 8S, 5W	DD-1550 gpd	D	License
A010806	James R., Phyllis & Bruce Grammer	4/22/44	Temecula Creek	Sec. 34, 9S, 2E	DD-2880 gpd	D	License
A011161	Roy C. Pursche & Barbara Booth	9/26/45	Rattlesnake Canyon	Sec. 28, 9S, 2E	DD-12,000 gpd	D/I	License
A011518	Rancho California Water District	8/16/46	Temecula Creek	Sec. 10, 8S, 1W	ST-40,000 AF	D/I/IN/M/R	Permit
A011587 1/	U. S. Bureau of Reclamation	10/11/46	Santa Margarita River	Sec. 12, 9S, 4W	ST-10,000 AF	D/I/M	Permit
A012178	Fallbrook Public Utility District	11/28/47	Tucalota Creek	Sec. 3, 7S, 2W	ST-10,000 AF	D/I/M	Permit
A012179 1/	U. S. Bureau of Reclamation	11/28/47	Santa Margarita River	Sec. 12, 9S, 4W	ST-10,000 AF	D/I/M	Permit
A013505	Robert R. Baum	12/12/49	Cottonwood Creek	Sec. 30, 8S, 4W	DD-0.75 cfs & ST-42 AF	R/S	License
A017239	Nancy A. Wiley	8/15/56	Temecula Creek	Sec. 20, 9S, 2E	DD-120 gpd	D/E	License
A020507	Robert R. Baum	11/24/61	Cottonwood Creek	Sec. 19, 8S, 4W Sec. 30, 8S, 4W	ST-18 AF	I/R	License
A020608	Pete and Dorothy Prestininzi	2/13/62	DeLuz Creek	Sec. 20, 8S, 4W	ST-100 AF	D/I/R	License
A020742	U. S. Cleveland National Forest	4/24/62	Sourdough Spring	Sec. 25, 9S, 1E	DD-55 gpd	E	License
A021074	U. S. Cleveland National Forest	12/07/62	Cutca Spring	Sec. 17, 9S, 1E	DD-100 gpd	S/W	License
A021471A	U. S. Department of Navy	9/23/63	Santa Margarita River	Sec. 5, 10S, 4W Sec. 2, 11S, 5W	ST-4,000 AF	D/I/M/Z	License
A021471B 1/	U. S. Bureau of Reclamation	9/23/63	Santa Margarita River	Sec. 32, 9S, 4W	ST-165,000 AF	D/I/M/Z	Permit
4027756	James R. Grammer	5/23/83	Temecula Creek	Sec. 3, 10S, 2E	DD-9,650 gpd	I/W	License
A028133	B&E Inv., Inc.	5/14/84	Cahuilla Creek	Sec. 15, 8S, 2E	ST-5AF	E/H/I/R/S	Permit
			OTHER RIGHTS				
F005751S*	U. S. Cleveland National Forest	1/01/70	Long Canyon Spring	Sec. 16, 9S, 1E	DD-89 gpd	E/R/S/W	
S000024**	Judge Dial Perkins	12/26/86	Santa Margarita River	Sec. 12, 9S, 4W	DD-133.3 gpd	D	
S000751**	Lawrence Butler	5/31/67	Fern Creek	Sec. 31, 8S, 4W	DD-0.33 cfs ST-100 AF	1	
S011411**	Agri Empire, Inc.	5/16/84	Kohler Canyon	Sec. 33, 9S, 2E	DD-0.245 cfs ST-40 AF	I/S	
S012235**	Lenny F. Kuszmaui	8/27/85	DeLuz Creek	Sec. 4, 9S, 4W	DD-4700 gpd	D/I	
5014009**	San Diego State University	6/7/93	Santa Margarita River	Sec. 27, 8S, 3W	DD-0.15 cfs	D/I/Z	
001583***	George F. Yackey	12/27/77	Sandia Canyon	Sec. 25, 8S, 4W	ST-8.0 AF	S	
002380***	Chris R. & Jeanette L. Duarte	12/16/77	Rainbow Creek	Sec. 12, 9S, 3W	ST-0.5 AF	S	
KEY TO USE:	DD - Direct Diversion D - Dome	estic	R - Recreation E - F	Fire Protection	H - Fish Culti	ure	
	ST - Diversion to Storage I - Irrigati			Stockwatering	Z - Other		
	IN - Industrial		W - Fish & Wildlife Pro	•			
NOTES:	* Federal Filing	** Statem	ent of Diversion and Use		*** Stock Filing		

^{1/} These three water rights (A011587, A012179, and A021471B) were assigned to the U.S. Bureau of Reclamation by Fallbrook Public Utility District and the Department of the Navy in 1974 for purposes of developing the Santa Margarita River Project for the benefit of Fallbrook Public Utility District and the Department of the Navy Marine Corps Base Camp Pendleton.

Storage rights shown in Table 6.1 include 185,000 acre feet of storage rights on the Santa Margarita River held by the U. S. Bureau of Reclamation that have not been exercised. These three water rights (A011587, A012179, and A021471B) were assigned to the U.S. Bureau of Reclamation by Fallbrook Public Utility District and the Department of the Navy in 1974 for purposes of developing the Santa Margarita River Project for the benefit of Fallbrook Public Utility District and Department of the Navy Marine Corps Base, Camp Pendleton. The deadline for exercising these rights is currently set at December 31, 2008. On November 14, 2008, the U. S. Bureau of Reclamation filed petitions for time extensions for completion of beneficial use under the three permits. On September 14, 2009, change petitions were filed to amend the permits to conform to the Santa Margarita Conjunctive Use Project being developed jointly by the U. S. Bureau of Reclamation, Department of the Navy Marine Corps Base, Camp Pendleton, and Fallbrook Public Utility District. Those extension and change petitions have been accepted and in accordance with SWRCB Order 2009-0063-EXEC they are under consideration in tandem.

Table 6.1 also lists other rights recognized by the SWRCB. These rights generally are based on Statements of Water Diversion and Use that have been filed with the SWRCB. Such statements include one by the United States on behalf of the Cleveland National Forest, which states that the diversion and use of water from Long Canyon Spring is made pursuant to a withdrawal and reservation of the land and resources for National Forest System purposes as of February 14, 1907.

Besides the federal filing, there are also Statements of Water Diversion and Use filed by other entities. Four of these statements represent riparian or pre-1914 appropriative diversions from DeLuz Creek, Fern Creek and Santa Margarita River that have been reported to the SWRCB. The other statement represents a pre-1914 appropriative right to divert water from a spring in Kohler Canyon into a 40 acre foot reservoir.

The last two rights noted on Table 6.1 represent filings made in 1977 pursuant to Subchapter 2.5 to Chapter 3 of Title 23 of the California Code of Regulations. That subchapter deals with Water Rights for Stockponds.

In addition to appropriative rights under SWRCB jurisdiction, there are a number of non-statutory appropriative rights that were established prior to 1914. These rights continue to be used to support diversions of water from the Santa Margarita River stream system. Such rights, which are listed in the various Interlocutory Orders developed in this litigation, are shown on Table 6.2.

On November 19, 1998, the SWRCB adopted Order No. 98-08 entitled "Order Revising Declaration of Fully Appropriated Stream Systems" to revise its prior Order Nos. 89-25 and 91-07. These Orders list the Santa Margarita River stream system as fully appropriated "from the mouth of the Santa Margarita River at the Pacific Ocean upstream including all tributaries where hydraulic continuity exists."

TABLE 6.2

SANTA MARGARITA RIVER WATERSHED

PRE - 1914 APPROPRIATIVE WATER RIGHTS Listed in Interlocutory Judgments

INTERLOCUTORY JUDGMENT	LISTED OWNER	CURRENT OWNER	DATE OF APPROPRIATION	SOURCE OF WATER	POINT OF DIVERSION	AMOUNT	USE
NO. 32	Anderson, Nina B.	Poladian, Jacqueline	April 11, 1892	Fern Creek	NW 1/4 of SE 1/4 Sec 31, T8S, R4W	32 gpm	Irrigation
NO. 32	Butler, Lawrence W. and Mary C.	Vanginkel, Norman Tr and Vanginkel, Deborah Tr San Diego Gas & Electric	Sept. 23, 1896	Fern Creek	NW 1/4 of SE 1/4 Sec 31, T8S, R4W	Capacity of 8 inch pipe	Irrigation
NO. 32	Wilson, Samuel M. and Hazel A.	Shirley, Bobbie	Aug. 3, 1911	DeLuz Creek	NW 1/4 of SW 1/4 Sec 32, T8S, R4W	50 miner's inches 65 AF/yr	Irrigation
NO. 24	United States	United States	1883	Santa Margarita River	Sec 5, T10S, R4W	20 cfs 1200 AF/yr	Domestic Irrigation Stock Water

The consequences of this Order are as follows:

- 1. The Board is precluded from accepting any application to appropriate water from the Santa Margarita River System except where the proposed appropriation is consistent with conditions contained in the Declaration.
- 2. Initiation of a water right, pursuant to the Water Rights Permitting Reform Act of 1988 (Water Code Section 1228 *et seq.*), by registering small use domestic appropriations is precluded, except where the proposed appropriation is consistent with conditions contained in the Declaration. Small use domestic appropriations refer to uses that do not exceed direct diversions of 4,500 gallons per day or diversion by storage of 10 acre feet per year for incidental aesthetic, recreational, or fish and wildlife purposes.
- 3. Pursuant to Water Code Section 1206(a) the Board is authorized, but not required, to cancel pending applications where inconsistent with conditions contained in the Declaration; previous Orders implement a procedure for disposition of such applications pending on the effective date of the Declaration.

The Order provides for reconsideration of the Order either upon petition of an interested party or upon the Board's own motion.

6.3 <u>Fallbrook PUD Changes of Point of Diversion and Place of Use</u> for Permit No. 11356

On November 20, 2001, the Chief of the Division of Water Rights of the State Water Resources Control Board authorized an Order Approving Changes in Source Point of Diversion, Place of Use and Amending the Permit (No. 11356). The permit allows Fallbrook PUD to divert and store up to 10,000 acre feet per year at Lake Skinner. The Court approved an Order Amending the Memorandum of Understanding and Agreement on Operation of Lake Skinner on February 16, 2005. The Amendment provides for such diversions from Lake Skinner after specified releases are made.

On December 18, 2009, Fallbrook PUD filed a petition for a time extension for completion of beneficial use under Permit No. 11356. The petition was accepted and noticed by the SWRCB on February 23, 2009, and no protests were filed.

On May 25, 2013, the SWRCB issued Order WR 2013-0007-EXEC with an amended Permit No. 11356 extending the time to apply the water to full beneficial use by December 31, 2048.

6.4 Federal Reserved Water Rights for Cahuilla and Ramona Indian Reservations

The Cahuilla and Ramona Indian Reservations are both located in the Anza area. The Court found in Interlocutory Judgment No. 41 that the United States reserved water rights for the reservations as specified below.

Order No. 3 in Interlocutory Judgment No. 41 specifies for the Cahuilla Indian Reservation the following:

IT IS FURTHER ORDERED, ADJUDGED AND DECREED that the United States of America intended to reserve, and did reserve, rights to the use of the waters of the Santa Margarita River which under natural conditions would be physically available on the Cahuilla Indian Reservation, including rights to the use of ground waters, sufficient for the present and future needs of the Indians residing thereon with priority dates of December 27, 1875, for lands transferred by the Executive Order of that date; March 14, 1887, for lands transferred by the Executive Order of that date; December 29, 1891, for lands transferred by the Executive Order of that date.

Order No. 1 in Interlocutory Judgment No. 41 specifies for the Ramona Indian Reservation the following:

IT IS ORDERED, ADJUDGED AND DECREED that the United States of America when it established the Ramona Indian Reservation intended to reserve and did reserve rights to the use of waters of the Santa Margarita River stream system which under natural conditions would be physically available on the Ramona Reservation, including rights to the use of ground waters, sufficient for the present and future needs of the Indians residing thereon with a priority date of December 29, 1891.

On October 6, 2006, the Cahuilla Band of Indians filed a Motion to Intervene as Plaintiff-Intervenor in United States of America v. Fallbrook Public Utility District, et al. The Cahuilla Band also filed a Complaint asking the Court to quantify its federal reserved water rights by confirming elements of the water rights as declared and decreed by the Court in Interlocutory Judgment No. 41. On October 16, 2006, the Ramona Band of Cahuilla filed a similar motion and Complaint. On January 22, 2007, the Court issued an Order granting the Motions to Intervene and filing the Complaints in Intervention. On February 25, 2009, the Court ordered the Cahuilla Band and Ramona Band as plaintiffs to serve by April 30, 2009, all water right holders subject to the Court's jurisdiction within the entire Watershed. Service was completed and the parties commenced settlement negotiations. On April 1, 2009, the Cahuilla and Ramona Bands filed motions to dismiss claims against certain downstream defendants and to file second amended complaints to limit the claims to the Anza-Cahuilla Groundwater Area. On April 29, 2009, the Court issued an Order granting the motions. The parties are progressing with settlement negotiations and Court proceedings for quantification of each Band's federal reserved water rights based on the Second Amended Complaints.

6.5 Federal Reserved Water Rights for Pechanga Indian Reservation

The Court found in Interlocutory Judgment No. 41 that the United States reserved water rights for the Pechanga Indian Reservation in accordance with Order No. 7:

IT IS FURTHER ORDERED, ADJUDGED AND DECREED that the United States of America intended to reserve, and did reserve, rights to the use of the waters of the Santa Margarita River stream system which under natural conditions would be physically available on the Pechanga Indian Reservation, including rights to the use of ground waters sufficient for the present and future needs of the Indians residing thereon with priority dates of June 27, 1882, for those lands transferred by the Executive Order of that date; January 9, 1907, for those lands transferred by the Executive Order of that date; August 29, 1893, for those lands added to the Reservation by Patent on that date; and May 25, 1931, for those lands added to the Reservation by Patent of that date.

In 1974, the Pechanga Band of Luiseño Mission Indians filed a Motion to Intervene as a Plaintiff-Intervenor in United States of America v. Fallbrook Public Utility District, et al., and in 1975 the Court granted the Motion. Rather than filing a complaint asking the Court to quantify its federal reserved water rights, the Pechanga Band is in the process of resolving its claims to water rights in the Santa Margarita River Watershed through a comprehensive settlement agreement with the United States and principal water districts, including Rancho California WD, Eastern MWD, and Metropolitan Water District. On December 17, 2009. Pechanga and Rancho California WD announced an agreement on a framework, developed with the assistance of Metropolitan Water District and the United States Federal Negotiating Team, to resolve Pechanga's water rights claims. On April 27, 2009, Pechanga and Rancho California WD agreed to a Settlement Conceptual Agreement and on June 11, 2009, the Rancho California WD Board approved the Settlement Conceptual Agreement. November 16, 2009, the parties announced the Pechanga Water Rights Settlement Agreement was finalized. On December 11, 2009 and January 26, 2010, the Pechanga Indian Water Rights Settlement Act was introduced in the United States House of Representatives and Senate, respectively. The proposed legislation was reintroduced in the Senate on June 25, 2013, and in the House of Representatives on June 26, 2013. In April 2014, the Senate Committee on Indian Affairs reported the Senate bill (S. 1219) to the full chamber recommending further consideration of an amended bill but the legislation was not enacted. The parties are now in the process of revising the agreement and draft legislation in anticipation of Congressional and Court approvals.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

Page Intentionally Blank

SECTION 7 - WATER PRODUCTION AND USE

7.1 General

Water production and use data were obtained from several types of substantial users including water purveyors, Indian Reservations, mobile home parks and private landowners. Private landowners who qualify as substantial water users are those who irrigate eight or more acres or who produce or use an equivalent quantity of water.

Major water purveyors, who reported production and use data in the 2013-14 Water Year, are listed as follows:

Anza Mutual Water Company
Eastern Municipal Water District
Elsinore Valley Municipal Water District
Fallbrook Public Utility District
Lake Riverside Estates
Metropolitan Water District of Southern California
Rainbow Municipal Water District
Rancho California Water District
U. S. Marine Corps, Camp Pendleton
U.S. Naval Weapons Station, Fallbrook Annex
Western Municipal Water District

Lake Riverside Estates is listed with major water purveyors although it does not deliver water to customers. However it does produce make-up water for losses from Lake Riverside.

In addition to the major purveyors, there are a number of smaller water systems in the Watershed. Of these, Quiet Oaks Mobile Home Park, Jojoba Hills SKP Resort, Rancho California Outdoor Resorts, and Hawthorn Water System are substantial users.

Three Indian Reservations, the Cahuilla, Pechanga and Ramona, are noted in Interlocutory Judgment No. 41, the Judgment that pertains to Water Rights on Indian Reservations in the Watershed. Estimates and/or measurements of water production and use are reported for the Cahuilla, Pechanga and Ramona Indian Reservations.

A portion of a fourth Reservation, the Pauma Mission Reserve Tract of the Pauma Yuima Band of Luiseño Mission Indians, is also located within the Watershed. However, this Reservation was not included in Interlocutory Judgment No. 41.

The final category of water users is private landowners who use water primarily for irrigation.

The water use data collected for Water Year 2013-14 is summarized on Table 7.1. Total imported supplies plus local production totaled 123,617 acre feet compared to 118,232 acre feet reported in 2012-13. Of that quantity, 40,288 acre feet were used for agriculture; 19,276 acre feet were used for commercial purposes; 52,587 acre feet were used for domestic purposes; 24 acre feet were discharged to Murrieta Creek; 51 acre feet were discharged to Santa Gertrudis Creek; and 4,051 acre feet were discharged by Rancho California WD during 2013-14, pursuant to the CWRMA. It is noted, the commercial use for Pechanga includes 442 acre feet of recycled water and thus this amount is double counted on Table 7.1 relative to production from the Santa Margarita River Watershed. Actual commercial use of production from the Watershed is 18,834 acre feet, reflecting the reduction of 442 acre feet of recycled water used by Pechanga. In order for the totals to balance on Table 7.1, the 442 acre feet of recycled water is subtracted from the indicated loss for Pechanga as reflected in Footnote 13 for Table 7.1.

The overall system loss was 4,755 acre feet, or 3.8% of total production. System gain or loss is the result of many factors including errors in measurement, differences between periods of use and periods of production, leakage and unmeasured uses.

Monthly production and use data for major water purveyors are attached to this report as Appendix A. Uses are listed under agricultural, commercial and domestic categories. The definition of agricultural, commercial and domestic uses varies for the different purveyors in the Watershed. The definitions for agricultural, commercial and domestic uses have varied over the years for the different purveyors in the Watershed. Water use definitions for all major water purveyors were updated and reconciled for Water Year 2013-14. The reconciliation resulted in near uniformity in water use definitions among the major water purveyors. Accordingly, definitions of these uses for major water purveyors are shown on Table 7.2. Similar data for Water Years 1966 through 2014 are summarized in tables presented in Appendix B. As noted above, water use definitions were updated in Water Year 2013-14 and thus water use reported for certain purveyors for prior years on the Appendix B tables can vary significantly as compared to the use categories for 2013-14. The reader is referred to Table 7.2, published in each annual report, to determine the particular use definitions for any particular year in question. Appendix C presents information on substantial users outside purveyor service areas.

7.2 Water Purveyors

7.2.1 Anza Mutual Water Company

Anza Mutual Water Company's service area is in the eastern part of the Watershed in the Anza Valley. Production is from two wells: Well No. 1 drilled in 1951, and perforated from 20 feet to 260 feet; and Well No. 2 drilled later to a depth of 287 feet and perforated in the bottom 130 feet. Production for Water Year 2013-14 was approximately 29 acre feet from Well No. 1 as shown on Appendix Table A-11. Well No. 2 was not in use for 2013-14. Water levels in Well No. 1 rose 38 feet from last year.

TABLE 7.1

SANTA MARGARITA RIVER WATERSHED

WATER PRODUCTION AND USE

2013-14

Quantities in Acre Feet

			uanilies	in Acre Fee	#L				
f	PF	RODUCTION				USE 1/			
	WELL/ SURFACE	IMPORT	TOTAL	AG	сомм	DOM	LOSS	TOTAL	WATER RIGHT
WATER PURVEYORS									
Anza Mutual Water Company	29	0	29	0	0	26	3 ^{2/}	29	Appropriative
Eastern MWD	0	15,884	15,884	142	3,553	11,395	794	15,884	Appropriative
Elsinore Valley MWD	0	7,413	7,413	16	1,693	5,601	103	7,413	
Fallbrook PUD	0	7,578	7,578	4,688	359	2,129	402	7,578	Appropriative
Lake Riverside Estates	379	0	379	0	379 ^{3/}	0	0	379	Appropriative
Metropolitan Water District	0	1,074 ^{15/}	1,074	1,074	0 4/	0	0	1,074	
Murrieta Division of Western MW	951	1,407	2,358	0	657	1,640	61	2,358	Appropriative
Rainbow MWD	0	1,732	1,732	1,410	8/	191	131	1,732	
Rancho California WD	26,123 ^{5/}	46,603 ^{6/}	72,726	26,154	10,956	28,925	6,691 7/	72,726	Various
U.S.M.C Camp Pendleton	5,814	0	5,814	0	9/	2,271	3,543 ^{2/10/}	5,814	Appropriative/
									Riparian
U.S. Naval Weapons Station	0	58	58	0	9/	53	5 ^{2/}	58	
Western MWD Improvement Dist	0	35	35	0	31	0	4 2/	35	
Through Rancho California WD									
INDIAN RESERVATIONS									
Cahuilla	60	0	60	6 ^{16/}	5	49	0	60	Overlying/Reserve
Pechanga	936	0	936	0	1,133	162	(359) ^{13/}	936	Overlying/Reserve
Ramona	2	0	2	0	0	2	0	2	Overlying/Reserve
SMALL WATER SYSTEMS									
Quiet Oaks Mobile Home Park	27	0	27	0	10	14	3 2/	27	Riparian/Overlying
Outdoor Resorts	560	0	560	0	500	54	6 ^{2/}	560	Overlying
Jojoba Hills SKP Resort	75	0	75	0	0	67	8 ^{2/}	75	Overlying
Hawthorn Water System	9	0	9	0	0	8	1 2/	9	Appropriative
OTHER SUBSTANTIAL USERS	6,868 ^{11/}	0	6,868	6,798	0	0	70 ^{12/}	6,868	

123,617 1/ Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014. The updated definitions are provided in Table 7.2.

40,288

19,276

52,587 11,466 ^{14/}

123,617

- 2/ Assumes 10% system loss.
- 3/ Recreational Use.

TOTAL

- Construction use at Diamond Valley Lake.
- Includes 26,995 AF production from Older Alluvium plus 85 AF of Vail Recovery minus 289 AF exported to the San Mateo Watershed minus 497 AF pumped into recycled water system minus 171 AF delivered to Pechanga Band.
- 6/ Includes 31,017 AF direct use; 12,069 AF direct recharge; 4,051 AF from MWD WR-34; and minus 534 AF export.

81,784

- Includes 24 AF discharged into Murrieta Creek; 51 AF discharged into Santa Gertrudis Creek; 4,051 AF discharged into Santa Margarita River from MWD WR-34; 0 AF from System River Meter; 0 AF from potable connection to WR-34 outlet pipe; (264) AF of import remaining in storage; and a system loss of 2,829 AF.
- 8/ Listed with Agricultural use.
- 9/ Listed with Domestic use.
- 10/ Includes exports of 2,733 AF, brine production of 558 AF and a system loss of 252 AF.

41,833

- 11/ Includes 695 AF for surface diversion plus 6,233 AF from groundwater as shown in Appendix C, minus 60 AF on the Cahuilla Reservation.
- 12/ Loss is equal to 10% of surface diversions.
- 13/ Includes a system loss of 83 AF, minus 442 AF of reclaimed wastewater from EMWD, accounted for on Table A-1. See Table A-5 for Pechanga production and use.
- 14/ Includes an overall system loss of 4,755 AF. Overall system loss is calculated by estimating the traditional system loss of comparing total production versus total use for each water purveyor.
- 15/ An additional 61 AF were released by MWD from Lake Skinner into Tucalota Creek for the purpose of groundwater replenishment.
- 16/ Stock watering.

TABLE 7.2

SANTA MARGARITA RIVER WATERSHED

DEFINITIONS OF WATER USE BY MUNICIPAL WATER PURVEYORS

2013-14

DISTRICT	AGRICULTURAL	DOMESTIC	COMMERCIAL
EASTERN MUNICIPAL WATER DISTRICT	Row crops, orchards, vineyards, sod farms, other commercially grown crops, dairies, horse ranches and other agricultural users, including agricultural allocation for agricultural/domestic meters	Single family and multi- family residential connections, including domestic allocation for agricultural/domestic meters	All other usage including commercial, industrial, institutional, golf courses, parks, recreation, landscaping, temporary and construction
ELSINORE VALLEY MUNICIPAL WATER DISTRICT	Same as EMWD	Same as EMWD	Same as EMWD
FALLBROOK PUBLIC UTILITY DISTRICT	Same as EMWD	Single family and multi- family residential connections, including first 20,000 gallons for agricultural/domestic meters	Same as EMWD
PECHANGA INDIAN RESERVATION	Same as EMWD	Same as EMWD	All other usage including resort, on- Reservation businesses, tribal facilities, commercial, industrial, institutional, golf courses, parks, recreation, landscaping, temporary and construction
RAINBOW MUNICIPAL WATER DISTRICT	Same as EMWD	Single family and multi- family residential connections, including first 20,000 gallons for agricultural/domestic meters	Same as EMWD
RANCHO CALIFORNIA WATER DISTRICT	Same as EMWD	Single family and multi- family residential connections, including first 1,600 cubic feet for agricultural/domestic meters	Same as EMWD
MURRIETA DIVISION OF WESTERN MUNICIPAL WATER DISTRICT	Same as EMWD	Same as EMWD	Same as EMWD
USMC, CAMP PENDLETON	Same as EMWD	Camp Supply - All usage except agricultural	Reported under Camp Supply

Interlocutory Judgment No. 33 divides aquifers in Anza Valley at this location into two categories: the shallow aquifer and the deep aquifer. Based on information available to the Court, the shallow aquifer was determined to include the younger and older alluvial deposits in the Anza Groundwater Basin, and extend to a maximum but variable depth of approximately 100 feet. The deep aquifer underlies the shallow aquifer in an area about one-half mile in width and two miles in length, within portions of Sections 16, 17, 21, 22, 27 and 28 of Township 7 South, Range 3 East, SBM. Anza Mutual Water Company's wells are within the area of the deep aquifer. From the perforated intervals in the wells, it may be concluded that most of the production from Well No. 1 and all of the production from Well No. 2 are from the deep aquifer. Interlocutory Judgment No. 33 concluded that waters contained in the deep aquifer did not add to, support or contribute to the Santa Margarita River stream system and were, therefore, declared to be outside the Court's jurisdiction.

Accordingly, most of the water produced by the Anza Mutual Water Company is outside the Court's jurisdiction. The relatively small portion pumped from the shallow aquifer in Well No. 1 is pumped under a groundwater appropriative right. Data for Water Years 1989 through 2014 are shown on Appendix Table B-12.

7.2.2 Eastern Municipal Water District

Eastern Municipal Water District is a member agency of Metropolitan Water District and its service area includes a portion of the Rancho California Water District and the Murrieta Division of Western Municipal Water District. Within the Watershed, Eastern MWD wholesales water to those districts and also retails water directly to consumers. Water sold to Rancho California WD and the Murrieta Division of Western MWD is not listed in this report as imported water to Eastern MWD.

Eastern MWD's service area outside Rancho California WD and the Murrieta Division of Western MWD is located in the northern part of the Watershed. Water for Eastern MWD's retail service area is all imported with no groundwater production during Water Year 2013-14.

Imports, not including water wholesaled to Rancho California WD or the Murrieta Division of Western MWD, or delivered to Elsinore Valley MWD, totaled 23,935 acre feet. A portion of that import, amounting to 8,051 acre feet, was exported from the Santa Margarita River Watershed for delivery to Eastern MWD's retail customers located outside the Watershed, resulting in net import to the Watershed of 15,884 acre feet. These data are shown on Appendix Table A-1.

In addition to importing fresh water, Eastern MWD also reclaims wastewater at its Temecula Valley Regional Water Reclamation Facility. Disposition of wastewater from the Temecula Valley Regional Water Reclamation Facility (TVRWRF) service area for Water Years 2012-13 and 2013-14 is shown below:

	<u>2012</u>	<u>2-13</u>	<u>2013</u>	<u>3-14</u>
<u>Use</u>	Quantity	<u>Percent</u>	Quantity	Percent
	AF	%	AF	%
Reuse in Santa Margarita	2,937	20	2,937	20
Reuse outside Santa Margarita	<u>8,316</u>	<u>56</u>	8,117	<u>55</u>
Subtotal	11,253	76	11,054	
Discharge to Dissipater at				
Temescal Creek	683	5	0	0
Other	2,776	19	3,627	<u>25</u>
TOTAL	14,712	1 00	14,681	100

It can be noted that the quantities of recycled water used within the Santa Margarita River Watershed in Water Year 2013-14 remained at 2,937 acre feet, the same as Water Year 2012-13. During the same period, reuse outside the Santa Margarita River Watershed decreased from 8,316 acre feet to 8,117 acre feet. In 2013-14, it may be concluded that 20 percent of the recycled water was used in the Watershed and 55 percent was used outside the Watershed. No wastewater was discharged to the dissipater at Temescal Creek during Water Year 2013-14. The Other use increased from 2,776 acre feet to 3,627 acre feet. This Other use includes changes of storage in Winchester and Sun City storage ponds, as well as evaporation and percolation losses.

Due to concerns about the potential export of native Santa Margarita water, the sources of water supply to the TVRWRF service area were determined and are shown on Table 7.3. In 2013-14, 22 percent of the supply to the service area was groundwater. Thus, the percent of groundwater supply was greater than the percentage of wastewater reused within the Santa Margarita River Watershed, and on a proportional basis there was some export of native waters.

On August 4, 2009, a Judgment was entered in *United States of America and Fallbrook Public Utility District v. Eastern Municipal Water District and Rancho California Water District* (CV 04-8182 CBM (RNBx), United States District Court, Central District of California) pertaining to the contractual obligations of the 1990 Four Party Agreement and the export of treated wastewater from the Santa Margarita River Watershed. On May 17, 2012, the United States Court of Appeals for the Ninth Circuit issued an Order granting the parties' joint motion to dismiss the appeals in this matter and thus the August 4, 2009 Judgment stands. For purposes of this annual report the export of treated wastewater will be reported consistent with prior annual reports with no changes pursuant to the Judgment. The Watermaster will reevaluate the calculations and reporting to be included in future annual reports.

Estimates of water production and use for Eastern MWD for the period 1966 through 2014 are shown on Appendix Table B-1.

TABLE 7.3

REGIONAL WATER RECLAMATION FACILITY SERVICE AREA WATER DELIVERIES TO TEMECULA VALLEY SANTA MARGARITA RIVER WATERSHED

	2010	0	2011	_	2012	2	2013	3	2014	4
Eastern MWD	AF	%	AF	%	ΑF	%	AF	%	AF	%
TVRWRF Service Area										
1. Groundwater	0		0		0		0		0	
2. Import	13,552		14,392		15,063		15,751		15,884	
3. Total	13,552		14,392	I	15,063	l	15,751	l	15,884	
Rancho California WD TVRWRF Service Area										
1. Groundwater 1/	8,641		9,774		7,902		8,802		7,789	
2. Import 2/	10,755		8,770		11,462		10,563		11,577	
3. Total 3/	19,396		18,544	I	19,364		19,365	l	19,366	
Total Deliveries to TVRWRF Service Area	R Service	Area								
1. Groundwater	8,641	26.2%	9,774	29.7%	7,902	23.0%	8,802	25.1%	7,789	7,789 22.1%
2. Import	24,307	73.8%	23,162	70.3%	26,525	77.0%	26,314	74.9%	27,461	77.9%
3. Total	32,948 100.0%	100.0%	32,936	32,936 100.0%	34,427	34,427 100.0%	35,116	35,116 100.0%	35,250	35,250 100.0%

Based on the ratio of groundwater to total production in Rancho Division of RCWD.
 Based on the ratio of import to total production in Rancho Division of RCWD.
 Total RCWD deliveries in TVRWRF Service Area.

7.2.3 Elsinore Valley Municipal Water District

Elsinore Valley Municipal Water District provides water to its service area around Lake Elsinore, a portion of which is within the Santa Margarita River Watershed. Elsinore Valley MWD obtains its supply from ten wells, all located outside the Watershed, and also imports Metropolitan Water District water through Eastern MWD and Western MWD.

As shown on Appendix Table A-2, Elsinore Valley MWD reports for 2013-14 that 7,413 acre feet were imported into the portion of its service area that is inside the Watershed, and 1,307 acre feet of wastewater were exported from that same area. In 2013-14, Elsinore Valley MWD began using recycled water treated at the Rancho California WD Santa Rosa Water Reclamation Facility via the Eastern MWD Palomar Pipeline through a wheeling agreement. A total of 89 acre feet of recycled water were received via Eastern MWD and 53 acre feet were used within the Watershed.

Production and use for Elsinore Valley MWD for the period 1966 through 2014 are shown on Appendix Table B-2.

7.2.4 Fallbrook Public Utility District

The Fallbrook Public Utility District service area is located in both the San Luis Rey River and Santa Margarita River watersheds. In Water Year 2013-14, Fallbrook PUD imported a total of 13,068 acre feet, as shown on Appendix Table A-3. Fallbrook PUD has three wells within the Santa Margarita River Watershed; however, in 2013-14, there was no production from these wells. Additionally, in 2013-14, Fallbrook PUD reported no diversions from Lake Skinner, under Permit No. 11356, resulting in a total district-wide production of 13,068 acre feet. The total production for the portion of Fallbrook PUD service area that is within the Watershed, as shown on Appendix Table A-3, is 7,578 acre feet, or about 58 percent of the total district wide production.

In 2013-14, Fallbrook PUD treated 924 acre feet of wastewater from areas served within the Watershed, of which 22 acre feet were reused in the Watershed, and the remainder was exported. The wastewater production and distribution for 2013-14 is shown on Appendix Table A-3.

Production during the period 1966 through 2014 included direct diversions from the Santa Margarita River prior to 1972, as well as imported water and well production, as shown in Appendix B. During Water Year 2010-11, Fallbrook PUD revised its reporting methods for both water production and wastewater operations. The historical water production and use for the period 1966 through 2010 are provided on Appendix Table B-3.1 reflecting prior reporting methods, particularly for previous estimates associated with the DeLuz portion of the service area. Appendix Table B-3.2 is provided to show the current water production and use reflecting the revised reporting methods. The revised reporting methods include metered deliveries for the reported uses within the Watershed and application of a district-wide loss factor.

The Fallbrook PUD wastewater production and distribution for the period 1966 through 2014 are shown on Appendix Table B-4.

7.2.5 Lake Riverside Estates

Lake Riverside Estates pumps water from Well No. 7S/2E-32C1, into Lake Riverside to replace evaporation losses. Production for 2013-14 was approximately 379 acre feet as shown on Appendix Table A-11. The production well was drilled in 1962 and is located in an area of younger alluvium in the Cahuilla Groundwater Basin. The well was drilled to a depth of 338 feet.

Interlocutory Judgment No. 33 indicates that the owners of lands in the Cahuilla Groundwater Basin have correlative overlying rights to the use of the groundwater that is the basis for this production. Data for Lake Riverside Estates for the period 1989 through 2014 are shown on Appendix Table B-12.

7.2.6 <u>Metropolitan Water District of Southern California</u>

Pursuant to a Court Order, Metropolitan Water District (MWD) imported 1,074 acre feet of water into the Santa Margarita River Watershed for irrigation of lands in Domenigoni Valley. MWD did not import any water for groundwater recharge and there was no water used for construction purposes. As previously noted, the groundwater in the Domenigoni Valley groundwater basin is outside this Court's jurisdiction when groundwater levels are below elevation 1400 feet. This production is shown on Appendix Table A-4, and production for the period 1966 through 2014 is shown on Appendix Table B-5.

7.2.7 Rainbow Municipal Water District

Rainbow Municipal Water District is located in San Diego County in the south-central part of the Watershed. In 2013-14, the District imported a total of 22,926 acre feet of water as shown on Appendix Table A-6. However, most of the District is in the San Luis Rey River Watershed and only about eight percent of the District's imported supply was delivered to the portion of the service area inside the Santa Margarita River Watershed. As shown on Appendix Table A-6, total deliveries of imported water in the Santa Margarita River Watershed in 2013-14 amounted to 1,732 acre feet.

Rainbow Municipal Water District import production for the period 1966 through 2014 is shown on Appendix Table B-7.

7.2.8 Rancho California Water District

Rancho California Water District serves water to a 99,600 acre service area in the central portion of the Watershed. The District produced water from 47 wells in 2013-14, and also imported water as shown on Appendix Table A-7. Use is shown under the categories of agriculture, commercial and domestic. In Water Year 2013-14, well production of native water included 26,412 acre feet from the Murrieta-Temecula Groundwater Area. A portion of the groundwater amounting to 289 acre feet was exported for use in the San Mateo Watershed, resulting in a net well production of 26,123 acre feet.

Import supplies totaled 47,137 acre feet of which 31,017 acre feet were used for direct use; 12,069 acre feet were recharged; and 4,051 acre feet were discharged by the District to the Santa Margarita River from MWD Outlet WR-34 during 2013-14, pursuant to

the CWRMA. A portion of that import amounting to 534 acre feet was exported from the Santa Margarita River Watershed to the San Mateo Watershed, resulting in net import to the Watershed of 46,603 acre feet.

During 2013-14, Rancho California WD use totaled 72,726 acre feet including 26,154 acre feet for agriculture; 10,956 acre feet for commercial; 28,925 acre feet for domestic; 4,126 acre feet were released into Murrieta Creek, Santa Gertrudis Creek and the Santa Margarita River; and 2,829 acre feet were system loss. In 2013-14, a net amount of 264 acre feet of import water was extracted from groundwater storage derived from import recharge in prior years.

In 2013-14, Rancho California WD did not export reclaimed wastewater from the Watershed via EMWD's Palomar Valley Pipeline.

Rancho California WD produces groundwater under a variety of rights as follows:

- 1. Recovery of water appropriated at Vail Lake
- 2. Recovery of import return flows and recharged imported water
- 3. Groundwater appropriative rights
- 4. As agent on behalf of overlying landowners

Vail Appropriation

Rancho California WD's Vail Dam appropriative rights are described in Application No. 11518 as amended on June 17, 1947, and in Permit 7032 originally issued on February 18, 1948. Permit 7032 was subsequently amended on July 28, 1971, and April 22, 2009. The water right provides that the District may store up to 40,000 acre feet in Vail Lake each year between November 1 and April 30, subject to applicable limitations. The water so stored may be used for recreational uses at Vail Lake and municipal, domestic, industrial, and irrigation uses within the entire service area of Rancho California WD. Such uses may be by direct diversion from Vail Lake or by recovery of water released from Vail Lake and spread downstream in Pauba Valley. Points of re-diversion for recovery from underground storage are permitted for 12 production wells: Rancho California WD Well Nos. 109, 110, 123, 132, 152, 153, 157, 158, 210, 232, 233, and 234.

As shown on Table 3.3, there were 85 acre feet of releases from Vail Lake during 2013-14 for groundwater recharge. Releases from Vail Lake for groundwater recharge for the period 1980 through 2014 are shown on Appendix Table B-8.

Permit 7032 operations for 2013-14 are summarized on Table 7.4. The recovery from groundwater recharge for 2013-14 was 85 acre feet corresponding to the amount released from Vail Lake for recharge.

It is noted, with the issuance of the amended Permit 7032 in 2009, the place of use, purposes of use, and permitted points of re-diversion were changed. Accordingly,

TABLE 7.4

SANTA MARGARITA RIVER WATERSHED

RANCHO CALIFORNIA WATER DISTRICT PERMIT 7032 OPERATIONS

2013-14

Quantities in Acre Feet

Diversion to Storage in Vail Lake 1/		936
Release to Groundwater Storage 1/		85
Recovery from Groundwater Storage ²	/ 3/	
Younger Alluvium Older Alluvium	85 0	
Total		85
Vail Recharge Account Balance from 2	2012-13	54,292
Release minus Recovery		0
Vail Recharge Account Balance for 20	13-14	54,292

^{1/} See Table 3.3.

^{2/} Permitted Points of Re-Diversion RCWD Well Nos. 109, 110, 123 132, 152, 153, 157, 158, 210, 232, 233 and 234.

^{3/} Total pumping from Vail recovery wells is greater than amount shown as recovered under Permit 7032. Total pumping from the 12 recovery wells is shown on Table 7.8.

the reporting of Permit 7032 operations needs to be modified to reflect the changed conditions. Table 7.4 was modified in 2009 to reflect the changes subject to further refinement as part of the update of the CWRMA groundwater model. The reporting on Table 7.4 reflects the assumption that all water released from Vail Lake for recharge is recovered from the younger alluvium by pumping from the permitted recovery wells. The remainder of the pumping from the younger alluvium is apportioned to direct import recharge.

Imported Water Return Flows

Return flows for 2013-14, based on imported water use in the Rancho Division and Santa Rosa Division are shown on Tables 7.5 and Table 7.6, respectively.

In the following tables, imported water is allocated to agricultural, commercial and domestic uses in each of eight hydrogeologic areas in the Rancho Division service area and three hydrogeologic areas in the Santa Rosa Division service area. This allocation is the proportion of the total deliveries to each use that is made up of imported water. For 2013-14, 59.70 percent of the supply to the Rancho Division was imported and 64.09 percent of the supply to the Santa Rosa Division was imported.

In general the Santa Rosa Division does not overlie the groundwater area. However, there are several areas classified as being in the Santa Rosa Division that do overlie the groundwater area and generate return flows from imported supplies. Data from most of these lands have been reported since December 1991.

The percentage of imported water that becomes return flow varies according to the use as follows:

Agricultural Use	25%
Commercial Use	10%
Domestic Use	25%

Based on the foregoing factors, the total return flow credit for 2013-14 is computed to be 4,895.96 acre feet for the Rancho Division and 304.69 acre feet for the Santa Rosa Division, as shown on Tables 7.5 and 7.6, respectively.

Some of the hydrogeologic areas overlie older alluvium and some overlie younger alluvium. Comparison of exposures of younger alluvium with maps of the District's hydrogeologic areas indicate that the Santa Gertrudis, Pauba and half of the Murrieta-Wolf areas overlie younger alluvium. The area of the Santa Rosa Division that overlies the groundwater area is one-fourth in the younger alluvium and three-fourths in the older alluvium. Import return flows in these areas can be credited against pumping from the younger alluvium. The credits for 2013-14 are 963.22 acre feet for the Rancho Division and 76.17 acre feet for the Santa Rosa Division, as shown on Tables 7.5 and 7.6, respectively. The total return flow credit for 2013-14 to offset younger alluvium production in future years is 1,039.39 acre feet.

TABLE 7.5

SANTA MARGARITA RIVER WATERSHED RANCHO CALIFORNIA WATER DISTRICT

RETURN FLOW CREDIT

2013-14

RANCHO DIVISION

Quantities in Acre Feet

HYDROGEOLOGIC AREAS

			·						
	0 NO HYDRO- GEO CODE	1 MURRIETA WOLF 1/2 QYAL 1/2 QTOAL	2 SANTA GERTRUDIS QYAL	3 LOWER MESA QTOAL	4 PAUBA QYAL	5 SOUTH MESA QTOAL	6 UPPER MESA QTOAL	7 PALOMAR QTOAL	TOTAL
AGRICULTURAL									
Total Use	1,508.10	32.94	0.00	47.66	659.11	125.21	1,410.37	1,129.55	4,912.93
% Import	59.70	59.70	59.70	59.70	59.70	59.70	59.70	59.70	4,312.33
Import Use	900.35	19.66	0.00	28.45	393.50	74.75	842.00	674.35	2,933.07
% Credit	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	2,000.01
Credit	225.09	4.92	0.00	7.11	98.37	18.69	210.50	168.59	733.27
COMMERCIAL									
Total Use	526.97	2,285.48	1,408.29	3,370.08	461.04	773.81	149.68	47.04	9,022.41
% Import	59.70	59.70	59.70	59.70	59.70	59.70	59.70	59.70	5,022.41
Import Use	314.60	1,364.46	840.76	2,011.98	275.25	461.97	89.36	28.08	5,386.48
% Credit	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	0,000.40
Credit	31.46	136.45	84.08	201.20	27.52	46.20	8.94	2.81	538.65
DOMESTIC									
Total Use	1.311.08	2,691.60	2,517.46	11.049.89	709.92	3,852.87	1,636.95	511.46	24,281.23
% Import	59.70	59.70	59.70	59.70	59.70	59.70	59.70	59.70	24,201.23
Import Use	782.73	1.606.92	1,502.95	6,596.91	423.83	2,300.20	977.27	305.35	14,496.16
% Credit	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	14,490.10
Credit	195.68	401.73	375.74	1,649.23	105.96	575.05	244.32	76.34	3,624.04
TOTAL USE	3,346.14	5,010.03	3,925.75	14,467.63	1,830.08	4,751.89	3,197.00	1,688.05	38,216.57
TOTAL									
Total Import Use	1.997.68	2,991.04	2,343.71	8,637.33	1,092.58	2.836.93	1,908.64	1,007.78	22,815.71
Total Credit	452.23 *	543.09	459.81	1.857.54	231.86	639.94	463.76	247.73	4,895.96
Total Credit Qyal		271.55	459.81	1,501.04	231.86	000.04	403.70	2.41.13	963.22
Total Credit Qtoa		271.55		1,857.54	201.00	639.94	463.76	247.73	3,480.51
		271.00		1,501.04		000.04	-400.70	241.13	5,400.51

^{*} This credit not applied to either Qyal or Qtoal

TABLE 7.6

SANTA MARGARITA RIVER WATERSHED

RANCHO CALIFORNIA WATER DISTRICT RETURN FLOW CREDIT

2013-14

SANTA ROSA DIVISION

Quantities in Acre Feet

HYDROGEOLOGIC AREAS

	11101	TOOLOLOGIO AITLAG		
	1 MURRIETA WOLF 1/2 QYAL 1/2 QTOAL	3 LOWER MESA QTOAL	8 NORTH MURRIETA 1/4 QYAL 3/4 QTOAL	TOTAL
AGRICULTURAL				
Total Use	0.00	0.00	36.03	36.03
% Import	64.09	64.09	64.09	
Import Use	0.00	0.00	23.09	23.09
% Credit	25.00	25.00	25.00	
Credit	0.00	0.00	5.77	5.77
COMMERCIAL				
Total Use	0.00	0.00	1,195.92	1,195.92
% Import	64.09	64.09	64.09	,,,,,,,,,
Import Use	0.00	0.00	766.51	766.51
% Credit	10.00	10.00	10.00	
Credit	0.00	0.00	76.65	76.65
DOMESTIC				
Total Use	0.00	0.00	1,387.13	1,387.13
% Import	64.09	64.09	64.09	1,007.10
Import Use	0.00	0.00	889.06	889.06
% Credit	25.00	25.00	25.00	
Credit	0.00	0.00	222.26	222.26
TOTAL USE	0.00	0.00	2,619.08	2,619.08
TOTAL				
Total Import Use	0.00	0.00	1,678.66	1,678.66
Total Credit	0.00	0.00	304.69	304.69
Total Credit Qyal	0.00	0.00	76.17	76.17
Total Credit Qtoal	0.00	0.00	228.52	228.52

Rancho California WD imported an additional 12,069 acre feet of water for direct groundwater recharge in 2013-14. The total amount of imported recharge water that was recovered in 2013-14 was 12,333 acre feet. Thus, 264 acre feet of recovered water were derived from groundwater storage.

Division of Local Water

During 2013-14, Rancho California WD pumped 39,413 acre feet of groundwater, comprised of 26,816 acre feet of local water and 12,333 acre feet of recovered imported water. The groundwater is pumped from both the younger alluvium and the older alluvium. The Court determined that water in both the younger alluvium and older alluvium adds to, contributes to and supports the Santa Margarita River stream system. The primary reason for differentiating between younger alluvium and older alluvium production is that, in California, production from the younger alluvium is generally considered to be governed by water rights that apply to the regulation of surface waters. Production from the older alluvium is generally considered to be governed by regulations that apply to groundwater. Of the 26,816 acre feet of local water, 171 acre feet were delivered to the Pechanga Indian Reservation under the terms of the Wolf Valley Groundwater Management Agreement. This production is shown on Appendix Table A-5.

During joint development of a groundwater model of the area it was necessary to develop estimates of the transmissivity for each aquifer. These estimates were based on pumping tests. The resulting transmissivity values were then used to estimate the relative groundwater production from each aquifer. For Rancho California WD wells, the percent production estimated to originate in the younger alluvium is shown on Table 7.7.

Production from the younger alluvium and older alluvium for 2013-14, using the percentages noted on Table 7.7 is presented on Table 7.8. In 2013-14, 12,418 acre feet were pumped from the younger alluvium and 26,995 acre feet were pumped from the older alluvium. The production of 12,418 acre feet from the younger alluvium, as shown on Table 7.8 is the recovery of 12,333 acre feet of direct import recharge and the recovery of 85 acre feet of Vail Lake recharge.

Imported water carryover to 2014-15 includes the following:

		<u>AF</u>
1.	Carryover from 2012-13	* 62,541
2.	Direct recharge of imported water in 2013-14	12,069
3.	Imported recharge water recovered in 2013-14	(12,333)
4.	Import return flow credit for 2013-14	1,039
5.	Total carryover to 2014-15	63,316

^{*} Revised

Thus, the Imported Water Carryover Account balance of 63,316 acre feet remains available to offset younger alluvium production in future years.

TABLE 7.7

SANTA MARGARITA RIVER WATERSHED PERCENT PRODUCTION FROM YOUNGER ALLUVIUM IN RANCHO CALIFORNIA WATER DISTRICT WELLS

RCWD WELL NO.	LOCATION TOWNSHIP/ RANGE/ SECTION	SEAL DEPTH FEET	PERFORATED INTERVAL FEET	YOUNGER ALLUVIUM FEET	PERCENT YOUNGER ALLUVIUM %		REMARKS
106	7S/3W-26R1	55	130-210; 250-310; 340-440; 700-740; 780-980	0	0.0%	Murrieta	No. 108 Winchester, clay 0'-40'
107	7S/3W-26J1	55	60-120; 190-260; 280-300; 390- 590	58	0.0%	Murrieta	No. 105 - gravel & clay 58'-84'
108	7S/3W-25E1		60-110; 190-280; 350-410; 430- 450; 470-490; 530-590	55	0.0%	Murrieta	Formerly No. 109 gravel/sandy clay 55'- 70'
109	8S/2W-17J1	52	70-150; 170-210	75 1/	84.0%		Brown clay and gravel 75' to 105'
110	8S/1W-6K1	54	75-155	165	97.0%		Clay 165'-190'. Prior to 10/23/97 perf int. 70-150; 200-240; 320-380; 420-460
113	7S/2W-25H1	52	96-136; 275-462; 482-542	Shallow	0.0%		
116	8S/1W-6J	Unknown	60-120; 140-200; 220-260; 270- 330; 370-390	150	94.0%		Clay 150'-170'
119	8S/2W-19J	55	170-260; 300-470		0.0%	Wolf Valley	Perforated below 170'
123	8S/1W-7B	55	100-260; 300-380; 420-500	135 1/	65.0%		Brown Sand Clay 135'-210'
129	7S/2W-20L	Unknown	180-290; 416-480; 520-600	Shallow	0.0%	Santa Gertrudis	Qyal very shallow along Santa Gertrudis
132	8S/1W-7D	55	70-390; 430-500	135	82.0%		Brown Clay Streaks 135'-175'
135	7S/3W-27M10	55	70-170	50	0.0%	Murrieta Valley	Silty clay 50'-69'
141	8S/2W-11P	55	120-190; 215-235; 270-380;	104 1/	0.0%		Silt & sand 104'-185'; Well 11L1 is 112'
144	7S/3W-27D	55	983-1123; 1143-1283; 1343- 1483; 1503-1743	25	0.0%	Murrieta Valley	Sand with silty clay 25'-45'
146	7S/3W-28	50	50-190	42	0.0%	Murrieta	
152	8S/1W-5K	50	70-470; 490-540	130	90.8%		Forebay
153	8S/1W-5K3	50	50-220	170	99.0%		Forebay
154	8S/1W-5L2	50	50-220	110 1/	99.0%	2/	Forebay
157	8S/1W-5L	50	50-210	128	96.8%		Forebay
158	8S/1W-5K	50	50-210	100 1/	96.5%		Forebay
205	7S/3W-35A	50	150-1000	10	0.0%	Santa Gertrudis/ Murrieta Valley	Sandy clay 10'-20'
210	8S/2W-12K	None	48-228	140	94.0%		Clay cobblestones 160'-167', 175'-227'
218 220	8S/2W-20B5	27	48-289	40	0.0%		Old 28; clay with sand layer 40'-60'; now monitoring wells 427, 428 and 429
223	7S/3W-26Q1	34	114-450	58	0.0%		Clay 58' - 73'
223	8S/2W-20C1	Unknown	48-250	60 1/	94.0%	Wolf Valley	CAT Well; east of Wildomar Fault; nearby Exh 16 wells 17Q @62' & 17M @55' are also east of Wildomar Fault
224	8S/2W-15D	Unknown	48-250	106 1/	68.0%		Old Well 50, clay 106'-138'
230	8S/2W-11J1	Unknown	24-31; 32.5-34; 35-40; 61-65; 70-76; 80-85; 86.5-91; 92.5-	>119	100.0%		Old Well 30, depth of well is 119'
231	8S/2W-20B6	55	80-120; 150-270	35 1/	0.0%		Old 104, P-34, Clay 20'-23'; 35'-41'; East of Wildomar Fault
232	8S/2W-11J3	51	95-135; 175-215; 235-295	135 1/	92.0%		Old 111, 105, P-31; coarse sand & clay
233	8S/2W-12K2	51	95-135; 175-215; 235-295	145	88.0%		Old 112, P32; sand and clay at 145'-220'
234	8S/2W-11P1	52	80-100; 120-140; 200-240; 280- 320; 340-400	125 1/	74.0%		Brown Clay at 125'; sand and clay at 125'-140'
235	8S/3W-1Q1	55	Unknown	Shallow	0.0%	Long Canyon	
240	8S/2W-11L1	Unknown		112	86.0%		Old Well No. 40; clay 112'-136'
301	7S/3W-18Q1	93	140-280; 280-520; 540-640	26	0.0%	Murrieta	Old JR1; blue clay 26'-32'
466	8S/3W-1P2	Unknown		49	0.0%	Long Canyon	Old 219, Cantarini, hard clay 49'-60'
467	8S/2W-12K1	Unknown	50-100; 100-140	140	100.0%		Old 221, JK, Exh. 16, Monitoring well since 1983

^{1/} Watermaster, Rancho California WD, and Camp Pendleton disagree on the depth of younger alluvium for indicated wells. See discussion in Appendix F.

^{2/} Percent younger alluvium for Well No. 154 provided by Rancho California WD.

TABLE 7.8

SANTA MARGARITA RIVER WATERSHED **RANCHO CALIFORNIA WATER DISTRICT** WELL PRODUCTION FROM YOUNGER AND OLDER ALLUVIUM

2013-14

Quantities in Acre Feet

VELL NO.		QYAL	QTOAL	TOTAL
101	2/	0.00	668.00	668.00
102	2/, 3/	0.00	326.00	326.00
106	2/	0.00	323.00	323.00
108	2/	0.00	646.00	646.00
109	4/	465.36	88.64	554.00
110	4/	275.48	8.52	284.00
113		0.00	248.00	248.00
118	2/	0.00	1,200.00	1,200.00
119	1/	0.00	466.00	466.00
120		0.00	1,618.00	1,618.00
121		0.00	0.00	0.00
122	1/	0.00	437.00	437.00
123	4/	152.10	81.90	234.00
124		0.00	361.00	361.00
125		0.00	0.00	0.00
126		0.00	760.00	760.00
128		0.00	0.00	0.00
129		0.00	0.00	0.0
130		0.00	952.00	952.00
131		0.00	983.00	983.00
132	4/	498.56	109.44	608.00
133		0.00	739.00	739.00
135	3/	0.00	93.00	93.00
138		0.00	2,243.00	2,243.00
139		0.00	1,316.00	1,316.00
140		0.00	844.00	844.00
141		0.00	537.00	537.00
143		0.00	857.00	857.00
144		0.00	588.00	588.00
145		0.00	227.00	227.00
146	3/	0.00	34.00	34.00
149		0.00	296.00	296.00
151		0.00	766.00	766.00
152	4/	2,537.86	257.14	2,795.00
153	4/	2,004.75	20.25	2,025.00
154	-17	371.25	3.75	375.00
155	3/	0.00	46.00	
156	3/	0.00	904.00	46.00
157	4/	1,515.89		904.00
158	4/	1,658.84	50.11	1,566.00
201	41		60.17	1,719.00
203		0.00	59.00	59.00
205		0.00	797.00	797.0
207		0.00	1,756.00	1,756.0
207		0.00	0.00	0.00
		0.00	0.00	0.0
209	4.1	0.00	0.00	0.0
210	4/	763.28	48.72	812.0
211	1/	0.00	410.00	410.00
215		0.00	0.00	0.0
216		0.00	0.00	0.0
217		0.00	591.00	591.0
231		0.00	0.00	0.0
232	4/	868.48	75.52	944.0
233	4/	1,116.72	152.28	1,269.0
234	4/	189.44	66.56	256.0
235		0.00	1,568.00	1,568.0
301		0.00	0.00	0.0
302		0.00	0.00	0.00
200		0.00	2,313.00_	2,313.00
309	Maria.			

 ^{1/} A portion of 1,313 acre feet from Well Nos. 119, 122 and 211 was delivered to Pechanga Indian Reservation for their use.
 2/ Includes 75 acre feet of releases to streams from Well Nos. 101, 102, 106, 108 and 118.
 3/ Includes 497 acre feet pumped directly to the recycled water system from Well Nos. 102, 135, 146 and 155.

^{4/} Permitted point of re-diversion pursuant to Permit 7032.

7.2.9 Western Municipal Water District

Western Municipal Water District operations within the Santa Margarita River Watershed are comprised of three categories. First, Western MWD wholesales imported water to Rancho California WD. Deliveries to Rancho California WD are included under Rancho California WD. Second, Western MWD serves water to its Murrieta Division in the vicinity of the City of Murrieta. Third, Western MWD serves imported water to its Improvement District A near the southern boundary of Riverside County, along the I-15 freeway. Improvement District A is operated by Rancho California WD under an operations and maintenance contract on behalf of Western MWD.

Murrieta Division

In November 2005, Western MWD merged with the Murrieta County Water District assuming their operations in an area in the vicinity of the City of Murrieta. Prior Watermaster Reports present information under Murrieta County Water District.

All of the Murrieta Division of Western MWD wells are located in the Murrieta-Temecula Groundwater Area. Interlocutory Judgment No. 30 indicates the younger alluvium deposits in Murrieta Valley extend in various depths to a maximum of approximately 30 feet from the ground surface.

The Court noted that it was impossible, based on evidence available in 1962, to determine with exactness the depth of the younger alluvial deposits throughout the Valley. However, the Court did retain continuing jurisdiction so that subsequent findings could be made, if needed. Older alluvial deposits are found below the younger alluvium.

Six of the seven Murrieta Division wells are perforated at depths of 106 feet or more. The Holiday Well has perforations beginning at a depth of 60 feet, which is well below the maximum depth of younger alluvium found by the Court in 1962. In addition, there has been no production from the Holiday Well since March 2006. Accordingly, all of Murrieta Division well production is from the older alluvium under a groundwater appropriative right.

In Water Year 2013-14, the Murrieta Division of Western MWD produced 719 acre feet of water from the North Well and 232 acre feet from the renovated New Clay Well for a total well production of 951 acre feet. The New Clay well was brought back online in September 2012, ceased pumping in April 2013 and resumed pumping again in June 2014. Western MWD imported 1,407 acre feet in 2013-14 as shown on Appendix Table A-10.

The following table itemizes the production from the Murrieta Division wells:

Well Designation <u>7S/3W</u>	Well <u>Name</u>	2013-14 Production Acre Feet	De _l Ground	Vater Year oth to dwater in eet <u>2014</u>	Well Depth <u>Feet</u>	Perforated Interval <u>Feet</u>
20	New Clay	232	250	311	940	300 – 350
						370 – 470 680 – 790
						830 - 900
20C9	Holiday	0	64	61	307	60 - 307
20G5	House	0	*	*	252	120 – 252
17R2	Lynch	0	*	30	212	172 – 212
18J2	North	719	285	275	650	240 – 460
						500 – 640
20D	South	0	178	173	446	120 – 446
7M	Alson	0	*	*	416	106 – 416
TOTAL		951				

^{*} Not reported.

Western MWD's Murrieta Division production for the period 1966 through 2014 is shown on Appendix Table B-11.

Improvement District A

In Water Year 2013-14, imports to Improvement District A amounted to approximately 35 acre feet as shown on Appendix Table A-11. Deliveries to Improvement District A through turnout WR-13 for the period 1966 through 2014 are shown on Appendix Table B-12.

7.2.10 <u>U. S. Marine Corps - Camp Pendleton</u>

Camp Pendleton is located on the coastal side of the Santa Margarita River Watershed. Water was provided by ten wells that produced 5,814 acre feet in Water Year 2013-14. This production is from the younger alluvium and is based on riparian and appropriative rights. In 2013-14, there was no agricultural use and 5,814 acre feet were used for Camp Supply. Camp Supply includes domestic and commercial uses as well as irrigation for landscaping and park areas. Camp Pendleton water use is located both inside and outside the Watershed. A total of 2,523 acre feet were used inside the Watershed and 2,733 acre feet were exported to areas of the Base outside the Watershed. The production and use of water for Camp Pendleton are shown on Appendix Table A-8.

Beginning in December 2008, all wastewater for Camp Pendleton is treated at the Southern Region Tertiary Treatment Plant replacing the regional treatment Plant Nos. 1, 2, 3, and 13. On March 11, 2009, the Regional Water Quality Control Board issued Order No. R9-2009-0021 for a Master Reclamation Permit for the Camp Pendleton Southern Region Tertiary Treatment Plant. Wastewater effluent is discharged to either: (1) approved areas for use of recycled water for irrigation purposes; or (2) the Oceanside Outfall under NPDES Permit No. CA0109347, Order No. R9-2003-0155, and Order No. R9-2008-0096. The approved areas for use of recycled water are located both within and outside the Watershed. In Water Year 2013-14, the total amount of recycled water for Camp Pendleton was 2,113 acre feet as shown on Appendix Table A-8. Of the total amount of recycled water, 29 acre feet were used inside the Watershed; 484 acre feet were used outside the Watershed; and 1,600 acre feet were exported to the Oceanside Outfall. An additional 558 acre feet of brine byproduct from the Southern Advanced Water Treatment Plant were exported to the Oceanside Outfall. The total amount exported to the Oceanside Outfall in 2013-14 was 2,158 acre feet.

Production and estimated use inside and outside the Watershed, as well as wastewater reclamation and use, are shown in Appendix Table B-9 for the period 1966 through 2014. It is noted, the format and reporting shown on Appendix Table B-9 were changed for the Annual Watermaster Report for Water Year 2008-09. Prior reports show for the period 1966 through 2003, reclaimed use inside the Watershed reported as recharged wastewater from ponds and recharge areas. In addition, the prior reports distinguished the source of the recharged wastewater between wastewater treated within or outside the Watershed at the various regional treatment plants. The format and reporting for Water Year 2013-14, on Appendix Tables A-8 and B-9, reflect current and anticipated operations for the foreseeable future. Accordingly, the prior format is obsolete and the reader is directed to prior reports from 2008, and earlier, for additional information regarding historical wastewater operations.

7.2.11 <u>U. S. Naval Weapons Station, Fallbrook Annex</u>

The U. S. Naval Weapons Station (NWS) occupies about 9,148 acres northeast of Camp Pendleton. Since 1969, the NWS has relied on imported water delivered via Fallbrook PUD for its supply. Wastewater is exported from the NWS, Fallbrook Public Utility District and the Watershed via an outfall line maintained by Fallbrook PUD with an easement across Camp Pendleton. In 2013-14, 58 acre feet were imported of which six acre feet of wastewater were exported, as shown on Appendix Table A-9. Imports and use for the period 1966 through 2014 are shown on Appendix Table B-10.

7.3 Indian Reservations

Water is used on the Indian Reservations in the Watershed in accordance with federal reserved rights described in Section 6. Water use information for the Cahuilla, Pechanga and Ramona Indian Reservations in the Watershed is described in the following sections:

7.3.1 Cahuilla Indian Reservation

In general, domestic water use on the Cahuilla Indian Reservation is not measured; however reports for 2013-14 indicate that 350 people reside on the Reservation. These residents use water primarily for domestic purposes. Annual domestic water use, based on 125 gallons per capita per day, amounts to a total annual use of about 49 acre feet from wells listed in Appendix C. In addition, reports indicate Reservation non-irrigated lands are used for the grazing of 500 cattle. Based on a daily requirement of 10 gallons per head per day, the annual use is estimated to be about six acre feet. An additional five acre feet pumped from well 7S/2E-26B3 were put to commercial use at a casino.

7.3.2 <u>Pechanga Indian Reservation</u>

On December 21, 2006, the Pechanga Band of Luiseño Mission Indians and Rancho California WD entered into a Groundwater Management Agreement for the Wolf Valley Groundwater Basin. The Pechanga Band and Rancho California WD agreed to jointly manage groundwater pumping from the basin and to manage the basin to protect groundwater resources. Among other things, the agreement provides for Rancho California WD to deliver pumped groundwater from its wells to Pechanga.

During 2013-14, Pechanga received 171 acre feet of delivered groundwater from Rancho California WD. In addition, the Pechanga Water System produced 765 acre feet from wells, and received 442 acre feet of recycled water from Eastern MWD, resulting in a total production for Pechanga of 1,378 acre feet. The monthly production and uses for the Pechanga Indian Reservation are shown on Appendix Table A-5. Information about Pechanga Water System wells is shown below:

		End of W	ater Year		
Well		Dep	th to	Well	Perforated
Designation	Well	Groundwa	iter in Feet	Depth	Interval
8S/2W	<u>Name</u>	<u>2013</u>	<u>2014</u>	<u>Feet</u>	<u>Feet</u>
29A2	Kelsey	146	154	425	105 - 415
29B10	Eduardo	163	142	697	437 - 687
29B11	Eagle III	178	183	645	275 - 635
29J3	South Boundary	161	147	350	150 - 340
28M5	Cell Tower	120	N/A	518	372 - 432
					468 - 508
28R1	Ballpark Well	107	121	1,000	126 - 996
19Q1	Zone V Rock 1	46	48	451	210 - 430

The total groundwater pumping for the Pechanga Water System wells decreased from 798 acre feet in Water Year 2012-13, to 765 acre feet in Water Year 2013-14. The total pumping in Wolf Valley by Rancho California WD Well Nos. 119, 122 and 211, for both the District's use and for delivery to Pechanga, increased from 1,258 acre feet in 2012-13 to 1,313 acre feet in 2013-14. Therefore, the total pumping in Wolf Valley for 2013-14 increased by 22 acre feet.

The wells listed above are in areas of younger alluvium at ground surface. The depth of the younger alluvium in Wolf Valley was estimated by representatives of Rancho California WD and the United States, for Rancho California WD Well No. 495 (8S/2W-20E) and Well No. 119 (8S/2W-19J), to be in the range of 120 to 170 feet in depth. Thus, based on available well construction data, production is from both the younger alluvium and the older alluvium. Under state law, production from the wells that originate in the older alluvium can be considered to be under a groundwater appropriative right or an overlying right, depending on the circumstances at each well.

Production and uses for the Pechanga Indian Reservation for Water Years 1991 through 2014 are shown on Appendix Table B-6.

7.3.3 Ramona Indian Reservation

The Ramona Indian Reservation occupies 560 acres of land of which 321 acres are inside the Watershed. The water supply is provided for domestic use by two individual wells. Total production for 2013-14 is reported as 1.97 acre feet, or approximately two acre feet.

7.4 Small Water Systems

There are a number of small water systems in the Watershed. These range from relatively permanent structures, to those catering to recreational vehicles and campgrounds. Water production from wells is shown on Appendix Table A-11 for Quiet Oaks Mobile Home Park, Hawthorn Water System, Rancho California Outdoor Resorts, and Jojoba Hills SKP Resort. Data for previous Water Years are shown on Appendix Table B-12.

7.5 Irrigation Water Use

Estimated water production reported by substantial users for irrigation in the Santa Margarita River Watershed is shown on Table 7.1 to be 6,868 acre feet. This quantity includes 6,179 acre feet of well production and 689 acre feet of surface diversion as shown in Appendix C.

SECTION 8 - UNAUTHORIZED WATER USE

8.1 General

From time to time, there are complaints of unauthorized water uses of various types in the Watershed. Such complaints are investigated in accordance with the powers and duties of the Watermaster. The status of the current list of unauthorized uses is described as follows:

8.2 Unauthorized Small Storage Ponds

Many small dams and reservoirs have been constructed on streams in the Watershed. The legal basis for these ponds is described in the 1988-89 Watermaster Report. Basically, the Court has held that storage of water in ponds less than 10 acre feet in capacity and used for stock watering is a valid use of riparian water. The Court has also held that:

The temporary or non-seasonal impoundment by riparian owners for the purpose of providing a head for irrigation or for the purpose of temporarily accumulating sufficient water to make possible efficient irrigation is a proper riparian use of water.

Criteria for determining non-seasonal storage of irrigation water have yet to be developed.

8.3 Rancho California Water District Water Use

A number of unauthorized water use issues raised by the United States are settled so long as the CWRMA between the United States on behalf of Camp Pendleton and Rancho California Water District is in effect. As further explained in Section 11, many of these issues are described in Appendix F.

One area of past concern pertains to Rancho California WD's petition to the State Water Resources Control Board (SWRCB) to change the place of use, type of use and re-diversion facilities in Permit 7032. On April 22, 2009, the SWRCB issued an order and amended Permit 7032 with the desired changes and conditions to resolve concerns by Camp Pendleton and the U. S. Fish and Wildlife Service. The reporting of Vail Lake operations in accordance with Amended Permit 7032 is provided on Table 3.3 and in Section 7.2.8 under Vail Appropriation, including operations reported on Table 7.4.

8.4 <u>Exportation of Treated Wastewater Derived from Native Waters</u>

Camp Pendleton continues to assert that the exportation of treated wastewater, the source of which is the native waters of the Santa Margarita River System, without a legal basis for such exportation is an unauthorized water use. On May 17, 2013, the United States Court of Appeals for the Ninth Circuit issued an Order granting the parties' joint motion to dismiss the appeals in *United States of America and Fallbrook Public Utility District v. Eastern Municipal Water District and Rancho California Water District* (CV 04-8182 CBM (RNBx), United States District Court, Central District of California) and thus the August 4, 2009 Judgment in this case stands. The Watermaster is reviewing the calculations and reporting of exportation of treated wastewater for possible changes in future annual reports.

SECTION 9 - THREATS TO WATER SUPPLY

9.1 General

General threats to the long-term water supply in the Santa Margarita River Watershed, which have been described in previous Watermaster reports, are as follows:

- 1. High nitrate concentrations in Rainbow Creek, Anza Valley and the Murrieta-Temecula areas.
- 2. Potential overdraft conditions at various locations in the Watershed.
- 3. Potentially adverse salt balance conditions in the upper Santa Margarita River area.
- 4. High concentrations of arsenic, fluoride, and manganese in the Murrieta-Temecula area.
- 5. Quagga mussel infestation in imported supplies from the Colorado River system.

9.2 High Nitrate Concentrations

In past years, high concentrations of nitrate have been measured in Anza Valley and in Rainbow Creek. Conditions in Anza Valley were generally described in the 1993-94 report. Additional water quality data for Anza Valley have been collected periodically by the Riverside County Department of Health Services and the USGS.

As described in prior Watermaster reports, in 1999 the Regional Water Quality Control Board, San Diego Region (Regional Board) began preparation of a plan for Total Maximum Daily Loads (TMDLs) for Total Nitrogen and Total Phosphorus on Rainbow Creek. On February 9, 2005, the Regional Board adopted Resolution No. R9-2005-0036, an amendment to the Basin Plan to include the Total Nitrogen and Total Phosphorus TMDLs and implementation plan. The State Water Resources Control Board, on November 16, 2005, and the Office of Administrative Law, on February 1, 2006, subsequently approved the Basin Plan amendment. The U.S. Environmental Protection Agency granted final approval of the TMDLs on March 22, 2006.

The full plan and implementation programs are presented on the Regional Board's website:

http://www.waterboards.ca.gov/sandiego/water_issues/programs/tmdl s/rainbowcreek.shtml.

Recent data show high concentrations of nitrate pose a risk to water supplies from the Murrieta-Temecula Groundwater Area. In January 2006, Western MWD ceased production from the Holiday Well because nitrate concentrations exceeded the Maximum Contaminant Level (MCL) of 45 mg/l. The depth to the top of the perforated interval for the Holiday Well is only 60 feet and the high nitrate concentrations appear to be a result of nearby septic systems and agricultural practices. Concentrations of nitrate for some of the other Western MWD and Rancho California WD wells in the Murrieta-Temecula Groundwater Area have been detected in the range of 20 to 26 mg/l, which is below the MCL. The other Western MWD and Rancho California WD wells have deeper perforated intervals than the Holiday Well.

9.3 Potential Overdraft Conditions

Previous Watermaster reports have noted concerns about overdraft conditions in Anza Valley and in the Murrieta-Temecula Groundwater Area. Previous studies for Anza Valley include 1976 and 1988 reports by the U. S. Geological Survey and a 1990 report by a consultant to Riverside County. No further studies relative to groundwater use in Anza Valley are available. Historical measurements of groundwater levels for Anza Mutual Water Company's Well No. 1 (7S/3E-21G1) located in Anza Valley are plotted in this report on Figure 4.4. Water levels in Anza Mutual Water Company Well No. 1 rose by 38 feet between September 30, 2013 and September 30, 2014.

No recent published studies of safe yield are available for the Murrieta-Temecula Groundwater Area. Groundwater resources in the area are managed by Rancho California WD, Western MWD, and the Pechanga Band. Annual groundwater production programs are prepared with the goal of maximizing production within the apparent safe yield of the basin. Each year, groundwater levels and well production combined with other information including water quality, natural and artificial recharge, pump settings, and well construction factors, are used to develop the recommended production programs for several hydrogeologic sub-areas. Production rates are commonly lowered in sub-areas where water levels have declined over several years, and production rates are increased in sub-areas where decline has not occurred. As a final check, the recommended production rates are checked using the groundwater model for the Murrieta-Temecula Groundwater Area.

In addition, Rancho California WD in cooperation with Camp Pendleton is in the process of developing a multi-level groundwater monitoring network, pursuant to the CWRMA. The purpose of the network is to collect data for use in assessing safe yield operations. In September 2006, the USGS began drilling and constructing the Pala Park Groundwater Monitoring Well as part of this network. The monitoring well was completed with six piezometers and continuous water level recording devices. In 2009, the groundwater monitoring network was expanded to include the Wolf Valley Monitoring Well previously constructed by the USGS under a cooperative program with the Pechanga Band. In 2013, two additional groundwater monitoring wells were constructed by the USGS under contract with Rancho California WD. The two additional wells are the Temecula Creek Groundwater Monitoring Well and the VDC Recharge Basin Groundwater Monitoring Well. Groundwater levels and water quality data for the four monitoring wells are reported in the annual CWRMA report.

Groundwater level data for three additional wells in the Murrieta-Temecula Groundwater Area are included in this report as Figures 4.1, 4.3 and 4.5. Water levels in the Windmill Well (8S/2W-12H1) located at the eastern part of Pauba Valley declined by 13.7 feet in 2013-14. Water levels in Well 7S/3W-20C9 in the Murrieta Division of Western MWD area rose by three feet in 2013-14.

Well 8S/2W-29G1 on the Pechanga Indian Reservation in Wolf Valley became dry at the end of 2003-04. The declining water levels in Well 8S/2W-29G1 appear to be attributed to recent relatively dry hydrologic conditions and pumping of the nearby New Kelsey Well. To allow continued monitoring of water levels on the Reservation, Well No. 29G1 has been replaced with Well No. 8S/2W-29B9 which showed water levels declined 2.7 feet in 2013-14.

9.4 Salt Balance

A key issue in management of a groundwater basin is potential build-up of salts from imported water supplies and use of recycled water. Such a build-up could decrease the usability of waters in a basin. Consideration must be given to measures that allow desalination of water supplies and export of salts from a basin to offset the salt load in water entering the groundwater basin.

The Total Dissolved Solids (TDS) concentration for imported supplies into the Watershed is shown on Table 5.3. During 2013-14, the reported TDS concentration ranged from 411 to 576 mg/l as compared to concentrations for 2012-13 ranging from 336 to 528 mg/l. The increased levels for TDS in 2013-14 are attributed to a greater percentage of the imported supplies derived from the Colorado River compared to supplies from the State Water Project.

The salt balance for the Murrieta-Temecula Groundwater Area is increasingly of interest due to increased imported supplies to meet existing and future demands, and also increased use of reclaimed wastewater for irrigation. The potential salt loading can be illustrated by estimating the total salts imported into the basin by the major purveyors overlying the groundwater area. The net imported supplies for the major purveyors are provided on Table 5.2 and the individual production and use tables are included in Appendix A. Assuming the groundwater area is subject to salt loading from net imports for Eastern MWD, Elsinore Valley MWD, Western MWD (Murrieta Division), and Rancho California WD (Rancho Division); the total net imports for Water Year 2013-14 were 53,817 acre feet. It is noted, imports for a portion of the Rancho California WD, Santa Rosa Division, potentially contribute to salt loading for the groundwater area but such contribution is ignored for this illustration. Applying the monthly TDS concentrations from Table 5.3 to the monthly net imports for these major purveyors results in an estimated total annual salt import for Water Year 2013-14 of 37,700 tons compared to the estimated salt import of 32,200 tons for 2012-13 and 26,400 tons for 2011-12.

The salt balance for the Murrieta-Temecula Groundwater Area is affected by the export of wastewater from the Watershed. In 2013-14, Elsinore Valley MWD exported 1,307 acre feet of wastewater for treatment outside the Watershed. During 2013-14, Eastern MWD exported 8,117 acre feet of treated wastewater for reuse outside the Watershed. Additional treated wastewater may have been exported from the Watershed through recirculation in the system, but such additional amounts have not been determined. At an average TDS concentration of 650 mg/l, there are approximately 1,768 pounds of salt in every acre foot of wastewater. Thus in 2013-14, approximately 8,300 tons of salt were exported by Elsinore Valley MWD and Eastern MWD through the export of 9,424 acre feet of wastewater. For comparison in 2012-13, approximately 9,100 tons of salt were exported with the export of 10,244 acre feet of wastewater.

The use of recycled water for irrigation is also a consideration in evaluating the salt balance for the Murrieta-Temecula Groundwater Area. The reuse within the groundwater area does not import additional salts into the Watershed; rather the source of water supply further concentrates the salts in contrast to relatively lower TDS levels for other sources of water supplies. The total use of recycled water by Eastern MWD, Elsinore Valley MWD, Rancho California WD, and the Pechanga Band within the Santa Margarita River Watershed for 2013-14 was 6,135 acre feet compared to 5,866 acre feet in 2012-13, and compared to 690 acre feet in 1986-87. Assuming an average TDS concentration of wastewater of 650 mg/l, the salt loading for 6,135 acre feet of recycled water is approximately 5,400 tons. It is expected that the use of recycled water within the Watershed will increase in the future.

The salt balances of the Murrieta-Temecula Groundwater Area, the Santa Margarita River, and the groundwater basins on Camp Pendleton are affected by operational and maintenance discharges by Rancho California WD from wells into Murrieta Creek, Temecula Creek and Santa Gertrudis Creek. In 2013-14, wells discharged 75 acre feet, as shown below, together with the TDS for the most recent sample for each well. Additional water quality data for the wells are provided in Appendix D.

 Well No.	Release Acre Feet	TDS mg/l	Most Recent Sample Date	
101	11	680	9/17/14	
102	2	700	6/20/95	
106	1	320	7/02/14	
108	51	380	8/05/14	
118	<u>10</u>	620	9/03/14	
Total	75			

The salt balances for the Santa Margarita River, and the groundwater basins on Camp Pendleton, are also influenced by discharges by Rancho California WD of imported supplies into Santa Margarita River as part of make-up flows under the CWRMA. During 2013-14, the discharge of imported supplies to the Santa Margarita River as make-up

flows from outlet WR-34 was 4,051 acre feet. There were no discharges to the Santa Margarita River from the potable connection at WR-34. Discharges from the potable connection are comprised of a blend of groundwater and imported supplies.

In March 2014, Rancho California WD completed the Temecula Valley Basin Salt and Nutrient Management Plan. The plan was prepared pursuant to the State Water Resources Control Board Recycled Water Policy adopted by Resolution No. 2009-0011 on February 3, 2009, as amended by Resolution No. 2013-0003 on January 22, 2013. In November 2013, Camp Pendleton completed the Salt and Nutrient Management Plan, Southern MCB Camp Pendleton, also prepared pursuant to the State Water Resources Control Board Recycled Water Policy cited above.

9.5 High Arsenic Concentrations

The maximum contaminant level (MCL) for arsenic is 10 ug/l. High concentrations of arsenic have been detected in groundwater wells for both the Murrieta Division of Western MWD and Rancho California WD, posing a risk to water supplies in the Murrieta-Temecula Groundwater Area. In November 2007, Western MWD ceased pumping from the New Clay Well due to arsenic levels exceeding the MCL. Pumping from the New Clay Well resumed in September 2012, under an approved monitoring plan after Western MWD completed well renovation measures. Pumping from the New Clay Well was again ceased in April 2013 due to arsenic levels exceeding the MCL. In April 2014, pumping from the New Clay Well was again resumed.

The elevated arsenic levels have significantly impacted groundwater pumping and distribution system operations for Rancho California WD. Two wells have been taken out of production due to arsenic levels exceeding the MCL. In 2013-14, four other wells showed levels exceeding the MCL with the wells still in operation. Three of the wells are operating under approved blending plans and the fourth well is being operated under increased monitoring with preparation of a tentative blending plan.

9.6 High Fluoride Concentrations

The MCL for fluoride is 2 mg/l, and samples exhibiting high concentrations of arsenic often show high concentrations of fluoride in the Murrieta-Temecula Groundwater Area. High levels of fluoride are impacting operations for Rancho California WD. In 2013-14, two wells showed fluoride levels exceeding the MCL with the wells in operation under approved blending plans.

9.7 <u>High Manganese Concentrations</u>

The MCL for manganese is 50 ug/l, and high concentrations of manganese have been detected in wells for both the Murrieta Division of Western MWD and Rancho California WD. In 2013-14, two Rancho California WD wells were in operation under approved manganese sequestering plans. In 2013-14, six groundwater supply wells for Camp Pendleton showed manganese levels exceeding the MCL with groundwater treated under approved treatment plans.

9.8 Quagga Mussel

In early January 2007, the invasive, non-native Quagga mussel was discovered in Lake Mead. Subsequently, upon thorough inspection, MWD discovered the mussel throughout the Colorado River Aqueduct system including in August 2007, finding the mussels in Lake Skinner. To date, no mussels have been found in Diamond Valley Lake.

The Quagga mussel is indigenous to the Ukraine and was discovered in the United States in September 1989 with the first sighting in the Great Lakes. The Quagga mussel is a small freshwater mollusk ranging in size from microscopic in the embryonic state to about two inches in length at the adult stage. The mussels can be transported during the larval stage with currents or running water, and at the adult stage by attaching to hard surfaces, such as boats.

The Quagga mussel is a filter feeder removing food and nutrients from the water column, decreasing the food source for zooplankton and therefore, altering the food web. The filtration of the water also alters water clarity impacting aquatic plants and water chemistry. The economic impact is also significant because these species can rapidly colonize on hard surfaces, clogging water intake structures, pipes, and screens and reducing pumping and distribution capacities. Costs are also associated with maintenance of facilities and control of the species.

Since the discovery of Quagga mussels in the Colorado River Aqueduct and Lake Skinner, MWD has implemented various control activities. In July 2007, the aqueduct was shut down for ten days for inspection, chlorination, and removal of adult populations. Also in July 2007, MWD initiated continuous chlorination in the Colorado River Aqueduct to control the spread of Quagga mussels. Additionally, as part of ongoing maintenance activities for the Colorado River Aqueduct, MWD subsequently shut down the aqueduct in October 2007, January and March 2008, October 2009, and April and May 2010, for approximately three weeks each shutdown, resulting in desiccation of Quagga mussels present at those times. Subsequently, MWD routinely shuts down the aqueduct, once or twice annually, for ongoing maintenance activities and for Quagga mussel desiccation. Releases from Lake Skinner are chlorinated at the outlet tower prior to distribution through the raw water delivery system.

Effective October 10, 2007, Assembly Bill 1683 added Section 2301(a)(1) to the California Fish and Game Code prohibiting the release of Quagga mussels into the waters of the State. Assembly Bill 1683 also requires development of a Quagga mussel control plan. On December 8, 2007, MWD temporarily suspended required releases of water to Tucalota Creek from Lake Skinner and Warm Springs Creek from the San Diego Canal near Diamond Valley Lake. These required releases would have been made in accordance with Memoranda of Agreement for releasing native inflows from the reservoirs. On March 6, 2008, MWD provided notice to the parties in *United States of America v. Fallbrook Public Utility District*, et al., regarding the temporary suspension of required releases of native water inflows from Lake Skinner and Diamond Valley Lake.

On June 23, 2008, MWD provided notice to the parties in *United States of America v. Fallbrook Public Utility District*, *et al.*, regarding the resumption of required releases of native water inflows from Lake Skinner and Diamond Valley Lake, according to MWD's Action Plan submitted to California Department of Fish and Wildlife on May 30, 2008. On April 5, 2010, the California Department of Fish and Wildlife approved the Quagga Mussel Control Plan for Lake Skinner. MWD is still operating under the May 30, 2008 Action Plan and June 23, 2008 Notice describing provisions for releases to Warm Springs Creek from the State Water Project Eastside Pipeline to meet release requirements at Diamond Valley Lake.

Infestation by the Quagga mussel has also altered Rancho California WD operations in accordance with the CWRMA. Beginning on April 10, 2008, Rancho California WD periodically ceased making releases of raw water from Outlet WR-34 on the MWD Pipeline No. 5 to meet make-up flow requirements for the Santa Margarita River. Alternatively, Rancho California WD releases make-up flows from its treated water distribution system at the System River Meter located just upstream of the Murrieta Creek at Temecula gaging station, or from the potable connection to the WR-34 discharge location. The treated water is de-chlorinated prior to release into Murrieta Creek.

In response to the threat of infestation of Quagga mussel, Rancho California WD has developed three separate control plans that constitute an overall action plan. These plans were updated in 2012 and are comprised of the following: (1) Dreissena Mussel Response and Control Action Plan, (2) Vail Lake Rapid Response Plan, and (3) Vail Lake Conveyance System Dreissena Mussel Control Plan, collectively referred to as the Plans. On September 14, 2012, the California Department of Fish and Wildlife approved the amended Plans that include the following key components:

- Substrate monitoring utilizing coupon sampling equipment at Vail Lake and the Santa Margarita River at a sampling location approximately 100 feet downstream of the Outlet WR-34 for releases of make-up water in accordance with CWRMA.
- Raw MWD water is released into the Santa Margarita River only when chlorination is being performed at Lake Skinner.
- All watercraft vessels, trailers, and equipment are being inspected before launching in Vail Lake.
- Installation of chlorination, filtration, and turbulence devices within the Vail Lake Pipeline to result in 100 percent mortality of mussels passing through the system for delivery of imported supplies to Vail Lake.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

Page Intentionally Blank

SECTION 10 - WATER QUALITY

10.1 <u>Surface Water Quality</u>

The USGS collected continuous water quality measurements for dissolved oxygen, pH, specific conductance, and temperature at the Santa Margarita River near Temecula gaging station during 2013-14. Data collected at the station are published by the USGS. The highest average daily high and the lowest average daily low for each parameter for each month are shown on Table 10.1 for Water Year 2013-14.

Surface water quality data collected by the USGS in 2004-05 for Cahuilla Creek are shown on Appendix Table D-12. No surface water quality data for Cahuilla Creek were collected in 2013-14.

Surface water quality data collected in prior years by Camp Pendleton, Eastern MWD, and Rancho California WD are listed in earlier Watermaster reports.

10.2 Groundwater Quality

During 2013-14, water quality data was collected from wells at Western MWD – Murrieta Division, Rancho California WD, Pechanga Indian Reservation, and Camp Pendleton.

Western MWD – Murrieta Division sampled two wells in 2013-14 as shown in Appendix Table D-3. Both wells were subjected to standard chemical analysis in addition to samplings for nitrates only. The North Well was sampled 19 times and included nine samples subjected to standard chemical analysis and ten samples subjected to nitrates only. The New Clay Well was sampled eight times and included four samples subjected to standard chemical analysis and four samples analyzed for nitrates only. Concentrations of nitrates were below the Maximum Contaminant Level (MCL) of 45 mg/l with results generally reported to be below, or near, the laboratory detection limit and the highest reported value as 1.6 mg/l.

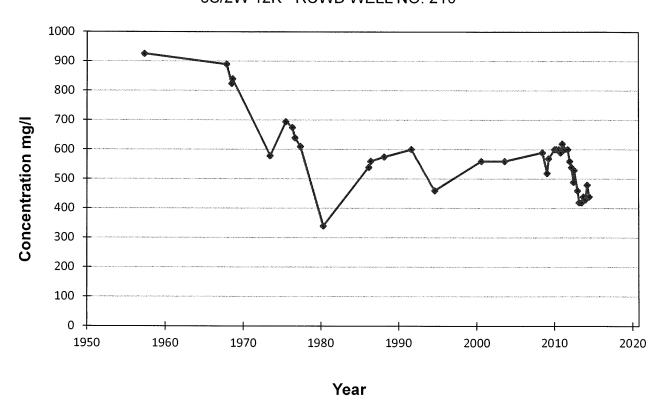
Water quality data for Rancho California WD wells are shown on Appendix Table D-4. Samples were collected from 40 wells during 2013-14. Of the 40 wells, 23 wells were analyzed for nitrates and TDS only. Nitrate concentrations ranged up to 21 mg/l as nitrate, with the MCL being 45 mg/l as nitrate. Twelve of the remaining wells were subjected to standard chemical analysis, 36 wells were sampled for TDS only, and 14 wells were sampled for nitrates only. Samples from one well (Well 109) showed TDS concentrations exceeding 750 mg/l, the Basin Plan objective. Wells 120 and 158, which showed TDS concentrations exceeding 750 mg/l in prior years, showed reduced TDS concentrations for 2013-14, ranging from 410 to 600 mg/l and 480 to 720 mg/l, respectively. During 2013-14, 21 wells showed TDS concentrations ranging from 500 to 750 mg/l.

TABLE 10.1

SANTA MARGARITA RIVER WATERSHED

RANGES IN AVERAGE DAILY CONCENTRATION OF DISSOLVED OXYGEN, PH, SPECIFIC CONDUCTANCE AND TEMPERATURE AT SANTA MARGARITA RIVER NEAR TEMECULA

Water Year 2013-14


COLLECTION MONTH/YEAR	DISSOI OXYG mg	SEN	рН		SPECI CONDUC microsiem	TANCE	TEMPERA Degrees (
2013	<u>High</u>	Low	<u>High</u>	Low	<u>High</u>	Low	<u>High</u>	<u>Low</u>
October	8.8	5.0	8.1	7.6	1,240	823	22.7	16.1
November	9.2	7.4	8.0	7.6	1,650	837	19.4	15.4
December	10.2	8.5	8.2	7.5	1,200	878	16.0	9.5
2014								
January	10.6	10.0	8.2	7.8	983	895	12.8	11.9
February	10.6	5.9	8.0	7.4	1,620	80	16.5	12.3
March	9.9	4.7	8.2	7.5	1,019	316	17.8	12.5
April	9.7	8.4	8.3	8.1	937	893	20.7	17.0
May	9.0	7.5	8.3	7.8	977	789	23.4	18.8
June	9.0	7.6	8.3	7.8	915	731	23.6	19.7
July	8.7	6.4	8.0	7.7	745	671	23.4	20.9
August **	8.5	6.1	8.0	7.7	900	658	26.0	21.8
September	8.1	6.6	8.3	7.8	904	841	26.7	24.4

^{**-} Partial Record: Indicates months with interruptions in record at times due to malfunction of recording equipment. High and low values indicated for days with reported data. Daily data and number of days with no record can be viewed at the following website: http://web10capp.er.usgs.gov/adr06_lookup/search.jsp searching by site number 11044000.

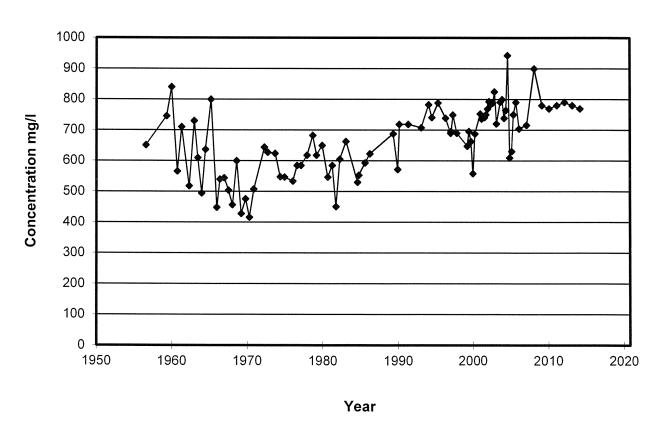
Total dissolved solids concentrations for Rancho California WD Well 210 are shown on Figure 10.1 for samples collected since 1957, when the well was constructed. The figure shows a decline in TDS from approximately 900 mg/l for the samples collected during the 1960's to the 400-600 mg/l range in recent years. Trend analyses for other wells throughout the Murrieta-Temecula area show a mix of increasing and decreasing trends in TDS levels depending upon location and aguifer.

TOTAL DISSOLVED SOLIDS CONCENTRATION 8S/2W-12K - RCWD WELL NO. 210

Figure 10.1

Appendix Table D-5 shows water quality data collected by the USGS from wells on Indian Reservations. In 2013-14, samples were collected from five wells on the Pechanga Indian Reservation. For the Pechanga wells, TDS concentrations ranged from 256 to 339 mg/l.

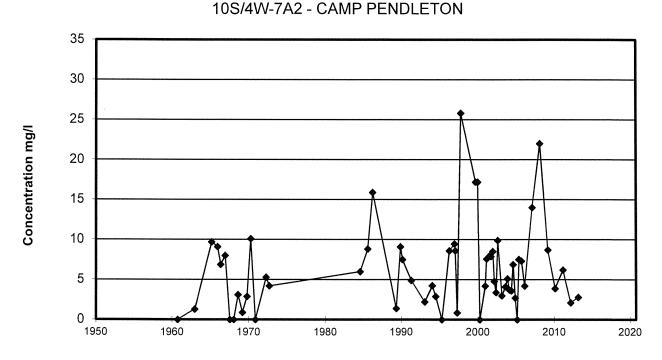
In 2013-14, no samples were collected from wells on the Cahuilla Indian Reservation.


During 2013-14, groundwater samples were collected from seven wells at Camp Pendleton as shown on Appendix Table D-6. All seven wells were subjected to standard chemical analysis. During 2013-14, samples show all seven wells with TDS concentrations exceeding the Basin Plan Objective of 750 mg/l. Five of the seven wells showed TDS concentrations that exceeded those in the prior year, and two wells showed a decline of TDS concentrations compared to the previous year.

Historical TDS concentrations for Camp Pendleton Well 7A2 are shown on Figure 10.2 for samples collected since mid-1950. The figure shows a decline between mid-1950 and 1970, then a period of increasing concentrations to levels in the 550-950 mg/l range. Analysis of the sample collected in 2013-14 indicated TDS concentrations of 770 mg/l, a decrease of 10 mg/l compared to the sample collected in 2012-13.

Figure 10.2

TOTAL DISSOLVED SOLIDS CONCENTRATION


10S/4W-7A2 - CAMP PENDLETON

Historical nitrate concentrations for the same well (7A2) are shown on Figure 10.3. The one sample collected in Water Year 2013-14 showed a nitrate concentration of 2.8 mg/l, an increase from the prior year.

Figure 10.3

NITRATE CONCENTRATION

Year

WATERMASTER SANTA MARGARITA RIVER WATERSHED

Page Intentionally Blank

SECTION 11 - COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT

11.1 General

On August 20, 2002, the Cooperative Water Resource Management Agreement (CWRMA) between Camp Pendleton and Rancho California WD was approved by the Court. The CWRMA provisions specify required accounting will be reported on a calendar year basis and, accordingly, Section 11 and Appendix E present data reported on a calendar year basis. However, the remainder of the Annual Watermaster Report is prepared on a water year basis requiring the CWRMA calendar year reporting to be converted to a water year basis to be incorporated into other sections of the report. The water year period begins on October 1 and concludes on September 30 of the following year.

It is noted that prior Annual Watermaster Reports served as the annual report required under CWRMA. Beginning in calendar year 2011, a separate annual report has been prepared by the Watermaster and submitted to the Court to meet the requirements of CWRMA. Section 11 continues to be included in the Annual Watermaster Report focusing on the accounting and operations related to Make-Up Water releases and flow requirements for the Santa Margarita River at the Gorge. Section 11 also includes an overview of other topics included in the stand-alone Annual CWRMA Report.

The CWRMA provides that on May 1 of each year, the Technical Advisory Committee is to compute a hydrologic index for the year based on streamflow and precipitation between October and April. In May 2014, the hydrologic index was determined and the year classified as a "Below Normal" hydrologic year. The hydrologic year establishes the required flows at the Santa Margarita River near Temecula gaging station for the calendar year. Required flows for 2014, a "Below Normal" year, are listed in Section 5 of the CWRMA and are shown on Table 11.1.

As indicated above, CWRMA calendar year accounting must be converted to a water year basis for other sections of the annual report. The data for October through December 2013 for the various accounts are needed to convert the amounts shown on Table 11.1 to water year values. These data for October through December 2013 were reported in the prior year Annual Watermaster Report. To assist the reader in calculating water year amounts for various CWRMA operations, Table 11.2 in the current report is a repeat of Table 11.1 from the prior year's report. Additional information concerning the operations underlying the values reported on Table 11.2 can be found in the prior year's report.

Prior to implementation of the CWRMA, each year there were contentions raised by Camp Pendleton with respect to various aspects of the Annual Watermaster Report. These contentions are settled so long as that agreement is in effect. Accordingly, there is no need to raise those particular issues or publish them in the main text of the annual report or in related correspondence. Rather, the issues are provided in Appendix F.

TABLE 11.1

SANTA MARGARITA RIVER WATERSHED

COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT MONTHLY SUMMARY OF REQUIRED FLOWS, **DISCHARGES, CREDITS AND ACCOUNTS**

2014 CALENDAR YEAR - BELOW NORMAL YEAR

			Minimum Flow		No. of Days 10-day		•	Camp Pendle	Camp Pendleton Groundwater Bank 5/
	USGS Official Discharge	USGS Website Daily Discharge	Maintenance Requirement	Section 5 Flows	Running Average is Less than Required	Discharge from WR-34	Climatic Credits Earned	Input	Cumulative Balance
Month	AF	AF	cfs 1/	cfs 2/	Flow	AF 3/	AF 4/	AF	AF
Jan	605.8	605.8	9.6	8.0	0	599.5	212.0	105.4	5,000.0
Feb	1,995.8	1,995.8	9.6	8.0	0	506.7	168.9	95.2	5,000.0
Mar	3,822.5	3,813.6	8.6	8.0	0	502.4	165.5	105.4	5,000.0
Apr	589.1	583.5	8.6	8.0	0	577.8	202.8	102.0	5,000.0
May	326.5	350.9	5.7	5.7	0	336.0	0.0	0.0	5,000.0
Jun	274.1	291.6	4.9	4.9	0	270.7	0.0	0.0	5,000.0
Jul	264.4	264.6	4.3	4.3	0	248.1	0.0	0.0	5,000.0
Aug	272.1	272.1	4.4	4.4	0	252.3	0.0	0.0	5,000.0
Sep	243.6	243.6	4.1	4.1	0	224.9	0.0	0.0	5,000.0
Oct	235.0	239.8	3.9	3.9	0	216.5	0.0	0.0	5,000.0
Nov	176.1	178.5	3.0	4.5	0	164.4	0.0	0.06	5,000.0
Dec	3,508.6	3,508.6	3.3	5.3	0	109.5	0.0	124.0	5,000.0
CALENDAR									
YEAR	12,313.6	12,348.3			0	4,008.8	749.2	622.0	FULL
TOTAL									

The Table in Section 5 of the CWRMA sets forth guaranteed monthly flows at the Gorge once the hydrologic condition for the calendar year is established.

CAP Credits equal the WR-34 discharge in excess of 4,000 AF. Credits earned in 2014 equal to 8.8 AF.

Climatic Credits equal the WR-34 discharges less actual Flow Requirements, which is the flow indicated in Section 5 of the CWRMA less applicable credits but not 1/ Required flows for January through April are equal to 11.5 cfs less 1.7 cfs of credits (406 AF of Climatic Credit earned in 2013).
2/ The Table in Section 5 of the CWRMA sets forth guaranteed monthly flows at the Gorge once the hydrologic condition for the ca 3/ CAP Credits equal the WR-34 discharge in excess of 4,000 AF. Credits earned in 2014 equal to 8.8 A.E. less than 3.0 cfs.

Camp Pendleton's rights to groundwater equal the flow indicated in Section 5 of the CWRMA less the Actual Flow Maintenance Requirement, which cannot be less than 3.0 cfs. Input to the Groundwater Bank shown but cumulative balance did not increase due to account balance maximum of 5,000 AF. 2/

TABLE 11.2

SANTA MARGARITA RIVER WATERSHED

COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT MONTHLY SUMMARY OF REQUIRED FLOWS. DISCHARGES, CREDITS AND ACCOUNTS

2013 CALENDAR YEAR - CRITICALLY DRY YEAR

			Minimum Flow		No. of Days 10-day			Camp Pendleto	Camp Pendleton Groundwater Bank 6/
	USGS Official Discharge	USGS Website Daily Discharge	Maintenance Requirement	Section 5 Flows	Running Average is Less than Required	Discharge from WR-34	Climatic Credits Earned	Input	Cumulative Balance
Month	AF	AF	cfs 11, 2/	cfs 3/	Flow	AF 4/	AF 5/	AF	AF
Jan	395.3	395.3	6.5/5.3	4.5	0	291.9	116.0	93.0	5,000.0
Feb	427.0	427.8	5.3	4.5	0	215.0	63.4	84.0	5,000.0
Mar	857.3	857.3	5.6	4.5	0	266.6	9.96	93.0	5,000.0
Apr	333.6	333.6	5.6	4.5	0	310.1	130.1	0.06	5,000.0
May	246.3	234.2	3.8	3.8	0	220.7	0.0	0.0	5,000.0
Jun	197.0	197.4	3.3	3.3	0	186.3	0.0	0.0	5,000.0
Jul	174.1	186.0	3.0	3.0	0	167.7	0.0	0.0	5,000.0
Aug	182.5	185.1	3.0	3.0	0	184.9	0.0	0.0	5,000.0
Sep	179.3	179.3	3.0	3.0	0	185.5	0.0	0.0	5,000.0
Oct	185.5	185.9	3.0	3.0	0	161.3	0.0	0.0	5,000.0
Nov	179.3	179.3	3.0	3.0	0	170.5	0.0	0.0	5,000.0
Dec	201.7	203.3	3.3	3.3	0	201.2	0.0	0.0	5,000.0
CALENDAR									
YEAR	3,558.9	3,564.5			0	2,561.7	406.1	360.0	FULL
- S - S - S - S - S - S - S - S - S - S									

Required flows for January through April are equal to 11.5 cfs less 5.9 cfs of credits (1,248 AF of Climatic Credit earned in 2012 and 148 AF CAP Credit carried over **>**

In December 2012, the preliminary winter-time flow requirement for 2013 was calculated as 6.5 cfs; in January 2013, the final winter-time requirement was computed as 5.6 cfs. To make up for excess releases made by the District between January 1-17, 2013, the winter-time flow requirement was reduced from 5.6 cfs to 5.3 cfs for January 18 - February 28. 7

The Table in Section 5 of CWRMA sets forth guaranteed monthly flows at the Gorge once the hydrologic condition for the calendar year is established. CAP Credits equal the WR-34 discharge in excess of 4,000 AF. No CAP Credits earned in 2013.

Climatic Credits equal the WR-34 discharges less Actual Flow Requirements, which is the flow indicated in Section 5 of CWRMA less applicable credits but not 9,4%

Camp Pendleton's rights to groundwater equal the flow indicated in Section 5 of CWRMA less the Actual Flow Maintenance Requirement, which cannot be less than 3.0 cfs. Input to the groundwater bank shown but cumulative balance did not increase due to account balance maximum of 5,000 AF. /9

11.2 Required Flows

Under the CWRMA, Rancho California WD guarantees that the ten-day running average of the measured flows at the Santa Margarita River near Temecula gaging station shall meet the required flows for each month during the year. In order to meet the required flows, Rancho California WD discharges Make-Up Water from two primary sources, both discharging into the river at the same location immediately upstream from the USGS gaging station for Santa Margarita River near Temecula. The first primary source of Make-Up Water is raw water from MWD Aqueduct No. 5 discharged at The second primary source of Make-Up Water is from the Rancho California WD treated water distribution system through a potable connection to the WR-34 outlet pipe. In prior years, Make-Up Water was also discharged from the treated water distribution system to Murrieta Creek from two system discharge meters collectively referred to as the System River Meter. The two discharge meters are located on opposite sides of Murrieta Creek, immediately downstream of the USGS gaging station for Murrieta Creek at Temecula, which is located approximately 2,000 feet upstream of the confluence of Temecula Creek and Murrieta Creek. The System River Meter is operable as a secondary source of Make-Up Water if needed.

Flow requirements are based on two-thirds of the median natural flow of the Santa Margarita River at the Gorge for a given hydrologic year type. During the winter period (January through April), Rancho California WD shall maintain a ten-day running average equal to 11.5 cfs, less carry-over credits, less requested foregone Make-Up Water, but not less than 3.0 cfs. Rancho California WD may earn Climatic Credits in Below Normal and Critically Dry years if it has provided Make-Up Water in excess of the Actual Flow Requirement. The Climatic Credit is equal to the Make-Up Water released, less the Actual Flow Requirement, less credits. The Actual Flow Requirement is determined on May 1 of each year and applied retroactively to the flows during the winter period. During the non-winter period (May through December), Rancho California WD shall maintain a ten-day running average equal to the flow requirements specified in the CWRMA as determined on May 1st, less any foregone Make-Up Water agreed to by Camp Pendleton and Rancho California WD. When Rancho California WD is required to provide Make-Up Water in any calendar year in excess of 4,000 acre feet, it may apply CAP Credits for such excess during the following two winter periods. At no time is Rancho California WD required to make up more than 11.5 cfs.

The measured daily flows, the ten-day running average, and the differences between the running average and the required flows are shown in Appendix E. Two listings of daily discharges are shown in the tables in Appendix E: the USGS official discharge and the USGS website discharge. The discharges shown on the website are those that dictate daily decisions regarding the quantities of Make-Up Water required and those discharges are used to compute the ten-day running average. The official discharge is a more refined estimate developed later by the USGS for publication.

The number of days each month when the ten-day running average was less than the required flows is summarized on Table 11.1. For calendar year 2014, there were no days when the running average was less than the required flows under normal CWRMA operations.

During calendar year 2014, the total releases by Rancho California WD to meet CWRMA flow requirements were 4,009 acre feet as shown on Table 11.1. The releases were comprised entirely of raw water from Outlet WR-34. For calendar year 2014, there were no releases from the potable connection at Outlet WR-34.

Climatic Credits of 406 acre feet were used in calendar year 2014, and Climatic Credits of 749 acre feet were earned in calendar year 2014 in accordance with CWRMA provisions. No CAP Credits were used in calendar year 2014 and nine acre feet of CAP Credits were accumulated in calendar year 2014 for use in subsequent years to meet required releases by Rancho California WD.

The CWRMA also provides that Camp Pendleton may acquire rights to groundwater above the Gorge by foregoing its right to Make-Up Water, or to the extent that the Actual Flow Maintenance Requirements are less than the flows in the table in Section 5 of CWRMA. The maximum cumulative balance for the Camp Pendleton groundwater account is 5,000 acre feet. During calendar year 2014, 622 acre feet were calculated as input to the groundwater account but the balance was already at the maximum balance of 5,000 acre feet and no additional water was credited to the account.

11.3 Water Quality

The U. S. Geological Survey continuously monitors four parameters of water quality at the Santa Margarita River near Temecula gaging station, including dissolved oxygen, pH, specific conductance, and temperature. The daily averages for each of these parameters are reported annually. Monthly highs and lows for each parameter are listed in Table 10.1 for the water year ending September 30, 2014.

11.4 Monitoring Programs

The CWRMA provides for the establishment of two monitoring programs: (1) Section 5(g) provides for a program to assess the impacts of operations on water supply, water quality and riparian habitat within Camp Pendleton, and; (2) Section 7(d) provides for a program to assess safe yield operations of Rancho California WD through the use of a multi-level groundwater monitoring network and periodic updates of the CWRMA Groundwater Model.

During 2007-08, Camp Pendleton initiated the Section 5(g) program named as the Lower Santa Margarita River Watershed Monitoring Program (LSMRWM Program) to evaluate whether the increased flows under CWRMA influence threatened and endangered species, riparian and wetland habitats, or water quality downstream. The LSMRWM Program will also support other water quality monitoring and watershed management activities in the Santa Margarita River Watershed. A copy of the Statement

of Work for the LSMRWM Program was provided in the 2007 and 2008 Annual Watermaster Reports. The monitoring was funded for a two-year period and the final report, *Hydrological and Biological Support to Lower Santa Margarita River Watershed Monitoring Program Water Years 2008-2009* was published on February 21, 2010, under a cooperative program between Camp Pendleton and the United States Bureau of Reclamation.

In September 2006, the USGS under contract with Camp Pendleton and Rancho California WD constructed a multi-level monitoring well for the Murrieta-Temecula Groundwater Basin in accordance with Section 7(d) of CWRMA. The Pala Park Groundwater Monitoring Well is located near the confluence of Pechanga and Temecula creeks and was completed to a total depth of 1,499 feet. Six piezometers were installed for continuous water level recording in the saturated zone for the lower five screened intervals and for the upper-most screened interval to detect moisture in the unsaturated zone. The USGS monitoring program for the Pala Park Groundwater Monitoring Well is included in the ongoing Watermaster budget beginning in Water Year 2007-08.

In 2009, the groundwater monitoring program was expanded to include the Wolf Valley Monitoring Well that was previously constructed under a cooperative agreement between the USGS and the Pechanga Band. Two piezometers are installed at the Wolf Valley Well. The groundwater level monitoring for the Wolf Valley Monitoring Well was previously funded by the Pechanga Band, but is now included in the ongoing Watermaster budget beginning in Water Year 2009-10.

In 2013, two additional groundwater monitoring wells were constructed by the USGS under contract with Rancho California WD. The groundwater level monitoring for these additional wells is also included in the ongoing Watermaster budget. The Temecula Creek Groundwater Monitoring Well was drilled in April 2013 to a depth of 1,720 feet, and was completed with five piezometers. The VDC Recharge Basin Groundwater Monitoring Well was drilled in August 2013 to a depth of 1,033 feet, and was completed with six piezometers.

Information concerning the construction of the monitoring wells, groundwater levels, and water quality data can be found at the following website: http://ca.water.usgs.gov/temecula/. Information obtained from the website as well as supplemental information for the groundwater monitoring wells is provided in the Annual CWRMA Report.

In 2010, 2011, and 2012, the water quality monitoring program also included collecting data for the two sources of supply for recharge at the head of Pauba Valley: (1) imported supplies for recharge at Rancho California WD VDC Recharge Facilities, and; (2) native supplies from Temecula Creek as sampled at Vail Lake. Funding from the Watermaster budget was used to collect and analyze the data which are provided in the Annual CWRMA Report.

In 2012, the water quality monitoring program also included collecting data from selected groundwater production wells operated by Rancho California WD within Pauba

Valley. These wells were selected to compliment the water quality data for the monitoring wells and the two sources of supply for recharge at the head of Pauba Valley. Previously, groundwater production wells operated by Rancho California WD were included in the 2004 and 2007 sampling programs for the Groundwater Ambient Monitoring and Assessment (GAMA) program implemented by the California State Water Resources Control Board. Data reported for 2013 were collected with funding from the Watermaster budget. In 2013, funding from the Watermaster budget was used to analyze archived, age-dating samples that were collected during 2012. The samples from two groundwater production wells, Well Nos. 109 and 234, were analyzed for tritium and carbon isotopes.

In 2007, Camp Pendleton and Rancho California WD initiated an effort to update the CWRMA Groundwater Model in accordance with Section 7(d). Work on updating the groundwater model was completed in 2014 and 2015 with publication of the April 25, 2014 (revised January 8, 2015) report prepared by GEOSCIENCE Support Services, Inc., entitled Surface and Ground Water Model of the Murrieta-Temecula Ground Water Basin, California, Model Update and Refinement Report. The model update included the following: (1) development of GSFLOW which is a coupled surface water and groundwater model that includes a Precipitation-Runoff Modeling System (PRMS) and MODFLOW, (2) refinement of the groundwater model cell size, active/inactive boundaries and locations of recharge and discharge, (3) development of a three-dimensional lithologic model based on lithologic and geophysical borehole logs from wells in the area, (4) refinement of groundwater model layer elevations based on the results from the lithologic model, and (5) update of the surface water and groundwater model with data through 2008.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

Page Intentionally Blank

SECTION 12 - FIVE YEAR PROJECTION OF WATERMASTER OFFICE TASKS, EXPENDITURES AND REQUIREMENTS

12.1 General

Projected tasks over the next five years are listed below in two categories: normal tasks, which are part of the usual Watermaster office operation; and additional tasks, which are foreseen but are not part of the normal office operations.

12.2 Normal Tasks

Tasks that are normally part of the Watermaster Office operation are as follows:

- 1. Update List of Substantial Users
- 2. Collect Water Production, Use, Import and Availability Data
- 3. Collect Well Location, Construction and Water Level Data
- 4. Administer Water Rights
- 5. Collect Water Quality Data
- 6. Monitor Water Quality and Water Right Activities
- 7. Administer Lake Skinner and Diamond Valley Lake MOU's
- 8. Administer Steering Committee Matters
- 9. Prepare Court Reports/Budgets
- 10. Monitor Streamflow and Water Quality Measuring
- 11. Data Management
- 12. Administer Cooperative Water Resource Management Agreement

12.3 Additional Tasks

Tasks that have been identified but which are not part of normal operations are as follows:

- 1. Prepare List of All Water Users under Court Jurisdiction
- 2. Prepare Inventory of Ponds and Reservoirs
- 3. Determine Salt Balance

12.4 Projected Expenditures

Projected expenditures for the current year and over the next five years are listed as follows:

Year		Watermaster Office	USGS Groundwater Monitoring	USGS Gaging Stations	Total
Current Year	2014-15	\$446,750	\$43,700	\$189,250	\$679,700
Projected Years	2015-16	\$473,625	\$45,500	\$196,975	\$716,100
	2016-17	\$487,800	\$46,900	\$202,800	\$737,500
	2017-18	\$502,400	\$48,300	\$208,900	\$759,600
	2018-19	\$517,500	\$49,700	\$215,200	\$782,400
	2019-20	\$533,000	\$102,200	\$221,600	\$856,800

SECTION 13 - WATERMASTER OFFICE BUDGET

The budget for the Watermaster Office is established on an annual basis and is approved by the Court upon acceptance of the Annual Watermaster Report. The budget is presently funded from equal assessments paid by the Steering Committee; however, the Court retains the right to assess other parties in the future. An audit is conducted annually by an independent auditor and the independent auditor's report is submitted for review by the parties and the Court as part of the Annual Watermaster Report.

13.1 Comparison of Budget and Actual Costs for 2013-14

The Watermaster Budget for 2013-14 of \$658,840 was approved by the Court upon acceptance of the July 2013 Annual Watermaster Report for Water Year 2011-12. The Independent Auditor's Report and Report to the Steering Committee for Watermaster of the Santa Margarita River Watershed for Fiscal Year Ended September 30, 2014, dated January 21, 2015, are included in Appendix G. A comparison of the budget and actual costs for 2013-14 is shown on Table 13.1. The actual costs for 2013-14 were \$653,001 compared to the budget of \$658,840, resulting in a favorable variance of \$5,839. An explanation of individual line item variances is provided in Appendix G.

13.2 Proposed Budget for 2015-16

The proposed Watermaster Budget for 2015-16 is published in the Annual Watermaster Report for 2013-14 and is determined to be final and accepted by the Court upon noticing and completion of the 30-day period for parties to file an objection to the report. Accordingly, the budget for 2015-16 is referred to in this report as the proposed budget. The proposed Watermaster Budget for 2015-16, along with a comparison to the approved budget for 2014-15 is shown on Table 13.2. The total budget for 2015-16 is \$716,100. This budget includes \$473,625 for the Watermaster Office and \$242,475 for USGS gaging station operations and monitoring. The budgeted cost for services provided by the U.S. Geological Survey is based on the annual renewal of a cooperative agreement with the Watermaster.

SANTA MARGARITA RIVER WATERSHED **COMPARISON OF WATERMASTER BUDGET AND ACTUAL COSTS WATER YEAR 2013-14**

TABLE 13.1

		Water Year	<u> 2013-14</u>	
Line Item	Approved Budget 2013-14 1/	Actual Costs 2013-14 2/	Actual Cos Approved 2013	Budget
Watermaster Office	\$	\$	\$	%
Accounting Services	\$8,800	\$6,073	-\$2,727	-31.0%
Audit	6,300	6,339	39	0.6%
Clerical/Analyst	99,700	96,781	-2,919	-2.9%
Conference/Training	N/A	662	N/A	N/A
Equipment and Furniture	2,000	0	-2,000	-100.0%
Human Resources Services	N/A	0	N/A	N/A
Insurance	600	575	-25	-4.2%
IT System/Computer	10,000	4,248	-5,752	-57.5%
Legal Services	N/A	11,955	N/A	N/A
Miscellaneous	5,915	317	-5,598	-94.6%
Postage	N/A	1,527	N/A	N/A
Printing	10,800	11,207	407	3.8%
Publications	4,200	3,009	-1,191	-28.4%
Rent	18,000	18,000	0	0.0%
Supplies	1,800	2,215	415	23.1%
Telephone	4,200	2,503	-1,697	-40.4%
Travel	900	956	56	6.2%
Watermaster Services				
Consulting Services	219,000	221,328	2,328	1.1%
Travel Reimbursement	27,500	27,906	406	1.5%
SUBTOTAL WATERMASTER OFFICE	\$419,715	\$415,601	-\$4,114	-1.0%
USGS				
Gaging Station	\$150,225	\$149,130	-\$1,095	-0.7%
Surface Water Quality	23,600	23,435	-165	-0.7%
Groundwater Monitoring - Water Levels	43,300	42,990	-310	-0.7%
Groundwater Monitoring - Water Quality	22,000	21,845	-155	-0.7%
SUBTOTAL USGS	\$239,125	\$237,400	-\$1,725	-0.7%
TOTAL	\$658,840	\$653,001	-\$5,839	-0.9%

N/A

Budget Item added for 2014-15, not itemized for 2013-14.
Budget for 2013-14 approved by the Court as reported in the Annual Watermaster Report for Water 1/ Year 2011-12, published July 2013.

Actual Costs from Financial Statements for period ending September 30, 2014. 2/

TABLE 13.2 SANTA MARGARITA RIVER WATERSHED PROPOSED WATERMASTER BUDGET FOR WATER YEAR 2015-16

		Water Year 2	2015-16	
Line Item	Proposed Budget 2015-16 1/	Approved Budget 2014-15 2/	Increase Approved 2014-	Budget
Watermaster Office	\$	<u>_</u>	\$	%
Accounting Services	\$8,400	\$8,600	-\$200	-2.3%
Audit	6,600	6,600	0	0.0%
Clerical/Analyst	115,700	109,300	6,400	5.9%
Conference/Training	1,400	1,200	200	16.7%
Equipment and Furniture	1,000	1,000	0	0.0%
Human Resources Services	800	1,000	-200	-20.0%
Insurance	600	600	0	0.0%
IT System/Computer	10,000	10,000	0	0.0%
Legal Services	20,000	20,000	0	0.0%
Miscellaneous	1,325	2,250	-925	-41.1%
Postage	2,000	1,900	100	5.3%
Printing	10,000	9,000	1,000	11.1%
Publications	3,300	3,200	100	3.1%
Rent	18,000	18,000	0	0.0%
Supplies	1,900	1,800	100	5.6%
Telephone	3,000	3,000	0	0.0%
Travel	1,000	900	100	11.1%
Watermaster Services				
Consulting Services	241,000	222,000	19,000	8.6%
Travel Reimbursement	27,600	26,400	1,200	4.5%
SUBTOTAL WATERMASTER OFFICE	\$473,625	\$446,750	\$26,875	6.0%
USGS				
Gaging Station	\$172,175	\$165,450	\$6,725	4.1%
Surface Water Quality	24,800	23,800	1,000	4.2%
Groundwater Monitoring - Water Levels	45,500	43,700	1,800	4.1%
Groundwater Monitoring - Water Quality	0	40,700	0	0.0%
SUBTOTAL USGS	\$242,475	\$232,950	\$9,525	4.1%
TOTAL	\$716,100	\$679,700	\$36,400	5.4%

^{1/} Proposed budget for 2015-16; final budget to be approved by the Court upon acceptance of the Annual Watermaster Report for Water Year 2013-14.

Budget for 2014-15 approved by the Court as reported in the Annual Watermaster Report for Water

^{2/} Year 2012-13, published in July 2014.

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2013-14

APPENDIX A WATER PRODUCTION AND USE WATER YEAR 2013-14

TABLE A-1

MONTHLY WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

EASTERN MUNICIPAL WATER DISTRICT

2013-14

	TOTAL	1,229	1,230	1,257		1,213	1,146	1,268	1,234	1,239	1,183	1,230	1,249	1,203		14,681
VATER	OTHER REUSE 5/	534	388	975		633	110	779	317	279	156	(61)	(298)	(185)		3,627
RECYCLED WATER	REUSE OUTSIDE SMRW	200	670	137		377	722	345	650	710	730	686	1,235	1,052		8,117
	REUSE IN SMRW 4/	195	172	145		203	314	144	267	250	297	302	312	336		2,937
,		==	_			=	_	_	_	=	=	=	=	_	=	=
	TOTAL USE	1,416	1,208	914		1,053	1,020	801	1,122	1,565	1,621	1,759	1,803	1,602		15,884
	3/ SSOT	71	09	46		53	51	40	99	78	81	88	06	80		794
USE	TOTAL	1,345	1,148	898		1,000	696	761	1,066	1,487	1,540	1,671	1,713	1,522		15,090
	ром	1,003	903	713		780	754	265	817	1,100	1,139	1,216	1,260	1,113		11,395
	сомм	330	238	147		206	212	148	241	366	390	437	441	397		3,553
	AG	12	7	8		14	က	16	∞	21	1	18	12	12		142
				=		=	=	=				=	_		=	=
	TOTAL	1,416	1,208	914		1,053	1,020	801	1,122	1,565	1,621	1,759	1,803	1,602		15,884
	NET IMPORT	1,416	1,208	914		1,053	1,020	801	1,122	1,565	1,621	1,759	1,803	1,602		15,884
PRODUCTION	EXPORT FROM SMRW 2/	0	0	0		0	0	1,125	1,180	1,049	1,165	1,583	1,031	918		8,051
PR	IMPORT 1/	1,416	1,208	914		1,053	1,020	1,926	2,302	2,614	2,786	3,342	2,834	2,520		23,935
	WELLS	0	0	0		0	0	0	0	0	0	0	0	0		0
	MONTH	2013 OCT	NOV	DEC	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT		TOTAL

Does not include deliveries to Rancho California WD, Elsinore Valley MWD or Western MWD.
 Portion of imported supplies exported for delivery to Eastern MWD's retail customers located outside the Watershed.
 Loss = 5%
 No sewage diverted to RCWD for 2014 Water Year for treatment at Santa Rosa Water Reclamation Facility.
 Reuse within Watershed includes 991 AF sold to RCWD, 442 AF sold to Pechanga Band, and 53 AF sold to Elsinore Valley MWD.
 Other Reuse includes changes of storage in Winchester and Sun City storage ponds, evaporation and percolation losses.
 There were no discharges to Temescal Creek in the Santa Ana Watershed in Water Year 2014.

TABLE A-2

SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

ELSINORE VALLEY MUNICIPAL WATER DISTRICT

2013-14

ı																	
ER 3/	TOTAL REUSE		0	0	0		0	0	0	0	0	0	32	30	27		89
RECYCLED WATER 3/	REUSE OUTSIDE SMRW		0	0	0		0	0	0	0	0	0	13	12	=		36
RECY	REUSE INSIDE SMRW		0	0	0		0	0	0	0	0	0	19	18	16		53
			_	_	_			_	_	=	=	=	=	_	_		_
ORTED	TOTAL WASTEWATER EXPORT		111	106	110		108	26	109	104	108	103	119	119	113		1,307
WASTEWATER EXPORTED	REUSE OUTSIDE SMRW		0	0	0		0	0	0	0	0	0	13	12	7		36
WASTE	UNTREATED WASTEWATER		111	106	110		108	26	109	104	108	103	106	107	102		1,271
		_ =	_	_	_		-	_	=	=		=		_	=	=	
	TOTAL USE		1,071	503	259		538	456	380	208	663	771	798	748	718		7,413
	LOSS 2/		15	7	4		80	9	2	7	6	=	=	10	10		103
USE 1/	TOTAL DELIVERED		1,056	496	255				375					738	708		7,310
	DOM		774	392	222		434	354	308	387	494	266	587	552	531		5,601
	СОММ		280	103	32		95	95	99	113	159	193	198	184	175		1,693
	AG		2	_	_		Ψ-	_	_	_	_	_	2	2	2		16
				_				_	=	_	_		=	_	_	_	_
z	ТОТАL		1,071	503	259		538	456	380	508	663	771	798	748	718		7,413
PRODUCTION	MPORT		1,071	503	259		538	456	380	508	663	771	798	748	718		7,413
PR(WELLS IMPORT TOTAL		0	0	0		0	0	0	0	0	0	0	0	0		0
	MONTH	2013	OCT	NOV	DEC	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT		TOTAL

1/ Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014. The updated definitions are provided in Table 7.2.

^{2/} Loss percentage within the Santa Margarita River Watershed is determined using the calculation to determine District-wide unaccounted for

water by comparing District-wide annual supply and customer deliveries, and is assumed to be constant for all months.

EVMWD receives recycled water treated at the RCWD Santa Rosa Water Reclamation Facility via EMWD Palomar Pipeline through a wheeling agreement. In Water Year 2014, 866 acre feet of wastewater were delivered from EVMWD to RCWD for treatment at the Santa Rosa Water Reclamation Facility. In Water Year 2014, EVMWD received 89 acre feet of recycled water via EMWD and re-used 53 acre feet within the Watershed. 3/

TABLE A-3

SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

FALLBROOK PUBLIC UTILITY DISTRICT 2013-14

	EXPORT FROM SMRW		8	82	9/		77	62	83	11	11	79	74	70	28	Ö	080
VATER	FROM U.S. NWS 5/		0	0	0		0	0	_	0	~	~	τ	~	~	Ć	٥
WASTEWATER	REUSE IN SMRW		2	-	-		2	_	_	2	2	2	က	2	ო	ć	77
	FROM		83	83	77		79	63	85	79	80	82	78	73	62	Š	924
	TOTAL USE IN SMRW		733	009	372		514	571	362	464	675	793	188	871	835	= =	8/c'/
	LOSS 4/		39	32	20		27	30	19	25	36	42	42	46	44	•	404
SMRW USE	TOTAL DELIVERED IN SMRW		694	268	352		487	541	343	439	629	751	746	825	791		1,176
SMR	ром		203	178	135		150	166	132	143	186	211	202	215	205	0	671,7
	сомм		30	25	18		19	22	19	17	28	41	30	99	45	C	328
	AG		461	365	199		318	353	192	279	425	499	511	542	544	•	4,688
Ī	N O		3	=	= 2		= ==	_	2	=		3	=	_	=	= :	=
JCTION	TOTAL SMRW PRODUCTION		73.	009	37.		51	22	362	46	129	79:	78	.28	83	Ī	8/6'/
SMRW PRODUCTION	SMRW		733	009	372		514	571	362	464	675	793	788	871	835	1	8/5,7
SN	SMRW LAKE SKINNER		0	0	0		0	0	0	0	0	0	0	0	0	(o
	۲۵ ^۲ -		 	- 0	4		2	ص -	8	2	9	6	_			= =	=
z	TOTAL DISTRICT SUPPLY 3/		1,168	066	70		1,03	73	899	985	1,38	1,239	1,42	1,34	1,397		13,068
PRODUCTIC	TOTAL DISTRICT IMPORT 2/		1,168	066	704		1,032	733	899	982	1,386	1,239	1,421	1,348	1,397	6	13,068
DISTRICT WIDE PRODUCTION	LAKE SKINNER DIVERSIONS DELIVERED		0	0	0		0	0	0	0	0	0	0	0	0	(0
ä	TOTAL LAKE SKINNER DIVERSIONS 1/		0	0	0		0	0	0	0	0	0	0	0	0	•	0
	MONTH	2012	OCT	NOV	DEC	2013	NAN NAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT		TOTAL

Diverted under Permit No. 11356.
 Includes 47 acre feet from Capra Well located in San Luis Rey Watershed and remaining supply from San Diego County Water Authority.
 A portion of the District is outside the Santa Margarita River Watershed.
 A portion of the District is outside the Santa Margarita River Watershed.
 Loss percentage within the Santa Margarita River Watershed is determined using the calculation to determine District-wide unaccounted for water by comparing District-wide annual supply and customer deliveries, and is assumed to be constant for all months.
 United States Naval Weapons Station.

TABLE A-4

MONTHLY WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

DELIVERIES IN DOMENIGONI VALLEY METROPOLITAN WATER DISTRICT

2013-14

Quantities in Acre Feet

	TOTAL USE		96	61	22		45	51	62	111	150	110	120	141
	2/ 2/		0	0	0		0	0	0	0	0	0	0	0
USE	TOTAL DELIVERED		96	61	22		45	51	62	111	150	110	120	141
)	GW RECHARGE		0	0	0		0	0	0	0	0	0	0	0
	COMM/ DOM 1/		0	0	0		0	0	0	0	0	0	0	0
	AG		96	61	22		45	51	62	111	150	110	120	141
		=	_	_			=	=	=	_	=	=	=	=
-	TOTAL IN SMRW		96	61	22		45	51	62	111	150	110	120	141
PRODUCTION	IMPORT TO SMRW		96	61	22		45	51	62	111	150	110	120	141
	WELLS		0	0	0		0	0	0	0	0	0	0	0
	MONTH	2013	OCT	NOV	DEC	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG

45 51 62 1111 150 110 120 141

1,074

0

1,074

0

0

1,074

1,074

1,074

TOTAL

0

105

0

0

105

105

105

0

SEPT

^{1/} Construction water2/ Points of delivery located at metered pumps on San Diego Canal and thus the losses in the MWD system are zero.

TABLE A-5

MONTHLY WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

PECHANGA INDIAN RESERVATION

2013-14

Quantities in Acre Feet

		_															
	TOTAL USE		113	80	48			66	29	82	123	147	144	172	125	178	1,378
	2/ Poss		3	7	5			14	9	0	16	_	6	7	2	15	83
USE 4/	TOTAL DELIVERED		110	73	43			85	61	82	107	146	135	170	120	163	1,295
	ром		12	6	6			7	12	12	14	21	15	19	15	13	162
	СОММ		98	64	34			74	49	20	93	125	120	151	105	150	1,133
	AG		0	0	0			0	0	0	0	0	0	0	0	0	0
		=	_	=	==	=	=	=		=	=	=	=	=	=	===	==
	TOTAL		113	80	48			66	29	82	123	147	144	172	125	178	1,378
NO	RECYCLED WATER FROM EMWD 3/		38	19	4			23	15	22	41	54	09	29	38	61	442
PRODUCTION	DELIVERED GROUNDWATER FROM RCWD 2/		9	5	0			15	2	10	18	21	13	32	24	22	171
	WELLS ON RESERVATION 1/		69	99	44			61	47	20	64	72	71	73	63	92	765
	MONTH	2013	OCT	NOV	DEC	;	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL

Table A-5 only to illustrate water budget for Reservation. Actual production for Watershed accounted for on Table A-1 and Table 7.1 for Eastern MWD. Recycled water provided by Eastern MWD via Wheeling Agreement with Rancho California WD shown as a component of production for Total production attributed to Eduardo, Eagle III, Kelsey, Ballpark and Zone V Rock 1 wells.
 Water provided from Rancho California WD Well Nos. 119, 122, and 211.
 Recycled water provided by Eastern MWD via Wheeling Agreement with Rancho California

Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014. The updated definitions are provided in Table 7.2. Based upon the revised definitions adopted by the Watermaster, Pechanga had no agricultural use in the SMR Watershed during Water Year 2014. 4

Loss determined as Total Production less Total Delivered. 2/

TABLE A-6

SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

RAINBOW MUNICIPAL WATER DISTRICT

2013-14

	TOTAL USE
	3/ 3/
1/	TOTAL DELIVERED
USE 1/	L DOMESTIC
	COMMERCIAL DOMESTIC
	AG
NO	TOTAL IN WATERSHED
PRODUCTIC	IMPORT TO DISTRICT
	LOCAL
	MONTH L

_																
		192	161	88			92	103	104	98	135	197	180	211	167	1,732
		14	12	7			7	80	80	7	10	15	41	16	13	131
		178	149	82			88	92	96	91	125	182	166	195	154	1,601
		19	17	12			7	15	12	12	15	20	18	22	18	191
		0	0	0			0	0	0	0	0	0	0	0	0	0
		159	132	70			77	80	84	79	110	162	148	173	136	1,410
		=	=	_	_		_	=	=	_		_	_	_	_	
		192	161	89			92	103	104	86	135	197	180	211	167	1,732
		1,854	1,315	1,303			1,860	1,304	978	2,131	2,540	2,286	2,483	2,663	2,209	22,926
		0	0	0			0	0	0	0	0	0	0	0	0	0
	2013	OCT	NOV	DEC		2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL

^{1/} Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014. The updated definitions are provided in Table 7.2.

^{2/} There is minimal commercial use within the SMRW portion of the Rainbow District service area, however, due to reporting limitations commercial use cannot be distinguished and therefore is included in the Agricultural Use category.

^{3/} Loss percentage within the Santa Margarita River Watershed is determined using the calculation to determine District-wide unaccounted for water by comparing District-wide annual supply and customer deliveries, and is assumed to be constant for all months.

TABLE A-7

SANTA MARGARITA RIVER WATERSHED

MONTHLY WATER PRODUCTION AND USE

RANCHO CALIFORNIA WATER DISTRICT

Quantities in Acre Feet

RECYCLED WATER	REUSED IN SMRW 10/	236	224	243		234	226	250	226	245	278	338	335	310	3,145	
VAIL	RELEASE AND RECHARGE 9/		0	0		0	0	0	0	0	12	76	19	17	85	
	TOTAL	5.976	4,419	3,947		5,320	4,396	4,418	000'9	7,565	7,734	8,182	7,530	7,239	72,726	
	/8 ROSS	(282)	(1,401)	675		893	(886)	730	1,473	(20)	1,139	839	(777)	206	2,829	
	TOTAL USE	6.258	5,820	3,272		4,427	5,292	3,688	4,527	7,635	6,595	7,343	8,307	6,733	69,897	
USE 1/	IMPORT RECHARGE TO STORAGE 7/	(3)	(178)	(73)		(9)	(127)	70	(45)	(132)	(63)	149	25	149	(264)	
SO NS	SMR RELEASE 6/	166	187	205		601	511	503	579	365	273	249	257	230	4,126	
	ром	2.713	2,564	1,603		1,722	1,967	1,528	1,792	2,971	2,797	3,092	3,420	2,756	28,925	
	сомм	1.003	894	209		563	695	511	929	1,397	1,135	1,224	1,350	666	10,956	
	AG	2.379	2,353	1,028		1,547	2,246	1,076	1,525	3,034	2,483	2,629	3,255	2,599	26,154	
	TOTAL	5.976	4,419	3,947		5,320	4,396	4,418	000,9	7,565	7,734	8,182	7,530	7,239	72,726	
	NET	3.438	2,221	1,782		3,080	2,252	2,268	4,084	5,499	5,733	6,152	4,997	5,097	46,603	
7	EXPORT 5/	49	37	12		22	31	16	30	63	64	72	92	62	534	
PRODUCTION	IMPORT 4/	3,487	2,258	1,794		3,102	2,283	2,284	4,114	5,562	5,797	6,224	5,073	5,159	47,137	
	NET WELLS	2.538	2,198	2,165		2,240	2,144	2,150	1,916	2,066	2,001	2,030	2,533	2,142	26,123	
	EXPORT 3/	35	36	17		19	31	17	13	20	18	22	36	25	289	
	WELLS 2/	2,573	2,234	2,182		2,259	2,175	2,167	1,929	2,086	2,019	2,052	2,569	2,167	26,412	
	MONTH	2013 OCT	NOV	DEC	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL	

⁷

Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014. The updated definitions are provided on Table 7.2.
Wells recovered 26,824 AF from older alluvium (including stream releases) and 85 AF from Vail recharge. Does not include 497 AF pumped from Wells 102, 135, 136, and 155 directly into recycled water system. An additional 171 AF was delivered to Pechanga Indian Reservation and is shown on Table A-5.
Includes 31,017 AF direct use (17,044 AF to Rancho Division and 13,973 AF to Santa Rosa Division); 12,069 AF direct recharge; and 4,051 AF from MWD WR-34. Import used in San Mateo Watershed.

^{9 4 3 9}

²⁴ AF into Murrieta Creek from Wells 101, 102, and 118; 51 AF into Santa Gertrudis Creek from Wells 106 and 108; 0 AF from System River Meter; 0 AF from potable connection to WR-34 outlet pipe and 4,051 AF from MWD Outlet WR-34, 12,069 AF of direct recharge less 12,333 AF of import recovery.

Loss = Total production less total use.
Vali releases and the related Vail recharge are computed as Total Release less Inflow to be bypassed.
Includes 497 AF pumped from Wells 102, 135, 146 and 155 directly into recycled water system. Does not include 991 AF recycled water purchased from EMWD. 7/ 8/ 9/ 10/

TABLE A-8

SANTA MARGARITA RIVER WATERSHED

MONTHLY WATER PRODUCTION AND USE

U.S.M.C. - CAMP PENDLETON

	NET EXPORT		372	335	319			348	315	329	324	380	405	417	368	364		4,276
EXPORTS	WASTEWATER RETURNS 9/		26	78	75			79	72	82	83	114	109	112	96	102		1,099
	TOTAL 8/		469	413	394			427	387	411	407	494	514	529	464	466		5,375
		_	=	=	=	=	_	=	=	=	=	=	=	=	=	=	_	_
	TOTAL		228	221	211			231	206	210	201	213	246	253	228	219		2,671
4/	ED TO E OUTFALL BRINE 7/		37	40	34			51	42	39	36	32	69	70	59	49		558
WASTEWATER 4/	EXPORTED TO OCEANSIDE OUTFALI RECYCLED BRINE 6/ 7/		158	163	161			156	150	144	121	105	110	123	106	103		1,600
^	ED USE OUT SMRW		32	16	14			23	16	25	43	73	64	28	9	09		484
	RECYCLED USE IN OUT SMRW SMRW 5/		_	2	2			-	-	2	-	က	က	7	4	7		59
			=	=	=	=	_	=	=	=	=	=	=	=	=	=	=	_
	TOTAL IN SMRW		223	178	171			181	165	188	192	263	251	256	221	234		2,523
	TOTAL EXPORT		242	194	185			197	179	203	207	284	271	278	239	254		2,733
USE 1/	MP SUPPLY I OUT IW SMRW 3/		242	194	185			197	179	203	207	284	271	278	239	254		2,733
SN	CAMP SI IN SMRW 3/		223	178	171			181	165	188	192	263	251	256	221	234		2,523
	AGRICULTURE IN OUT SMRW SMRW 2/		0	0	0			0	0	0	0	0	0	0	0	0		0
	AGRICL IN SMRW		0	0	0			0	0	0	0	0	0	0	0	0		0
7	TOTAL	_	502	412	390	:		429	386 11	430 11	435 11	11 629	591	604 11	519 11	537 11	=	5,814
PRODUCTION	CAMP SUPPLY		505	412	390			429	386	430	435	629	591	604	519	537		5,814
ď	AG LOCAL		0	0	0			0	0	0	0	0	0	0	0	0		0
	MONTH	2013	OCT	NOV	DEC	;	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT		TOTAL

^{1/} Use equals Production less Brine byproduct from Southern Advanced Water Treatment Plant (SAWTP) beginning February 2013. Assumes no other losses.

^{2/} There was no agricultural irrigation in Water Year 2014.
3/ Camp Supply water use is divided with 48% used inside the SMRW and 52% used outside the SMRW.
4/ All wastewater treated at Southern Regional Tertiary Treatment Plant (SRTTP) beginning December 2008.
5/ Recycled use for irrigation of golf course, landscaping and park areas.
6/ Recycled water not used but rather exported to Oceanside Outfall.
7/ Brine from SAWTP exported to Oceanside Outfall.
8/ Agriculture and Camp Supply use outside the SMRW, recycled use outside the SMRW, plus Oceanside Outfall.
9/ Percent Camp Supply reclaimed estimated as (2.671 - 558) AF divided by (5,814 - 558) AF equals 40.20%. Wastewater returns estimated at 40.20% of Camp Supply use outside of SMRW.

TABLE A-9

MONTHLY WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

U. S. NAVAL WEAPONS STATION, FALLBROOK ANNEX

WASTEWATER	EXPORTED	0.0	0.0	0.0		0.0	0.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0	6.0
			_						_	=	_		_		
	TOTAL USE	3.7	3.0	4.8		4.1	3.2	4.3	4.3	4.9	5.8	6.3	7.1	7.0	58.5
ш	LOSS 2/	0.3	0.3	0.4		0.4	0.3	0.4	0.4	0.4	0.5	9.0	9.0	9.0	5.2
USE	COMM/ DOM	3.4	2.7	4.4		3.7	2.9	3.9	3.9	4.5	5.3	2.7	6.5	6.4	53.3
	AG	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1						_		_				_	_		
	TOTAL	3.7	3.0	4.8		4.1	3.2	4.3	4.3	4.9	5.8	6.3	7.1	7.0	58.5
PRODUCTION	IMPORT TO WATERSHED 1/	3.7	3.0	4.8		4.1	3.2	4.3	4.3	4.9	5.8	6.3	7.1	7.0	58.5
PR	LOCAL	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	MONTH	2013 OCT	NOV	DEC	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL

^{1/} Import via Fallbrook Public Utility District2/ Loss = 10% of Use

TABLE A-10

MONTHLY WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

WESTERN MUNICIPAL WATER DISTRICT MURRIETA DIVISION

Quantities in Acre Feet 2013-14

PRODUCTION

USE 1/

TOTAL
IMPORT
WELLS
MONTH

209	155	130		169	135	144	185	240	248	270	241	232	2,358
(11)	7	0		23	6	(4)	ა	10	2	16	(9)	7	61
220	148	130		146	126	148	180	230	243	254	247	225	2,297
146	107	92		102	88	107	128	163	174	180	172	177	1,640
74	41	35		44	37	41	52	29	69	74	75	48	299
0	0	0		0	0	0	0	0	0	0	0	0	0
==	_	=			_	_		_	_			_	
209	155	130		169	135	144	185	240	248	270	241	232	2,358
133	107	89		95	6/	87	127	190	136	141	120	124	1,407
92	48	62		74	56	22	58	20	112	129	121	108	951
2013 OCT	NOV	DEC	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL

Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014.
 The updated definitions are provided in Table 7.2. Based upon the revised definitions adopted by the Watermaster, WMWD had no agricultural use in the SMR Watershed during Water Year 2014.
 Loss = Total Production less Total Delivered

TABLE A-11

SANTA MARGARITA RIVER WATERSHED MISCELLANEOUS WATER PRODUCTION AND IMPORTS

2013-14

			₹†	_	ပ		တ	_	4+	C	5	4	က	J.	က	
	JOJOBA HILLS SKP RESORT		2.7	4.81	5.76		5.88	5.61	5.34	6.4(7.3	7.44	7.8	6.45	6.53	
	HAWTHORN WATER SYSTEM		0.55	0.41	0.44		0.51	0.48	0.63	0.65	1.12	06.0	0.99	1.21	1.02	
ICTION	LAKE RIVERSIDE ESTATES		22.08	14.89	35.12		7.11	8.25	20.65	34.81	51.41	57.44	64.32	26.31	36.57	
PRODUCTION	QUIET OAKS MOBILE HOME PARK 1/		2.40	1.90	1.50		1.50	1.50	1.90	2.30	2.60	2.80	3.10	3.10	2.70	
	RANCHO CALIFORNIA OUTDOOR RESORTS 1/		26.00	46.90	37.30		35.50	32.40	37.90	41.80	48.00	52.30	57.70	59.20	55.30	
	ANZA MUTUAL WATER COMPANY		2.72	1.45	1.41		1.68	1.76	2.00	2.40	2.84	3.19	4.18	2.75	2.90	
IMPORT	WESTERN MWD IMPORTS TO IMPROVEMENT DISTRICT A		3.10	2.40	2.40		2.60	1.80	2.20	2.70	3.30	3.50	4.10	3.90	3.40	
	MONTH	2013	OCT	NOV	DEC	2014	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	

^{1/} Annual production estimated based on partial-year meter readings, monthly quantities calculated assuming typical monthly distribution.

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2013-14

APPENDIX B WATER PRODUCTION AND USE WATER YEAR 1965-66 THROUGH WATER YEAR 2013-14

TABLE B-1

SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

EASTERN MUNICIPAL WATER DISTRICT Quantities in Acre Feet

	j
	1

	TOTAL	100 100 100 100 101 119 242 242 242 243 375 497 679 679 679 1,200 1,200 1,300 2,694 1,300 1,300 2,694 1,300 2,694 6,062 6,062 6,327	10,168 11,178
	RECHARGE	100 100 100 100 100 100 100 100 100 100	00
RECYCLED WATER	RELEASE TO RIVER	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00
RECYCL	OTHER REUSE 4/	(285) (285) (2,551 (1,063 (15) (15)	462 4,681
	REUSE OUTSIDE SMRW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,863 2,955
	REUSE IN SMRW 3/	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,843 9/ 3,542 10/
	TOTAL	1,604 1,464 1,744 1,744 1,383 1,378 1,969 1,601 1,601 1,603 1,603 1,473 1,382 1,473 1,382 1,294 1,433 1,382 1,294 1,433 1,382 1,603 1,603 1,603 1,603 1,603 1,603 1,743 1,738	8,130 9,062
	ross	88 82 73 87 74 77 77 77 80 80 80 169 169 170 80 80 109 80 109 109 109 109 109 109 109 10	406 452
USE 2/	TOTAL		7,724 8,610
ň	DOM	4 4 7 9 0 0 0 1 1 1 1 2 2 3 3 9 8 7 4 4 7 9 9 1 8 8 1 2 3 3 9 8 7 4 4 7 7 8 8 8 7 8 8 8 7 8 8 8 8 8 8	7,724 8,610
	СОММ	000000000000000000000000000000000000000	
	AG	1,520 1,544 1,544 1,546 1,138 1,138 1,138 1,138 1,144 1,144 1,146	==
	тотаг	1,604 1,464 1,464 1,464 1,464 1,464 1,470 1,470 1,470 1,470 1,24 1,24 1,24 1,24 1,24 1,24 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	8,130 9,062
	NET IMPORT	1,604 1,630 1,441 1,464 1,464 1,464 1,470 1,460 1,470 1,112 1,192 1,112	8,117 9,062
PRODUCTION	EXPORT FROM SMRW	2, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	4,954 5,113
A	IMPORT 1/	1,604 1,464 1,464 1,464 1,464 1,464 1,464 1,466 1,470 1,192 1,193	12,777 14,175
	WELLS	0 0 0 0 0 0 0 0 0 0 0 145 282 282 283 374 283 284 495 495 495 524 495 524 495 524 496 669 669 669 669 669	0
	WATER YEAR	1966 1966 1967 1969 1970 1972 1974 1974 1977 1986 1987 1988 1988 1988 1989 1990 1990 1990 1990	2002 2003

TABLE B-1

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

EASTERN MUNICIPAL WATER DISTRICT

Quantities in Acre Feet

	RECHARGE	0	0	0	0	0	0	0	0	0	0	0
RECYCLED WATER	RELEASE TO RIVER	0	0	0	0	0	0	0	0	0	0	0
RECYCL	OTHER REUSE 4/	5,427	8,986	7,396	4,593	6,864	5,241	4,803	5,140	4,525	3,459	3,627
	REUSE OUTSIDE SMRW	3,688	2,690	3,510	2,960	5,925	6,786	7,026	7,241	8,025	8,316	8,117
	REUSE IN SMRW 3/	3,221	2,664 11/	3,108 12/	3,550 13/	1,450	2,615	2,882	2,561	2,364	2,937	2,937
	rotal USE	138	858	161	398	952	14,472	552	392	063	751	884
	•		`	`	`	`	724 14,	`	`			ν-
	ross	-	7	7	7	7/	7.	9	7.	7,	78	7
USE 2/	ТОТАГ			•	•	•	13,748	•	•	•	•	•
ns	DOM	8,960	10,749	13,453	14,628	14,204	13,748	12,874	10,662	11,076	11,459	11,395
	сомм	0	0	0	0	0	0	0	2,879	3,137	3,388	3,553
	AG	0	0	0	0	0	0	0	131	96	117	142
		_	_	_		_	=					=
	TOTAL	9,138	10,858	14,161	15,398	14,952	14,472	13,552	14,392	15,063	15,751	15,884
_	NET IMPORT	9,138	10,858	14,161	15,398	14,952	14,472	13,552	14,392	15,063	15,751	15,884
PRODUCTION	EXPORT FROM SMRW	8,243	5,478	6,873	5,763	3,762	2,447	1,472	283	1,356	457	8,051
PF	IMPORT 1/	17,381	16,336	21,034	21,161	18,714	16,919	15,024	14,675	16,419	16,208	23,935
	WELLS	0	0	0	0	0	0	0	0	0	0	0
	WATER YEAR	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

12,336 14,340 14,014 14,103 14,239 14,642 14,711 14,914 14,712 14,712

TOTAL

Includes 1,162 AF of sewage diverted to RCWD. Includes 1,201 AF of sewage diverted to RCWD. Includes 1,219 AF of sewage diverted to RCWD.

^{1/} Does not include deliveries to RCWD, Elsinore Valley MWD and Western MWD.

^{2/} Beginning in 2011, Use reported based on metered customer demands.

Prior years reporting based on supply meter data and is not complete

^{3/} Reuse within Watershed includes noted amount of sewage distributed to RCWD for

treatment by RCWD, recycled water sold to RCWD for delivery to RCWD customers,

^{10/} Includes 1,056 AF of sewage diverted to RCWD. 5/ Includes 905 AF of sewage diverted to RCWD.
6/ Includes 1,159 AF of sewage diverted to RCWD.
7/ Includes 1,162 AF of sewage diverted to RCWD.
8/ Includes 1,201 AF of sewage diverted to RCWD.
9/ Includes 1,219 AF of sewage diverted to RCWD. Includes 1,159 AF of sewage diverted to RCWD.

^{11/} Includes 574 AF of sewage diverted to RCWD.
12/ Includes 910 AF of sewage diverted to RCWD.

^{13/} Includes 797 AF of sewage diverted to RCWD.

^{4/} Other Reuse includes changes in storage in Winchester and Sun City storage ponds, evaporation and percolation losses, and discharges to the Santa Ana Watershed. and beginning in 2009, recycled water sold to the Pechanga Band. Beginning in 2014, also includes recycled water delivered to Elsinore Valley MWD.

Page 1 of 2

SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

ELSINORE VALLEY MUNICIPAL WATER DISTRICT

R 3/	TOTAL																														
RECYCLED WATER	REUSE OUTSIDE SMRW																														
RECY	REUSE INSIDE SMRW																		-		_										
ORTED	TOTAL WASTEWATER EXPORT											-		-				_													
WASTEWATER EXPORTED	REUSE OUTSIDE SMRW																														
WASTE	UNTREATED WASTEWATER																						4 R		74	114	134	140	150	170	185
	TOTAL]	_							=		==	769	100	/12	969	198	829	658	816	808	882	938	1,032	1,341	2,255	2,421	2,190	2,964	3,232	3,127
	2/ 2/												C	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USE 1/	TOTAL DELIVERED												769 R	2 0	/12 K	696 R	798 R	678 R	658 R	816 R	808 R	882 R	938 R	1,032 R	1,341	2,255	2,421	2,190	2,964	3,232	3,127
	DOM																												2,341	2,452	2,507
	СОММ																												84	93	100
	AG																												539	687	520
	TOTAL						=	=					769	0 1	712	969	11 862	678	11 859	816	808	882	938	1,032	1,341	2,255	2,421	2,190	2,964	3,232	3,127
PRODUCTION	IMPORT												560 R		712 R	696 R	798 R	678 R	658 R	816 R	808 R	882 R			1,341	2,255	2,421	2,190	2,964	3,232	3,127
PROD	WELLS												c	> (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	WATER		1966	1967	1968 1969	1970	1971	1972	1973	1974	1975	1976	1977	0 0	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995

Page 2 of 2

SANTA MARGARITA RIVER WATERSHED

MONTHLY WATER PRODUCTION AND USE

ELSINORE VALLEY MUNICIPAL WATER DISTRICT

3/	TOTAL																			89
RECYCLED WATER 3/	REUSE OUTSIDE SMRW																			36
RECY	REUSE INSIDE SMRW																			53
ORTED	TOTAL WASTEWATER EXPORT												Transition of the last of the					-		1,307
WASTEWATER EXPORTED	REUSE OUTSIDE SMRW																			36
WASTE	UNTREATED WASTEWATER	213	226	247	254	279	310	412	483	009	927	938	837	901	1,069	1,120	1,130	1,205	1,245	1,271
	TOTAL USE	4,197	4,296	5,100	6,133	7,174	6,215	7,596	7,091	8,438	8,215	9,819	10,811	9,951	9,075	7,926	7,425	7,398	7,158	7,413
	LOSS T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	275	222	278	103
USE 1/	TOTAL DELIVERED	4,197	4,296	5,100	6,133	7,174	6,215	7,596	7,091	8,438	8,215	9,819	10,811	9,951	9,075	7,926	7,150	7,176	6,880	7,310
_	DOM	3,217	3,330	3,037	3,586	4,114	3,475	4,521	4,363	5,104	2,067	5,574	6,152	2,687	6,913	6,075	5,539	5,426	5,227	5,601
	СОММ	109	118	1,396	1,626	1,971	1,815	1,902	2,665	3,238	3,044	4,118	4,509	4,149	2,015	1,718	1,517	1,723	1,637	1,693
	AG	871	848	299	921	1,089	925	1,173	63	96	104	127	150	115	147	133	94	27	16	16
	TOTAL	4,197	4,296	5,100	6,133	7,174	6,215	1,596	7,091	8,438	8,215	9,819	10,811	9,951	9,075	7,926	7,425	1,398	7,158	7,413
PRODUCTION	IMPORT	4,197	4,296	5,100	6,133	7,174	6,215	7,596	7,091	8,438	8,215	9,819	10,811	9,951	9,075	7,926	7,425	7,398	7,158	7,413
PROD	WELLS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	WATER	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014. The updated definitions are provided in Table 7.2.
 For period prior to 2011, assumes no loss. For 2011 to present, loss percentage within the Santa Margarita River Watershed is determined using the calculation to determine District-wide unaccounted for water by comparing District-wide annual supply and customer deliveries, and is assumed to be constant for all months.
 EVMWD receives recycled water treated at the RCWD Santa Rosa Water Reclamation Facility via EMWD Palomar Pipeline through a wheeling agreement.
 R - Revised.

Page 1 of 2

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

FALLBROOK PUBLIC UTILITY DISTRICT

Quantities in Acre Feet

PRODUCTION

TOT	
COMM/ TOT	≅
AG	
TOTAL SMRW	PRODUCTION 1/
TOTAL	IMPORT
SMRW	1 N
FALL AREA	
DELUZ AREA	
TOTAL DELUZ DISTRICT AREA	
WELLS	
LAKE SKINNER	
TOTAL MATER LAKE	DIVERSIONS
WATER	LAN

S TOTAL USE	IN SMRW	
FOSS	7	
COMM/ TOTAL	IN SMRW	
COMM/	DOM	
AG		

USE

3,404	2,857	3,427	2,891	3,630	3,407	3,916	3,210	3,967	3,597	4,627	5,232	5,299	5,910	965'9	8,630	7,079	6,720	8,506	7,831	8,585	8,656	8,061	9,160	10,118	8,008
341	285	342	290	364	340	392	322	396	361	462	522	530	592	099	798	603	529	615	209	268	582	532	834	965	548
3,063	2,572	3,085	2,601	3,266	3,067	3,524	2,888	3,571	3,236	4,165	4,710	4,769	5,318	5,936	7,832	6,476	6,191	7,891	7,322	8,017	8,074	7,529	8,326	9,153	7,460
328	319	531	814	617	681	775	732	898	816	965	1,174	1,265	1,498	1,678	2,144	1,862	1,871	2,077	2,135	2,319	2,281	2,348	2,706	2,878	2,314
2,735	2,253	2,554	1,787	2,649	2,386	2,749	2,156	2,703	2,420	3,200	3,536	3,504	3,820	4,258	5,688	4,614	4,320	5,814	5,187	5,698	5,793	5,181	5,620	6,275	5,146
=	_		_		_	_		=	_	_	_	_	_	_	=		_	=				_	=		_
3,404	2,857	3,427	2,891	3,630	3,407	3,916	3,210	3,967	3,597	4,627	5,232	5,299	5,910	6,596	8,630	7,079	6,720	8,506	7,831	8,585	8,656	8,061	9,160	10,118	8,008
3,351	2,852	3,423	2,837	3,538	3,405	3,916	3,210	3,967	3,597	4,627	5,212	5,202	5,723	6,404	8,543	7,079	6,720	8,506	7,831	8,585	8,656	8,033	990'6	10,103	7,962
3,351	2,852	3,423	2,837	3,538	3,405	3,916	3,172	3,833	3,384	4,196	4,625	4,551	4,762	5,213	6,549	5,274	4,751	5,897	5,473	5,791	5,670	5,474	6,059	6,358	5,091
11,169	9,508	11,411	9,458	11,794	11,350	13,054	10,572	12,777	11,279	12,716	12,848	11,975	11,904	12,411	14,884	11,465	10,329	12,820	11,898	12,589	12,327	11,901	13,172	13,823	11,068
0	0	0	0	0	0	0	38	134	213	431	287	651	961	1,191	1,994	1,805	1,969	2,609	2,358	2,794	2,986	2,559	3,007	3,745	2,871
11,169	9,508	11,411	9,458	11,794	11,350	13,054	10,610	12,911	11,492	13,147	13,435	12,626	12,865	13,602	16,878	13,270	12,298	15,429	14,256	15,383	15,313	14,460	16,179	17,568	13,939
176	16	13	178	302	7	0	0	0	0	0	20	26	187	192	87	0	0	0	0	0	0	28	94	15	46
1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991

TABLE B-3.1

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

FALLBROOK PUBLIC UTILITY DISTRICT

Quantities in Acre Feet

PRODUCTION

USE

LOSS 2/
TOTAL IN SMRW
сомм/
AG
TOTAL SMRW PRODUCTION 1/
TOTAL SMRW IMPORT
FALLBROOK AREA SMRW APORT IMPORT
TOTAL DELUZ FALLBF DISTRICT AREA AREA IMPORT IMPORT
DELUZ AREA IMPORT
TOTAL DELUZ DISTRICT AREA IMPORT IMPORT
WELLS
TOTAL LAKE LAKE SKINNER WELLS SKINNER DIVERSIONS DIVERSIONS DELIVERED
TOTAL NATER LAKE YEAR SKINNER DIVERSIONS
WATER

LAKE SKINNER DIVERSIONS	SKINNER DIVERSIONS DELIVERED	WELLS	DISTRICT	AREA	AREA	SMRW	TOTAL SMRW IMPORT	SMRW PRODUCTION 1/		AG	COMM/ DOM	TOTAL IN SMRW	LOSS 2/	TOTAL USE IN SMRW	
		45	13,698	2,950	10,748	4,943	7,893	7,938		5,285	2,201	7,486	452	7,938	
		98	12,695	2,010	10,685	4,915	6,925	7,011	_	4,329	2,349	6,678	333	7,011	
		83	13,124	2,246	10,878	5,004	7,250	7,333	_	4,282	2,666	6,948	385	7,333	
		က	11,620	2,208	9,412	4,330	6,538	6,541		3,818	2,798	6,316	225	6,541	
		0	14,168	2,733	11,435	5,260	7,993	7,993		4,411	3,247	7,658	335	7,993	
		0	14,005	2,688	11,317	5,206	7,894	7,894		4,351	3,249	7,600	294	7,894	
		0	11,757	1,803	9,954	4,579	6,382	6,382		3,245	2,798	6,043	339	6,382	
		0	14,307	1,572	12,735	5,858	7,430	7,430		3,748	3,271	7,019	411	7,430	
		0	15,983	2,705	14,478	099'9	9,365	9,365	_	5,138	3,903	9,041	324	9,365	
		0	15,249	2,562	12,687	5,836	8,398	8,398		4,413	3,537	7,950	448	8,398	
		0	17,422	2,900	14,522	6,680	9,580	9,580		5,185	4,036	9,221	328	9,580	
		0	15,864	3,393	12,471	5,737	9,130	9,130		6,041	3,737	9,778	(648)	9,130	
		0	19,640	5,027	14,613	6,722	11,749	11,749		7,018	4,222	11,240	209	11,749	
1,261	1,261	0	13,986	3,101	10,885	5,007	8,108	698'6		4,654	3,581	8,235	1,134	6)369	
106	106	0	18,297	3,994	14,303	6,579	10,573	10,679		5,958	4,019	9,977	702	10,679	
0	0	0	20,750	2,087	15,664	7,205	12,292	12,292	_	7,271	4,500	11,771	521	12,292	
31	31	0	15,508	3,307	12,202	5,613	8,920	8,951		4,492	3,962	8,454	497	8,951	
0	0	0	15,355	2,767	12,588	5,790	8,557	8,557		4,151	3,896	8,047	510	8,557	
20	20	0	12,752	2,438	10,314	4,754	7,183	7,203	_	3,576	3,195	6,771	432	7,203	

1992 1993 1994 1995 1996 1998 1999 2000 2000 2003 2003 2005 2005 2005 2006 2007 2006 2007 2006 2007

^{1/} Total SMRW production equals SMRW Import plus 30% local (1966-1971). 2/ Loss = Total production less total use.

TABLE B-3.2

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

FALLBROOK PUBLIC UTILITY DISTRICT

Quantities in Acre Feet

	TOTAL USE IN SMRW	6,518	7,254	7,357	7,578
	LOSS (4/	459	969	376	402
SMRW USE	TOTAL DELIVERED IN SMRW	6,059	6,658	6,981	7,176
SMF	DOM	1,990	2,060	2,140	2,129
	СОММ	327	337	300	329
	AG	3,742	4,261	4,541	4,688
			_	_	_
TION	TOTAL SMRW PRODUCTION	6,518	7,254	7,357	7,578
SMRW PRODUCTION	SMRW	6,234	7,254	7,357	7,578
SI	SMRW LAKE SKINNER	284	0	0	0
ı	_	_	_	=	_
	TOTAL DISTRICT SUPPLY 3/	11,548	12,579	12,593	13,068
CTION	TOTAL DISTRICT IMPORT 2/	11,264	12,579	12,593	13,068
DISTRICT WIDE PRODUCTION	LAKE SKINNER DIVERSIONS DELIVERED	284	0	0	0
DISTRIC	TOTAL LAKE SKINNER DIVERSIONS 1/	284	0	0	0
	WATER	2011	2012	2013	2014

^{7 2 6 4}

Diverted under Permit No. 11356.
Includes production from Capra Well located in San Luis Rey Watershed and supply from San Diego County Water Authority.
A portion of the District is outside the Santa Margarita River Watershed.
Loss percentage within the Santa Margarita River Watershed is determined using the calculation to determine District-wide unaccounted for water by comparing District-wide annual supply and customer deliveries, and is assumed to be constant for all months.

Page 1 of 2

SANTA MARGARITA RIVER WATERSHED

ANNUAL WASTEWATER PRODUCTION AND DISTRIBUTION

FALLBROOK PUBLIC UTILITY DISTRICT Quantities in Acre Feet

WATER YEAR	TOTAL WASTEWATER PRODUCTION 1/	PERCENT WASTEWATER FROM SLR WATERSHED 2/	WASTEWATER IMPORTED FROM SLR WATERSHED	PERCENT WASTEWATER FROM SMRW	WASTEWATER WASTEWATER FROM REUSED IN SMRW SMRW	WASTEWATER REUSED IN SMRW	WASTEWATER FROM U.S. NWS 3/	WASTEWATER EXPORTED FROM SMRW 4/
1966	395	19	75	81	320		0	0
1967	460	20	92	80	368		0	0
1968	524	20	105	80	419		0	0
1969	588	21	123	62	465		0	0
1970	652	22	143	78	209		0	0
1971	717	22	158	78	259		0	0
1972	782	23	180	77	602		0	0
1973	847	24	203	9/	644		0	0
1974	912	25	228	75	684		0	0
1975	926	25	244	75	732		0	0
1976	1,040	26	270	74	770		0	0
1977	1,105	27	298	73	807		0	0
1978	1,170	28	328	72	842		0	0
1979	1,234	28	346	72	888		0	0
1980	1,298	29	376	71	922		0	0
1981	1,363	30	409	70	954		0	0
1982	1,428	31	443	69	985		0	0
1983	1,492	31	463	69	1,029		26 E	1,003
1984	1,556	32	498	89	1,058			1,032
1985	1,621	33	535	29	1,086		26 E	1,060
1986	1,685	34	573	99	1,112			1,094
1987	1,750	34	262	99	1,155		27	1,128
1988	1,815	35	635	65	1,180		25	1,155
1989	1,881	36	229	64	1,204		22	1,182
1990	1,952	34	664	99	1,298		27	1,271
1991	1,622	40	649	09	973		17	396
1992	1,730	37	629	63	1,090			1,083
1993	2,051	38	780	62	1,271		16	1,255
1994	1,834	42	761	58	1,073		5	1,068
1995	1,941	40	9//	09	1,165		12	1,153
1996	1,799	42	759	28	1,040		5	1,035

Page 2 of 2

TABLE B-4

SANTA MARGARITA RIVER WATERSHED

ANNUAL WASTEWATER PRODUCTION AND DISTRIBUTION

FALLBROOK PUBLIC UTILITY DISTRICT

WASTEWATER EXPORTED FROM SMRW 4/	1,021	1,482	1,377	1,419	1,392	1,225	1,359	1,329	1,417	1,395	891	662	829	926	901	928	006	968
WASTEWATER FROM U.S. NWS 3/	9	ω	5	7	8	ō	10	88	16	8	12	11	12	7	8	0	က	9
WASTEWATER REUSED IN SMRW					24	28	21	26	24	26	29	28	31	27	21	21	20	22
WASTEWATER WASTEWATER FROM REUSED IN SMRW SMRW	1,027	1,490	1,382	1,426	1,424	1,262	1,390	1,363	1,457	1,429	932	838	872	096	930	928	923	924
PERCENT WASTEWATER FROM SMRW	58	99	64	99	99	61	61	62	28	28	48	43	46	49	46	49	49	90
WASTEWATER IMPORTED FROM SLR WATERSHED	753	807	793	738	292	799	886	836	1,048	1,050	1,019	1,102	1,028	1,012	1,076	266	696	916
PERCENT WASTEWATER FROM SLR WATERSHED 2/	42	35	36	34	35	39	39	38	42	42	52	22	54	51	54	51	51	20
TOTAL WASTEWATER PRODUCTION 1/	1,780	2,297	2,175	2,164	2,191	2,061	2,276	2,199	2,505	2,479	1,951	1,940	1,900	1,972	2,006	1,955	1,886	1,840
WATER YEAR	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

Measured quantities available for Total Wastewater in Water Year 1969 and July 1989.
 All other quantities are estimated (1966-1989).
 San Luis Rey Watershed

 ^{2/} San Luis Rey Watershed
 3/ United States Naval Weapons Station
 4/ Prior to 1983, Wastewater was discharged into Fallbrook Creek, located in the SMRW. After 1983, Wastewater was discharged into an ocean outfall located outside the SMRW.

E - Estimated P - Partial Year Data

TABLE B-5

SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

METROPOLITAN WATER DISTRICT DELIVERIES IN DOMENIGONI VALLEY

Quantities in Acre Feet

	TOTAL USE	000000000000000000000000000000000000000
	LOSS 2/	000000000000000000000000000000000000000
	TOTAL DELIVERED	000000000000000000000000000000000000000
USE	GW RECHARGE	000000000000000000000000000000000000000
	COMM/ DOM (000000000000000000000000000000000000000
	AG	000000000000000000000000000000000000000
,		' ============
	TOTAL IN SMRW	000000000000000000000000000000000000000
PRODUCTION	IMPORT TO SMRW	
	WELLS	000000000000000000000000000000000000000
	WATER	1966 1968 1969 1970 1971 1973 1975 1979 1981 1985 1986 1986 1986 1986

TABLE B-5

SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

METROPOLITAN WATER DISTRICT DELIVERIES IN DOMENIGONI VALLEY

	TOTAL USE	0	0	0	547	1,005	3,521	5,023	3,781	712	689	595	495	992	556	206	099	493	465	372	336	466	892	1,074
	LOSS 2/	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	TOTAL DELIVERED	0	0	0	547	1,005	3,521	5,023	3,781	712	689	269	495	992	929	206	099	493	465	372	336	466	892	1,074
USE	GW RECHARGE	0	0	0	0	0	39	427	399	264	184	0	0	0	0	0	0	0	0	0	0	0	0	0
	COMM/ DOM 1/	0	0	0	193	242	2,891	4,403	2,978	326	0	26	0	0	0	0	0	0	0	0	0	0	0	0
	AG	0	0	0	354	763	591	193	404	92	505	569	495	992	556	909	099	493	465	372	336	466	892	1,074
,			_	_	_	=	_	_	=	_	_	_		_		_			_	=	_			
	TOTAL IN SMRW	0	0	0	547	1,005	3,521	5,023	3,781	712	689	565	495	992	556	206	099	493	465	372	336	466	892	1,074
PRODUCTION	IMPORT TO SMRW	0	0	0	547	1,005	3,521	5,023	3,781	712	689	595	496	99/	556	206	099	493	465	372	336	466	892	1,074
	WELLS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	WATER	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

Construction Water
 Points of delivery located at metered pumps on San Diego Canal and thus the losses in the MWD system are zero.

TABLE B-6

SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

PECHANGA INDIAN RESERVATION Quantities in Acre Feet

	TOTAL USE	58 66 91 70 63 145 171 173 245 374
	3/ SSOT	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
USE 2/, 4/	TOTAL DELIVERED	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
_	ром	85 00 10 10 10 11 14 14 14 14 14 14
	СОММ	0 0 0 0 0 0 1 8 1 8 1 8 1 8 1 8 1 8 1 8
	AG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
į		 ===================================
	TOTAL	58 66 91 70 71 71 71 74 74 75 74 75 75 76 76 76 76 76 76 76 76 76 76 76 76 76
	RECYCLED WATER FROM EMWD	00000000
PRODUCTION 1/	DELIVERED GROUNDWATER FROM RCWD	000000
α.	WELLS ON RESERVATION	58 66 66 70 70 145 145 175 241 370
	SURFACE DIVERSION	0000004444
	WATER	1966 1968 1968 1969 1970 1971 1975 1975 1976 1976 1976 1976 1976 1977 1989 1989 1989 1990 1991 1994 1995 1996 1997 1998 1998 1997 1998 1997 1998

TABLE B-6

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

PECHANGA INDIAN RESERVATION

	USE 2/, 4	TOT
		DOM
		AG COMM
		AG
Acre Feet		TOTAL
Quantities in Acre Feet		RECYCLED WATER FROM EMWD
	PRODUCTION 1/	DELIVERED GROUNDWATER FROM RCWD
		WELLS ON RESERVATION
		SURFACE
		WATER YEAR

~	SURFACE DIVERSION	WELLS ON RESERVATION	DELIVERED GROUNDWATER FROM RCWD	RECYCLED WATER FROM EMWD	TOTAL	AG	COMM	ром	TOTAL DELIVERED	3/	TOTAL
	4	460	O	C	464	7.		174	441	23	464
	. 4	009	0	0	604	78	354	148	580	2 2	604
	4	721	0	0	725	ò		71	689	36	725
	0	809	0	0	809	14(61	602	9	809
	0	754	0	0	754	159		194	N/R	N/R	754
	0	919	154	0	1,073	275		229	1,021	52	1,073
	0	865	412	0	1,277	596		282	1,251	26	1,277
	0	702	250	268	1,220	548		195	1,184	36	1,220
	0	561	230	394	1,185	53.		235	1,130	55	1,185
	0	632	201	326	1,159	468		257	1,143	16	1,159
	0	699	177	329	1,175	513		215	1,133	42	1,175
	0	798	77	393	1,268	61.		219	1,245	23	1,268
	0	292	171	442	1,378	J	_	162	1,295	83	1,378

2002 2003 2004 2005 2005 2007 2008 2010 2011 2012 2013

N/R--Not reported.

Records prior to 1991 not available.
 For period 1991 through 2006, use shown as reported to Watermaster and published in prior Watermaster reports.
 For 2007, loss assumed to be 5% for all use types; for prior years any losses shown as reported to Watermaster.
 For 2008 to present, loss determined as Total Production less Total Delivered.

definitions are provided in Table 7.2. Based upon the revised definitions adopted by the Watermaster, Pechanga Band had no agricultural use in the SMR Watershed during Water Year 2014. An undetermined amount of agricultural use reported in prior years would be reported as commercial use under the revised definitions. Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014. The updated

TABLE B-7

SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

RAINBOW MUNICIPAL WATER DISTRICT Quantities in Acre Feet

		PRODUCTION	NOI			USE	Ш		
WATER	LOCAL	IMPORT TO DISTRICT	TOTAL IN WATERSHED 1/	AG 2/	COMMERCIAL 3/, 4/	DOMESTIC 3/	TOTAL DELIVERED	LOSS 5/, 6/	TOTAL USE
1966	0	14,538	1,308	1,049		140	1,189	119	1,308
1967	0	12,167	1,095	878		117	966	100	1,095
1968	0	15,301	1,377	1,104		147	1,252	125	1,377
1969	0	13,917	1,253	1,005		134	1,139	114	1,252
1970	0	18,764	1,689	1,354		181	1,535	154	1,689
1971	0	18,338	1,650	1,324		177	1,500	150	1,650
1972	0	22,633	2,037	1,634		218	1,852	185	2,037
1973	0	17,955	1,616	1,296		173	1,469	147	1,616
1974	0	22,768	2,049	1,643		219	1,863	186	2,049
1975	0	13,856	1,247	1,000		133	1,134	113	1,247
1976	0	24,878	2,239	1,796		240	2,035	204	2,239
1977	0	26,038	2,343	1,879		251	2,130	213	2,343
1978	0	24,312	2,188	1,755		234	1,989	199	2,188
1979	0	26,084	2,348	1,883		251	2,134	213	2,347
1980	0	27,660	2,489	1,997		266	2,263	226	2,489
1981	0	35,036	3,153	2,529		337	2,866	287	3,153
1982	0	27,334	2,460	1,973		263	2,236	224	2,460
1983	0	24,957	2,190	1,735		256	1,991	199	2,190
1984	0	32,526	3,068	2,483		306	2,789	279	3,068
1985	0	28,612	3,410	2,798		302	3,100	310	3,410
1986	0	29,023	2,945	2,353		324	2,677	268	2,945
1987	0	29,449	3,390	2,765		317	3,082	308	3,390
1988	0	29,070	2,985	2,372		342	2,714	271	2,985
1989	0	32,034	3,003	2,385		345	2,730	273	3,003
1990	0	34,612	3,818	3,003		468	3,471	347	3,818
1991	0	27,754	2,904	2,276		364	2,640	264	2,904
1992	0	26,056	2,277	1,877		193	2,070	207	2,277
1993	0	23,766	1,965	1,655		132	1,787	178	1,965
1994	0	22,173	1,651	1,368		133	1,501	150	1,651
1995	0	20,935	1,661	1,398		112	1,510	151	1,661
1996	0	24,835	1,815	1,487		163	1,650	165	1,815
1997	0	24,638	1,429	1,139		160	1,299	130	1,429

TABLE B-7

SANTA MARGARITA RIVER WATERSHED

ANNUAL WATER PRODUCTION AND USE

RAINBOW MUNICIPAL WATER DISTRICT

		LOSS 5/, 6/
	Iri	TOTAL DELIVERED
	USE	DOMESTIC 3/
Quantities in Acre Feet		COMMERCIAL 3/, 4/
Quanti		AG 2/
	ON	TOTAL IN WATERSHED 1/
	PRODUCTION	IMPORT TO DISTRICT
		LOCAL
		WATER

TOTAL USE

1998	0	19,693	1,601		1,315		141	1,456	145	1,601
1999	0	24,961	1,727	_	1,411		159	1,570	157	1,727
2000	0	30,446	2,217	_	1,861		154	2,015	202	2,217
2001	0	27,214	1,804		1,439		202	1,641	163	1,804
2002	0	32,854	1,676		1,368		156	1,524	152	1,676
2003	0	29,156	1,510		1,237		136	1,373	137	1,510
2004	0	33,686	1,888		1,567		149	1,716	172	1,888
2005	0	25,135	1,610	_	1,331		133	1,464	146	1,610
2006	0	29,797	1,851		1,529		154	1,683	168	1,851
2007	0	32,939	2,262		1,871		185	2,056	206	2,262
2008	0	24,390	1,790		1,461		167	1,628	162	1,790
2009	0	27,075	1,852		1,463		220	1,683	169	1,852
2010	0	20,769	1,453	_	1,147		174	1,321	132	1,453
2011	0	18,599	1,492		1,251		105	1,356	136	1,492
2012	0	21,152	1,892	_	1,602		118	1,720	172	1,892
2013	0	21,863	1,713	_	1,441		116	1,557	156	1,713
2014	0	22,926	1,732	_	1,410	0	191	1,601	131	1,732

¹⁹⁶⁶ through 1982 estimated to be 9% of total District imports.

¹⁹⁶⁶ through 1982 estimated to be 80.2% of total deliveries to SMRW. 3 6 4

For 1966 through 2013, Commercial Use and Domestic Use reported as combined Commercial/Domestic Use; Table B-7 now shows the combined amount under the Domestic Use category. For 1966 through 1982, combined Commercial/Domestic Use estimated to be 10.7% of total deliveries to SMRW.

There is minimal commercial use within the SMRW portion of the District service area. Beginning in 2014, an undetermined amount of Commercial Use is now reported under Agricultural Use category. 4

From 1989 through 2013, Loss was calculated as 10% of total deliveries. 2/9

District-wide unaccounted for water by comparing District-wide annual supply and customer deliveries, and is assumed to be constant Beginning in 2014, Loss percentage within the Santa Margarita River Watershed is determined using the calculation to determine for all months.

TABLE B-8

SANTA MARGARITA EIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

RANCHO CALIFORNIA WATER DISTRICT Quantities in Acre Feet

WATER	MURRIETA CREEK DISCHARGE 7/	0	0	0	0 (0 (0 0	> 0	> C	o c	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	o c	o c	o c	0 0	1.179	1,654	1,854	2,015	2,180	104	0	0	0
RECYCLED WATER	REUSE IN SMRW	0	0	0	0 (0 0	00	>	> C	0 0	0	0	0	0	0	0	0	0	0	0	0	48	82	168	133	352	3/4	370	1.753	2.264	/11 693		1,524 11/	3,550 11/	3,719 11/		3,780 11/	3,257 11/	4,284 11/	4,796 11/
AKE	IRRIGATION 6/	185	1,136	398	1 269	540	1,541	203	1.066	369	20	0	0	0	0	0	0	715	1,144	1,201	1,053	273	0	0	0	0 0						0 0	- 0	0	0	0	0	0	0	0
VAIL LAKE	RELEASE AND RECHARGE	0	0	0	0 (D (5 0		> C	0 0	0	0	0	0	10,944	6,802	6,058	12,113	6,612	5,027	8,722	8,089	4,844	0	0	6,253	21.244	91,704	11.158	9 427	1 7 2 5	4.514	1,010	(49)	(361)	(314)	(658)	(101)	(1,269)	1,399
	TOTAL		-	_									-		_	=	_	=	=			-					40,699								68,244				74,901	87,853
	LOSS 5/																							6,327	7,870	488	3,487	1.12	1,4	2 543	-2 442	-1.409	1.317	4,316	3,529	3,924	2,849	5,941	4,007	4,032
	TOTAL																							42,699	47,401	47,253	45,412	42,343	48,850	57 143	63 414	47.844	63,771	79,031	64,715	75,119	73,069	81,508	70,894	83,821
	IMPORT RECHARGE TO STORAGE	0	0	o (D	D 0)	> C) C	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	/6 0		0 10/	> c		o c	o c	164	0	2.286	8,008	2,374	1,454	2,750	5,094	5,162	6,163
USE	SMR F RELEASE																							852	905	785	083	213	1 464	2 149	2,173	459	1,044	1,067	514	715	4,896	3,201	3,384	4,923
	DOM																							13,198	14,916	10,603	9,012	10,010	13,779	16 330	18,635	16.273	19.610	23,783	22,866	26,573	26,044	29,314	26,656	30,209
	COMM 4/																							3,316	3,940	2,941	2,400	2 322	2,526	2,752	3,350	2,805	3.674	2,162	4,053	5,285	4,457	4,883	4,790	5,190
	AG/DOM C																																	3.339	4,525	5,345	4,645	5,549	5,083	6,448
	AG A									-					-	-		Montevie		_				25,333	27,643	32,924	150,05	29,205	31,081	35.001	38,287	28,307	37.157	40.672	30,383	35,747	30,277	33,467	25,819	30,888
	TOTAL	0	4,288	0,100	3,617	6,721	096',	27.7	10,163	10.357	11.928	12,367	14,704	18,380	22,747	30,894	26,009	22,427	32,376	31,531	38,171	41,299	39,221	49,026	55,271	47,741	46,899	42,440	18,719	50,505	60 972	46.435	65.088	83.347	68,244	79.043	75,918	87,449	74,901	87,853
	NET T	0	0 0) (> 0	-	> c	> <			119			2,009														11,411												
	EXPORT 2/ IN	0	0 0	0 0	> c	> C	> C	> <	o 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	> c	o c	o c	o c	o c	0	0	0	0	183	762	578	725
PRODUCTION	IMPORT E)	0	0 0	0 (> C	> C	o c	o c	0	0	119	1,845	5,774	7,009	10,126	15,282	13,378	5,752	6,716	7,158	11,174	7,564	17,854	22,895	22,030	21,238	16,931	16,411	15,000	23,100	26,002	19 584	34.490	55,409	41,823	54.148	50,927	63,170	48,192	61,336
PRC	NET WELLS																																				25,174	25,041	27,287	27,242
	EXPORT 1/ V																																				64		319	
	WELLS		4,288	2,100	3,61/	7,721	096'/	902,0	10.163	10.357	11,809	10,522	8,930	11,371	12,621	15,612	12,631	16,675	25,660 8/	24,373	26,997	33,735	21,367	26,131	33,241	26,503	29,968	31,029	32,111	36.086	33,080	26,851	30.598	27,938	26,421	24.895	25,238	25,353	27,606	27,559
	YEAR	1966	1967	1900	1969	1970	1971	1072	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1005	1995	1997	1997	1999	2000	2001	2002	2003	2004	2005	2006

CREEK DISCHARGE MURRIETA

REUSE IN SMRW

IRRIGATION

/9

AND RECHARGE RELEASE

TOTAL

LOSS 2 00000000

4,730 11/ 4,355 11/ 3,998 11/ 3,488 11/ 3,237 11/ 2,929 11/ 3,145 11/

0000000

704 4,845 1,236 801 2,470 (5) 2,614 85

91,099 76,561 77,723 66,261 66,834 66,558 67,727

6,251 2,499 2,802 3,387 1,638 2,671 2,435 2,829

RECYCLED WATER

VAIL LAKE

TABLE B-8

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA EIVER WATERSHED

RANCHO CALIFORNIA WATER DISTRICT

Quantities in Acre Feet

AG/DOM 3/
,811 5,986
•
-,
24,111 6,33

Groundwater used in San Mateo Watershed.
 Import used in San Mateo Watershed.
 Beginning in 2014, the Domestic and Agricultural portions of AG/DOM are reported in their respective categories of use.
 Beginning in 2014, Commercial use includes golf course and landscape uses, previously these uses were reported as

Discharge from 2MGD Demonstration project. Includes 98 acre feet from wells out of groundwater area. Import recharge was 2,294 AF but portion remaining in storage was not computed due to lack of data. Import recharge was 701 AF but portion remaining in storage was not computed due to lack of data. Does not include EMWD recycled water production. 2,6 10,1 11,1

Agricultural use. 5/ Loss = Total production less total use. 6/ Loss = Total production less total use. 6/ Irrigation 1966 to 1971 supplied by USGS; 1972 to present supplied by RCWD.

TABLE B-9

SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

U.S.M.C. - CAMP PENDLETON EXCLUDING NAVAL WEAPONS STATION SHOWN ON TABLE B-10 Quantities in Acre Feet

NET EXPORT 9/

		' =	_	_						_								_											_	_	_				
	TOTAL	1,893	2,156	2,080	2,189	2.011	2,068	2,137	2,055	2,519	2,447	2,358	2 403	2.506	2,368	2,254	2,494	2,443	2,619	2,240	3,166	3,396	2.728	2,651	2,760	3,180	2,814	2,733	2,774	3,429	3,230	3,228	3,563	3,594	3,369
WASTEWATER 4/	EXPORTED TO OCEANSIDE OUTFALL RECYCLED BRINE 7/ 8/																																		
	ouse out smrw																							362	279	205	279	280	330	209	222	205	411	454	469
	RECYCLED USE IN OUT SMRW SMRV 5/, 6/	1,893	2,156	2,080	2,189 2,145	2,011	2,068	2,137	2,055	2,519	2,447	2,358	2,440	2,506	2,368	2,254	2,494	2,443	2,619	2,240	3,166	3,396	2.728	2,289	2,481	2,975	2,535	2,453	2,444	2,920	3,008	3,023	3,152	3,140	2,900
		=	_				=	=	_	:		==				_	=	_	_	_				=	=	=	_		=	_	_	_	_	_	_
	TOTAL IN SMRW	2,455	2,427	2,557	2,463	2,583	2,597	2,580	2,579	2,252	2,650	2,306 2,282	3.527	2,679	2,812	2,710	2,157	2,336	2,456	2,434	2,492	2,487	2.112	1,545	1,726	1,617	1,919	1,972	2,622	2,660	2,752	2,560	2,989	2,713	2,752
	TOTAL EXPORT	3,251	3,180	3,368	3,276	3,527	3,543	3,544	3,532	3,098	3,619	3,194	4 756	3,651	3,892	3,761	3,000	3,243	3,377	3,326	3,444	3,457	2,418	2,168	2,426	2,329	2,702	2,781	3,577	3,644	3,742	3,558	4,072	3,653	3,701
USE 1/	JPPLY OUT SMRW	2,579	2,694	2,767	3.134	3,028	3,045	2,932	2,978	2,636	3,079	2,588	4 104	3,142	2,999	2,878	2,425	2,585	2,725	2,745	2,774	2,711	2.449	1,830	1,878	1,678	1,805	2,180	2,967	2,994	3,116	2,909	3,282	3,027	2,979
	CAMP SUPPLY IN OU SMRW SMF	2,026	2,117	2,172	2,036	2,264	2,278	2,189	2,224	1,957	2,305	2.213	3 109	2,353	2,241	2,146	1,790	1,916	2,039	2,062	2,064	2,010	1.779	1,329	1,376	1,201	1,345	1,588	2,232	2,244	2,352	2,145	2,483	2,314	2,290
	TURE OUT SMRW	672	486	601	675	200	498	612	554	462	040	107	653	509	893	883	575	658	652	581	0.29	746	522	338	548	651	897	601	610	650	929	649	790	929	722
	AGRICULTURE IN OU' SMRW SMR	429	310	385	431	319	319	391	355	295	345	200	417	326	571	564	367	420	417	372	428	477	333	216	350	416	574	384	390	416	400	415	206	399	462
_	TOTAL	5,706	5,607	5,925	6.587	6,110	6,140	6,124	6,111	5,350	697'9	5,353	8,283	6,330	6,704	6,471	5,157	2,579	5,833	5,760	5,936	5,944	5.083	3,713	4,152	3,946	4,621	4,753	6,199	6,304	6,494	6,118	7,061	6,366	6,453
PRODUCTION	CAMP SUPPLY	4,605	4,811	4,939	5,481	5,291	5,323	5,121	5,202	4,593	2,384	4,506	7.213	5,495	5,240	5,024	4,215	4,501	4,764	4,807	4,838	4,721	4.228	3,159	3,254	2,879	3,150	3,768	5,199	5,238	5,468	5,054	5,765	5,341	5,269
PR	AG LOCAL \$	1,101	796	986	1.106	819	817	1,003	606	757	882	176	1.070	835	1,464	1,447	942	1,078	1,069	953	1,098	1,223	855	554	868	1,067	1,471	985	1,000	1,066	1,026	1,064	1,296	1,025	1,184
	WATER YEAR	1966	1967	1968 1969	1970	1971	1972	1973	1974	1975	1976	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

EXCLUDING NAVAL WEAPONS STATION SHOWN ON TABLE B-10 U.S.M.C. - CAMP PENDLETON

Quantities in Acre Feet

									43	4,068	75	23	33 R	9/
	NET EXPORT 9/								4,2	4,0	4,0	3,9	4,2	4,2
	4		,102	886	,015	747	2,725	787	203	.241	,882	788	,723	,671
	TOTAL		6)	2	e	2	2	2	2	2	2	2		7
) FALL BRINE	λ											364 R	558
ATER 4/	EXPORTED TO OCEANSIDE OUTFALL RECYCLED BRIN			4	9	86	6	02	99	62	22	5	96 R	0
WASTEWATER 4/	EXPOR' OCEANSID RECYCLED			2,544	2,52	2,26	2,309	2,43	1,96	1,83	2,56	2,395	1,956	1,60
	O USE OUT SMRW		415	444	489	449	416	357	488	396	320	393	403	484
		0, 0	2,687	0	0	0	0	0	49	9	0	29	0	59
			*******		-					_	_			
	TOTAL IN SMRW		2,713	2,875	2,648	2,898	3,075	3,182	2,866	2,874	2,607	1,869	2,690 R	2,523
	TOTAL EXPORT		3,767	3,890	3,571	3,943	4,160	3,739	3,532	2,908	2,634	2,807	2,690 R	2,733
USE 1/	JPPLY OUT SMRW		2,992	3,142	2,768	3,010	3,315	2,712	2,923	2,465	2,582	2,807	2,690 R	2,733
	CAMP SUI IN SMRW	j.	2,218	2,396	2,134	2,301	2,535	2,603	2,593	2,672	2,583	1,869	2,690 R	2,523
	URE OUT SMRW		775	748	803	933	842	1,027	609	443	25	0	0	0
	AGRICULTURE IN OUT SMRW SMRV	7	495	479	514	265	540	579	273	202	24	0	0	0
[TOTAL		6,480	6,765	6,219	6,841	7,235	6,921	6,398	5,782	5,241	4,676	5,744	5,814
CTION	•		.210	,538	,902	,311	5,850	,315	,516	,137	,165	929	744	,814
PRODUCTION	CAMP SUPPLY											0 4,	0 5,	0 5,
	AG		1,27	1,22	1,31	1,53	1,385	1,60	88	2	7			
	WATER		2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

^{3 7 7}

Use equals Production less Brine byproduct from Southern Advanced Water Treatment Plant (SAWTP) beginning February 2013. Assumes no other losses. For years 1966 through 2007, agricultural water use is divided with 39% used inside SMRW and 61% used outside SMRW, thereafter proportions provided by Camp Pendleton. Profit to 1969; 44% used inside the SMRW and 65% used outside the SMRW. For years 1969 through 2007, Camp Supply water use inside SMRW equals 44% of sum of Camp Supply production plus Naval Weapons Station Import, less the NWS Import. Annual proportions provided by Camp Pendleton beginning 2008. All wastewater treated at Southern Regional Tertiary Treatment Plant (SRTTP) beginning December 2008. For years 1966 through 2003, recycled use inside SMRW reported as recharged wastewater from ponds and recharge areas. See prior reports from 2008 and earlier for additional information.

Recycled use for irrigation of golf course, landscaping and park areas.

Recycled water not used but rather exported to Oceanside Outfall.

Brine from SAWTP exported to Oceanside Outfall.

Net Export equals the sum of Agriculture Out, Camp Supply Out, Recycled Out and Export to Oceanside Outfall, minus Wastewater Return, as shown on Table A-A.

TABLE B-10

SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

U. S. NAVAL WEAPONS STATION, FALLBROOK ANNEX Quantities in Acre Feet

WASTEWATER	EXPORTED	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26	26	26	18	27	25	22	27	1
					=	=				_	=	=		=	=	=	_	_	=	=	=	_	_	_	_	_	=
	TOTAL USE	87	92	108	138	152	115	115	115	115	115	115	115	115	115	115	115	115	115	115	102	94	116	120	128	145	109
USE	LOSS 2/	თ	6	1	25	27	15	10	10	10	10	10	10	10	10	10	10	10	10	10	6	6	1	11	12	13	10
Ü	СОММ/	62	83	26	113	125	100	105	105	105	105	105	105	105	105	105	105	105	105	105	93	85	105	109	116	132	66
	AG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				=	=	_				=	=	_	_	_	=	_		_	_	=	=	_	_	_	_		=
	TOTAL	87	92	108	138	152	115	115	115	115	115	115	115	115	115	115	115	115	115	115	102	94	116	120	128	145	109
PRODUCTION	IMPORT TO WATERSHED 1/	0	0	0	0	0	9/	115	115	115	115	115	115	115	115	115	115	115	115	115	102	94	116	120	128	145	109
	LOCAL	87	92	108	138	152	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	WATER YEAR	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991

TABLE B-10

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

U. S. NAVAL WEAPONS STATION, FALLBROOK ANNEX

Quantities in Acre Feet

WASTEWATER	EXPORTED	7	16	2	12	5	9	∞	5	7	∞	ග	10	∞	16	80	12	-	12	7	∞	6	က	9
		_			_	=	=	=			=	_	_		=		=	_	_	_	=	=	=	=
	TOTAL USE	66	117	73	125	100	109	97	111	104	73	26	88	73	40	64	70	82	74	69	45	48	47	28
USE	LOSS 2/	6	1	7	=	6	10	6	10	6	7	6	∞	7	4	9	9	7	7	9	4	4	4	2
'n	COMM/ DOM	06	106	99	114	91	66	88	101	95	99	88	80	99	36	58	64	75	29	63	41	44	43	53
	AG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
•		_	_		=	=	=	=	=	=	=	=	=				_	_			_	_	_	=
	TOTAL	66	117	73	125	100	109	26	111	104	73	26	88	73	40	64	70	82	74	69	45	48	47	28
PRODUCTION	IMPORT TO WATERSHED 1/	66	117	73	125	100	109	26	111	104	73	26	88	73	40	64	70	82	74	69	45	48	47	28
	LOCAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	WATER	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

1/ Estimate 1969 through 1984 - Records not available2/ Loss = 10% of Use

E - Estimate P - Partial year data

TABLE B-11

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

WESTERN MUNICIPAL WATER DISTRICT MURRIETA DIVISION

Quantities in Acre Feet

7	TOTAL
PRODUCTION	IMPORT
Ä	WELLS
	TER EAR

TOTAL	USE
SSOT	77
TOTAL	DELIVERED
0	
Name C	
(2

ATER FEAR	WELLS	IMPORT	TOTAL		AG	СОММ	DOM	TOTAL DELIVERED	LOSS 2/	TOTAL
	41	0	41		0	0	37	37	4	41
	45	0	45		0	0	41	41	4	45
	54	0	54		0	0	49	49	S	54
	54	0	54	_	0	0	49	49	5	54
	73	0	73	_	0	0	99	99	7	73
	83	0	83	_	က	0	72	75	80	83
	111	0	11		10	0	91	101	10	111
	92	0	92	_	11	0	72	84	∞	92
	132	0	132		14	0	107	120	12	132
	153	0	153	_	18	0	121	139	14	153
	117	0	117	_	22	0	84	106	17	117
	170	0	170	=	21	0	134	155	15	170
	169	0	169		19	0	135	154	15	169
	197	0	197		19	0	160	179	18	197
	218	0	218		20	0	178	198	20	218
	265	0	265		30	0	211	241	24	265
	230	0	230		21	0	188	209	21	230
	216	0	216	_	14	0	182	196	20	216
	304	0	304		26	0	250	276	28	304
	308	0	308		19	0	261	280	28	308
	305	0	305		22	0	255	277	28	305
	326	0	326		23	0	273	296	30	326
	303	0	303		13	35	262	275	28	303
	286	0	286		7	72	262	344	(4)	286
	465	0	465		13	9/	266	355	110	465
	459	0	459		15	88	250	353	106	459
	492	0	492		9	122	302	430	62	492
	208	0	208	_	4	105	323	432	9/	208

TABLE B-11

ANNUAL WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

WESTERN MUNICIPAL WATER DISTRICT **MURRIETA DIVISION**

Quantities in Acre Feet

PRODUCTION

USE 1/

TOTAL
IMPORT
WELLS
WATER YEAR

TOTAL USE	
LOSS 2/	
TOTAL DELIVERED	
ром	
СОММ	
AG	

512	521	629	638	603	827	1,123	1,389	1,679	1,850	2,309	2,173	2,549	2,701	2,390	2,515	2,215	2,201	2,121	2,379	2,358
75	89	44	71	72	75	40	72	(14)	(37)	141	86	119	(22)	(96)	177	169	141	113	129	61
437	432	585	292	531	752	1,083	1,317	1,693	1,887	2,168	2,075	2,430	2,723	2,486	2,338	2,046	2,060	2,008	2,250	2,297
324	321	384	392	362	548	519	740	1,115	1,340	1,479	1,539	1,696	1,980	1,827	1,723	1,642	1,497	1,418	1,653	1,640
103	66	113	66	8	125	365	414	348	275	407	274	396	276	251	219	140	239	340	166	657
10	12	88	9/	79	79	199	163	230	272	282	262	338	467	408	396	264	324	250	431	0
_					_							_						_	_	_
512	521	629	638	603	827	1,123	1,389	1,679	1,850	2,309	2,173	2,549	2,701	2,390	2,515	2,215	2,201	2,121	2,379	2,358
0	0	0	0	0	0	0	0	0	102	330	75	316	723	2,180	1,654	1,462	1,642	1,371	1,365	1,407
512	521	629	638	603	827	1,123	1,389	1,679	1,748	1,979	2,098	2,233	1,978	210	861	753	559	750	1,014	951
1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

definitions are provided in Table 7.2. Based upon the revised definitions adopted by the Watermaster, WMWD had no agricultural use in the SMR Watershed during Water Year 2014. An undetermined amount of agricultural use reported 1/ Water use definitions for all major water purveyors were updated and reconciled for Water Year 2014. The updated in prior years would be reported as commercial use under the revised definitions. 2/ Loss = Total Production less Total Delivered

TABLE B-12

SANTA MARGARITA RIVER WATERSHED MISCELLANEOUS WATER PRODUCTION AND IMPORTS

		·
		JOJOBA HILLS SKP RESORT
		HAWTHORN WATER SYSTEM
		LAKE RIVERSIDE ESTATES
Feet	PRODUCTION	QUIET OAKS MOBILE HOME PARK
Quantities in Acre Feet	PF	OUTDOOR RESORTS RANCHO CALIFORNIA
		ANZA MUTUAL WATER COMPANY
	IMPORT	WESTERN MWD IMPORTS TO IMPROVEMENT DISTIRCT A
		WATER

	249.52	339.77	279.04	192.09	262.69	130.06	219.73
	23.50	23.50 12.21	12.24	12.20	23.82	22.60	21.96
	42.00	50.59	42.86	42.44	38.04	69.54	58.59
	33.00	37.00 35.06	31.21	32.16	37.32	45.69	45.53
23.50 20.40 27.00 24.60 30.60 34.40 34.40 36.00 24.70 24.70 24.70 26.00 26.00 26.00 26.00 35.50	22.80	20.70	24.60	31.40	36.60	29.10	35.10
1966 1967 1968 1969 1970 1972 1974 1976 1976 1980 1981 1982 1983 1983 1984 1985 1986	1989	1990 1991	1992	1993	1994	1995	1996

TABLE B-12

SANTA MARGARITA RIVER WATERSHED MISCELLANEOUS WATER PRODUCTION AND IMPORTS

	TOO!
	Acre
	\subseteq
:	S O
,	Clan
,	_

OUTDO	OUTDOOF RESORTS RAN CALIFORNI	NIA NIA 83.42 87.42 70.74 90.10	QUIET OAKS MOBILE HOME PARK 30.25 24.41 25.70 24.58 23.21	LAKE RIVERSIDE ESTATES 233.56 134.96 209.55 316.57 274.25	HAWTHORN WATER SYSTEM	JOJOBA HILLS SKP RESORT 53.28
65.80 65.30 65.30 65.80 65.80 65.80	41.10 44.04 40.44 38.26 51.36 39.33 34.13	201.63 201.63 216.77 187.06 198.92 480.70 483.69	24.45 34.56 32.20 18.09 27.30 19.80 23.30	255.93 255.93 350.80 208.08 268.60 421.56 334.31	92.67 94.19 95.87 55.87 40.25 37.22 21.56	74.70 74.70 74.89 66.95 66.98 66.98
50.30 62.30 52.10 48.50 34.84 35.40	34.13 36.97 27.17 26.22 28.30 29.28	492.20 510.42 494.40 506.40 655.20 560.30	23.30 23.30 23.30 34.30 27.30	347.31 255.19 270.44 310.31 341.29 378.96	23.30 24.01 19.27 26.37 16.76 8.91	67.77 75.17 76.77

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2013-14

APPENDIX C SUBSTANTIAL USERS OUTSIDE ORGANIZED WATER SERVICE AREAS

	CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
A	GUANGA GROUND	WATER AREA							
ar Va	ail Custodial Services nd ail Lake ancho California	43425 Sage Road 44175 Sage Road Aguanga, CA 92536	917-050-007 917-050-009 581-070-013 581-070-015 581-070-016	82.19 309.74 43.10 2.73 157.21	Total of				
			581-150-013 581-150-016	120.56 25.37	30.00	Alfalfa	8S/1E-7N(1) 8S/1E-7N(2) 8S/1E-7Q(1) 8S/1E-7Q(2)	Total of 90.00	
Vá	al Verde Partners	43023 Hwy 79 Aguanga, CA 92536 m/t P.O. Box 1974 Rancho Santa Fe CA 92067	583-040-022 583-040-021 583-130-055 583-120-092 583-060-003-9	97.78 13.45 40.00 160.00 41.60	Total of 13.45	Oats and Pasture	8S/1E-19Q(1) 8S/1E-19Q(2)	0.00 0.00	
-					10.40		8S/1E-29L - Diversion	n	56.8
Ze	en-Kamata, LLC	42551 Hwy 79 Aguanga, CA 92536 m/t 2635 N. First St., Ste. 213 San Jose, CA 95134	583-040-024 583-040-025 583-040-026 583-040-027 583-040-028 583-040-029	23.48 23.12 23.16 22.64 25.52 19.89			8S/1E-19K 8S/1E-19G4	0.00	
							8S/1E-29L - Diversion	ən	0.0
Le	ee, Chong Suk and Juyeon P.	43900 Highway 79 Aguanga, CA 92536 m/t 27434 Bolandra Court Temecula, CA 92591	583-130-029 583-130-030	10.09 11.64	16.61 Total	Row Crops, Grapes & Fruit	8S/1E-29	53.50	
	guanga roperties, LLC	44375 Hwy 79 44201 Hwy 79	583-120-083	68.09	Total	Row Crops	8S/1E-28N1 8S/1E-28N(2)	Total	
(T	win Creek Ranch)	Aguanga, CA 92536 m/t Chester Mason P. O. Box 892378	583-120-090 583-120-091	132.82 39.57	, que	Row Crops Row Crops	8S/1E-29H 8S/1E-33D	 of	
		Temecula, CA 92589	583-140-014 583-140-015 583-140-016	48.03 40.00 40.00	of	Row Crops Row Crops Row Crops	8S/1E-33F 8S/1E-33G1 8S/1E-33B	200.00	
			583-140-018 583-140-019 583-140-020	10.09 10.12 10.15					
			583-150-001	80.00	50.00	Row Crops			

SANTA MARGARITA RIVER WATERSHED SUBSTANTIAL USERS OUTSIDE ORGANIZED WATER SERVICE AREAS

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
AGUANGA GROUNE	WATER AREA (Cont.)							
Twin Legacy, LLC Yanik, Robert	41750 Highway 79 Aguanga, CA 92536	917-050-006	233.57	70.00	Row Crops	8S/1W-13Q1 8S/1W-13Q2	Total	
		917-170-003	80.81	38.00	Row Crops		of	
		917-290-001	126.26	38.00	Row Crops		1	
		917-290-002	82.25	56.00	Row Crops		855.00	
Harris, Leslie K. and Jeannette	44700 Sage Road	581-160-025	18.10	17.00	Citrus & Grass	8S/1E-18J(1) 8S/1E-18J(2)	0.00 0.00	
Harris, Dolores G.	44444 Sage Road Aguanga, CA 92536	581-150-009	7.00	10.00	Fruit	8S/1E-18H(1) 8S/1E-18H(2)	3.25	
		581-160-015	7.42	6.00	Fruit		0.00	
		581-180-004	20.00	0.00				
		581-180-020	20.00	0.00		8S/1E-17M	17.04	
		581-180-021	2.15			8S/1E-17E	39.06	
		581-180-022	30.00	0.00				
Valley-Wide Recreation and Parks District	901 W. Esplanade Ave San Jacinto, CA 92582	581-170-009	7.82	7.82	Grass	Used 8S/1E-17E or	wned by Harris	
Wilson Creek Farms	44200 Sage Road	581-170-012	190.40	40.00	Row Crops*	8S/1E-17B	350.00	
	Aguanga, CA 92536	581-170-013	99.63	50.00	Alfalfa	8S/1E-17H	4.50	
	m/t P. O. Box 2921	581-180-005	2.76					
	Hemet, CA 92546	581-180-009	120.00	20.00	Row Crops			
		581-190-013	280.00	20.00	Row Crops			
		581-190-014	40.00					
Wilson Creek	44200 Sage Road	581-070-002	160.00					
Development, LLC	Aguanga, CA 92536	581-070-005	640.00			8S/1E-9Q - Diversi	on	400.0
	m/t P. O. Box 2921	581-100-013	80.00			8S/1E-10		
	Hemet, CA 92546	581-100-019	30.00					
		581-100-020	10.00					
		581-100-022		* Plus riparian r	estoration.			
		581-100-038	9.53					
		581-100-039	9.23					
		581-100-040	8.91					

TOTAL AGUANGA GROUNDWATER AREA

482.88

1,612.35

456.80

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
TEMECULA CREEK	ABOVE AGUANGA GROUN	DWATER AREA						
Agri-Empire, Inc.	m/t P. O. Box 490 San Jacinto, CA 92383	113-090-01* 113-130-01* 113-140-03	377.07 150.09 196.54	0.00 0.00 0.00		9S/2E-17D - Spring 9S/2E-16N2 9S/2E-16M 9S/2E-16F1 9S/2E-16N1 9S/2E-16F2	63.30 123.76 29.03 18.45 0.00	0.0
		114-020-09	37.16	0.00		9S/2E-16K - Divers	ion	0.0
		114-020-09	108.78	75.00				
* Land leased from the		114-030-07	93.38	0.00				
State of California	•	114-030-34	137.50	0.00				
		114-030-36	29.55	0.00				
** Land leased from Arlie W. and Coral R. Bergman	37126 Hwy 79 Warner Springs, CA 92086	113-140-01 **	358.62	0.00		9S/2E-16B(1) 9S/2E-16B(2) 9S/2E-16G	0.00 0.00 0.00	
-		113-140-02 ** 113-140-03	38.75 196.54	0.00 0.00			0.00	
Hill Springs Farm, LLC	38642 Highway 79	112-030-38	40.00	Total		9S/1E-12A	Domestic	
riii opiniga rami, EEO	Warner Springs, CA 92086	112-030-36	67.41	rotai		95/1E-12A	Domestic	
	m/t P.O. Box 1946	112-030-72	129.90	1		9S/1E-1M - Diversion	nn .	0.0
	Duarte, CA 91009	112-030-74	70.50	of	Grapes	9S/1E-1Q(1)	0.00	0.0
				1	Winery/	9S/1E-1Q(2)	71.50	
		113-060-012	63.21	65.00	Landscape	9S/2E-7D	9.00	
						9S/2E-7E - Diversion	on	0.0
Lovingier Family Trust	35490 Highway 79 Warner Springs, CA 92086	114-070-007	76.42	Total	Pasture	9S/2E-27R1 9S/2E-27R2 9S/2E-27J	Total 	
		114-070-27	19.15	i		ource ero		
		114-070-28	19.15	of			of	
		114-070-34	167.94	1			1	
		114-080-014	42.51				1	
		114-080-013 114-120-042	21.30 78.41	169.95		9S/2E-35D1 9S/2E-35D1	645.81	
TOTAL TEMECULA (CREEK A GROUNDWATER AREA			309.95			960.85	0.6

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
WILSON CREEK ABO ANZA VALLEY	OVE AGUANGA GROUNDW	ATER AREA						
Greenwald, Alvin G.	55255 Mitchell Road Anza. CA 92539 m/t 6010 Wilshire Blvd., #500 Los Angeles, CA 90036	573-180-001	156.38	0.00		7S/3E-17E	0.00	
Miller, Frank C.	55520 Hwy 371	573-200-007	18.88	18.00	Row Crops			
Brabowski-Miller, Jane	Anza, CA 92539	573-200-008	18.31	0.00				
	**	573-200-009	36.40	2.00 17.00	Grapes Row Crops	7S/3E-17(N) 7S/3E-17(M) 7S/3E-17(P)	5.00 0.00 54.00	
Anza Development Corp	m/t P.O. Box 391273	573-200-004	18.24	0.00				
anik, Gordon	Anza, CA 92539	573-200-005	18.50	0.00				
		573-200-006	18.89	0.00				
		573-200-010	18.68	0.00				
Agri-Empire, Inc.	P.O. Box 490 San Jacinto, CA 92383							
	Section 10	575-050-044	14.36	0.00				
	Section 11	575-060-002	133.93	0.00		7S/3E-11N4 7S/3E-11P3	219.40 398.00	
	Section 13	575-100-009	19.94	0.00				
		575-100-032	89.02	0.00				
		575-100-033	89.08	0.00				
		575-100-034 575-100-035	37.63 157.20	0.00				
		575-100-035	27.91	0.00				
		575-100-037	57.80	0.00				
		575-100-039	7.91	0.00				
		575-100-040	0.88	0.00				
		575-100-041	19.93	0.00				
		575-100-042	60.00	0.00				
	Section 14	575-110-021	143.75	143.75	Organic Row Crops	7S/3E-14D1	90.50	
		575-110-027 575-110-030	54.45 74.86	0.00				
		575-310-030	74,86 39.09	0.00		7S/3E-14C2	190.00	
		575-310-011	80.00	0.00			150.00	
		575-310-012	80.00	0.00				
		575-310-013	17.46	0.00				
		575-310-014	0.75	0.00				
		575-310-027 575-310-028	17.46 0.92	0.00				
	Section 15	575-080-010	4.77	0.00				
	Section 13	575-080-010	9.92	0.00				
		575-080-014	4.35	0.00				
		575-080-017	9.75	0.00				
		575-080-018	10.13	0.00				
		575-080-019	31.29	0.00				
		575-080-021	20.00	0.00				
		575-080-022	20.00	0.00				
		575-080-024 575-080-027	20.00 20.00	0.00				

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
WILSON CREEK ABOVE ANZA VALLEY (Cont.)	AGUANGA GROUND	WATER AREA						
Agri-Empire, Inc. (Cont.)	Section 17	573-180-011	39.74	0.00				
	Section 20	576-060-009 576-060-031 576-060-033	8.26 16.09 79.45	1				
		576-060-038 576-070-003 576-070-005	5.41 80.00 116.57	139.00	Potato			
		370-070-003	110.37	139.00	Polato			
	Section 21	576-100-061 576-110-001	37.71 160.00	37.70 37.00 126.25	Potato Potato Organic Row Crops	7S/3E-21P(1) 7S/3E-21P(2)	417.10 0.00	
		576-110-002	28.00	0.00	•			
		576-110-003	2.00					
		576-110-004	50.00		Organic Row Crops			
		576-110-006	19.29					
		576-110-007	17.82					
		576-110-008	17.00	1		7S/3E-21R3 7S/3E-21R(4)	173.50 173.10	
		576-110-009	18.41	72.52	Organic Row Crops			
	Section 22	575-130-003	19.55	0.00				
		575-130-006	40.89	0.00				
		575-130-008	18.56	0.00				
		575-130-009	20.06	0.00				
		575-130-010	20.07	0.00				
		575-130-011	19.19					
		575-130-012	18.18					
		575-130-013	19.02					
		575-130-014	19.00					
		575-130-015	17.58					
		575-120-012	88.03					
		575-120-018	20.45					
		575-120-019	20.45					
		575-120-028*** 575-120-029***	4.68 4.68					
		575-120-029	4.68					
		575-120-030	4.00					
		575-120-031	4.23					
		575-120-032	4.69					
** Land leased from		575-120-033	4.68					
Dionisios & Irini Argyros		575-120-035	4.28					
	Section 23	575-140-006 575-140-020	9.90 90.48	0.00				

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
WILSON CREEK AB ANZA VALLEY (Cont.	BOVE AGUANGA GROUNDWA	ATER AREA						
Burnett, Gregory V.	36990 Bonita Vista Anza, CA 92539 m/t P. O. Box 391111 Anza, CA 92539	573-040-001 573-040-002 573-050-001	235.20 30.00 246.33	0.00	Nursery/ Landscape	7S/3E-5	4.00	
Cahuilla Indian		ommercial Wells R	eported by Bur	eau of Indian Affa	airs		Total	
Reservation	Wells in Basement Complex	Wells out of Watershed	Well	s with QYAL and	or QTOAL		1	
	75/ZE-14L1 75/ZE-25D1 75/ZE-26B1 75/ZE-26B2 75/ZE-26B3 75/ZE-36B3 75/ZE-36B1 75/ZE-36A1 75/ZE-31M1 75/ZE-31M1 75/ZE-31M1 75/ZE-31D1 75/ZE-32D2 85/ZE-6B1 85/ZE-6B1 85/ZE-6B1 85/ZE-6B1	85/3E-2A1 85/3E-2B1 85/3E-2D1 85/3E-2C1 85/3E-2G1 85/3E-2H1 85/3E-2H1	7S/2E-14M1 7S/2E-14M2 7S/2E-14R1 7S/2E-23A1 7S/2E-23F1 7S/2E-23G1 7S/2E-23M1 7S/2E-23M1 7S/2E-23M1 7S/2E-23M1 7S/2E-25F1 7S/2E-25F1 7S/2E-25F1 7S/2E-25F1 7S/2E-25F1 7S/2E-25F1	7S/3E-27C2 7S/3E-27H1 7S/3E-27H1 7S/3E-28A1 7S/3E-28A2 7S/3E-28D1 7S/3E-39C1 7S/3E-30P1 7S/3E-30P1 7S/3E-30R1 7S/3E-30R2	75/3E-31L 75/3E-34L1 75/3E-34V1 75/3E-34V1 85/2E-4D1 85/2E-4N1 85/2E-4N2 85/2E-4R1 85/2E-4R1 85/2E-4R2 85/3E-5Q1	Domestic Commercial Stock Watering	 	5 61
SUBTOTAL ANZA VAI	LLEY			649.22			1,778.60	5.6
WILSON CREEK AB	OVE AGUANGA GROUNDWA	ATER AREA						
Green Shell Co. Shellaberger, James L.	39850 Sage Road Hemet, CA 92343	571-080-012	80.00	40.00	Olive Trees	7S/1E-20Q	44.00	
SUBTOTAL LEWIS VA	ALLEY			40.00			44.00	0.0
TOTAL WILSON CRI ABOVE AGUANG	EEK A GROUNDWATER AREA			689.22			1,822.60	5.6

SANTA MARGARITA RIVER WATERSHED SUBSTANTIAL USERS OUTSIDE ORGANIZED WATER SERVICE AREAS

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
MURRIETA-TEMECU	LA GROUNDWATER AREA							
Louidar Mount Palomar Winery	33820 Rancho California Rd. Temecula, CA 92591	943-040-011 943-060-010 943-060-011 943-110-009 943-120-014	19.22 90.76 26.47 4.31 17.71	10.00 24.00 3.00 15.00	Citrus Citrus Citrus Grapes Grapes	7S/2W-28L	275.00	
		943-120-024 943-120-025 943-120-026 943-120-027 943-120-028 943-120-029	32.08 83.98 30.02 0.49 0.19 0.08	25.00 12.00	Grapes Grapes			
		943-120-029 943-120-030 943-120-031 943-120-033	0.09 2.40 0.41 4.59					
Anza Grove Cavaletto, Selina J. Lassalette Enterprise	c/o McMillan Farm Mgt. 29379 Rancho Cal, Rd, #201 Temecula, CA 92390	942-180-002 942-240-003 942-240-004	40.28 40.83 40.83	40.00 40.00 40.00	Citrus Citrus Citrus			
Edosaiotto Enterprise	Terriectila, CA 32330	942-240-005	39.31	35.00	Citrus	7S/2W-26B1 7S/2W-26B2	1.00 294.00	
Mendoza, Bertha	38695 Highway 79 South Aguanga, CA	917-240-019	54.13	0.00				
Giddings, Richard	38055 Highway 79 South Aguanga, CA	917-150-002	117.76	0.00				
Vail Lake Groves, LLC	38695 Highway 79 South Aguanga, CA m/t 29400 Rancho Cal. Road Temecula, CA 92593	917-240-015 917-150-006	20.00 120.00	0.00 110.00	Citrus	8S/1W-21K(1) 8S/1W-21K(2) 8S/1W-21P(1) 8S/1W-21P(2)	262.00 0.00 0.00 0.00	
Wild Horse Peak Vineyard Mountain	Highway 79 South Temecula, CA m/t 3719 South Plaza Drive Santa Ana, CA 92704	943-230-001 917-250-004 917-250-005	109.34 80.00 80.00	60.00 Total of	Grapes	7S/2W-26L 8S/1W-25Q(1) 8S/1W-25P(1) 8S/1W-25N(1) - Sprin	0.00 0.00 28.00	0.0
		917-250-007	240.00	220.00	Grapes	8S/1W-36K - Spring 4 8S/1W-36H - Spring 6 8S/1W-36K(1) 8S/1W-36K(2) 8S/1W-36K(3) 8S/1W-36L - Stream	59.00 56.00 94.00	0.0 0.0 52.0
Regency Properties Temecula Creek Golf	44051 Rainbow Cyn Rd. Temecula, CA 92592	922-220-002 922-220-003 922-220-004 922-220-007 922-220-008 922-230-002 922-230-003 922-230-004 922-230-007	86.11 5.75 52.18 14.36 3.99 59.29 1.00 40.00 25.00	Total 		8S/2W-19(D)	65.83	
Carson, Carol J. Murrieta Six Cs LLC	25471 Hayes Ave Murrieta, CA 92562	922-230-008	16.11	7.00	Grass Pasture	7S/3W-29G	39.90	

TOTAL MURRIETA-TEMECULA GROUNDWATER AREA

709.50

1,174.73

52.00

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION PI LOCATION TWP/RNG/SEC	WELL RODUCTION AC. FT	SURFACE DIVERSION AC. FT
SANTA MARGARITA DE LUZ CREEK	RIVER BELOW GORGE							
Stehly Family Holdings, LLC	40922 DeLuz Road Fallbrook, CA 92028 m/t 13268 McNally Road Valley Center, CA 92082	101-271-28	45.01	10.00	Avocados and Citrus	8S/4W-29D(1) 8s/4W-29D(2)	1.00 16.00	
Prestininzi, Pete and Dorothy N.	2525 E. Mission Road Fallbrook, CA 92028 Richmond Truck Trail and DeLuz Murrieta Road	101-220-12 101-210-53	31.63 50.44	6.00 12.00	Pasture & Flowers Avocados and Citrus	8S/4W-20A(1) 8S/4W-20H(1) 8S/4W-20H(2) 8S/4W-20A - Diversion	16.00 16.00 14.00	0.0
Alfred Varela Sr. Family Living Trust Varela, Alfred	41125 DeLuz Road Fallbrook, CA 92028	101-210-11	15.23	8.50 0.50	Avocados Citrus	8S/4W-20Q(1) 8S/4W-20Q(2)	Total of 21.60	
Lake Forest, LLC	41257 DeLuz Road Fallbrook, CA 92028 m/t 26051 Glen Canyon Dr. Laguna Hills, CA 92653	101-210-12	30.28	9.00 15.00 1.00	Avocados Citrus Row crops	8S/4W-20Q(1) 8S/4W-20Q(2) 8S/4W-20Q(3)	Total of 50.00	
Wagner Family Trust	41128 DeLuz Road Fallbrook, CA 92028	101-210-23 101-210-22	17.19 4.55	15.00 3.00	Avocados Persimmons	8S/4W-20P(1) 8S/4W-20P(2) 8S/4W-20P(3)	0.00 0.00 39.30	
Lee, Charles and Catherine	44952 Vista Del Mar Temecula, CA 92590	933-120-016 933-120-017 933-120-018 933-120-019	9.39 9.48 8.47 9.63	Total of 36.00	Avocados, Citrus and Macadamia Nuts	8S/4W-15L	0.00	**
** All water purchased from	RCWD for Water Year 2013-14	933-120-042	20.00	12.70	Avocados			
Chambers Family, LLC	40888 DeLuz-Murrieta Road 38664 DeLuz Road Fallbrook, CA 92028 m/t Thomas Montllor 910 N. Pacific St., Apt. 38 Oceanside, CA 92054	101-571-03 102-130-42	41.72 54.37	40.00 5.00	Flowers Fruit	8S/4W-28A 8S/4W-28A - Diversion	52.00	8.0
Welburn Family Trust Welburn, Douglas and Sue	40787 DeLuz-Murrieta Rd. Fallbrook, CA 92028	101-571-19 101-571-20 101-571-21	4.01 4.00 14.28	4.00 4.00 5.50	Gourds Gourds Fruit Trees, Melons and Avocados	8S/4W-28G1	40.00	
Poladian, Jacqueline Bluebird Ranch	2193 Calle Rociada Fallbrook, CA m/t P. O. Box 1089 Fallbrook, CA 92088	101-312-01 101-312-02	82.29 58.17	42.00 45.00 5.00	Flowers Flowers Avocados	8S/4W-31L 8S/4W-31L - Diversion 8S/4W-31K(1) 8S/4W-31K(2) 8S/4W-31K(3)	Total of I 162.18	31.4
Norman and Deborah Vanginkel Trust	39452 DeLuz Road Fallbrook, CA 92028 m/t 21136 Trailside Drive Yorba Linda, CA 92887	101-312-03 102-052-04	80.00	10.00	Nursery Stock	8S/4W-31J(2) 8S/4W-31J(3) 8S/4W-31J(4) 8S/4W-31J(5)	14.00 0.00 42.00 0.00	
		102-052-04 102-731-02	22.04 4.26	16.00	Avocados			
Ross Lake, LLC Rose, William and Joanne	39985 Daily Road Fallbrook, CA 92028	101-430-30 101-480-14 101-500-01	16.39 13.20 16.62	Total of 21.00	Avocados Limes Flowers	8S/4W-34- Lake Divers	sion	** 0.0
** All water purchased from	FPUD for Water Year 2013-14							
SUBTOTAL DELUZ CR	FEW			326.20			484.08	39.4

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2013-14	IRRIGATED CROP 2013-14	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
SANTA MARGARITA SANDIA CREEK	A RIVER BELOW GORGE (C	ont.)						
Serafina Holdings, LLC	40376 Sandia Creek Fallbrook, CA 92028	101-360-40	126.32	30.00 10.00 25.00	Avocados Grapes Olives	8S/4W-25P(1) 8S/4W-25P(3) 8S/4W-25P(3)	Total I of I 130.50	
						8S/4W-25P - Diversion		0.0
SUBTOTAL SANDIA	REEK			65.00			130.50	0.0
SANTA MARGARITA	RIVER							
San Diego State University Foundation	47981 Willow Glen Rd. Temecula, CA 92592 SDSU Foundation 5500 Campanile Dr. San Diego, CA 92182-4614	918-040-011 918-060-017	120.00 40.00	5.00 15.00	Citrus Avocados	8S/3W-33Q1 8S/3W-33Q(2) 8S/3W-33Q - Diversio	4.31 0.00 on	41.3
SUBTOTAL SANTA M	ARGARITA RIVER			20.00			4.31	41.3
TOTAL SANTA MAR	GARITA RIVER BELOW GO	RGE		411.20			618.89	80.78
LOWER MURRIETA								
Ronnenberg Family Trust (Sage Ranch Nursery)	42522 E. Benton Rd. Aguanga, CA 92536 m/t c/o Cliff Ronnenberg 11292 Western Avenue Stanton, CA 90680	571-020-046 571-020-047 571-020-048 571-020-049 571-020-004 571-520-007 571-520-009 571-520-012 915-140-069 915-140-070	81.09 40.80 36.75 148.86 1.50 109.50 99.43 80.23 77.54 91.56 21.39	Total		7\$/1E-7D	5.50	
		470-210-007	53.62 109.23	300.00	Olive trees	79/1E-7E - Diversion		100.0
FG Hinh Desert	39800 F. Benton Pd	470-210-007 470-220-004	109.23	300.00	Olive trees	7S/1E-7E - Diversion		100.0
	39800 E. Benton Rd. Temecula, CA 92390 m/t 12881 Bradley Avenue Sylmar, CA 91342	470-210-007		300.00 10.00	Olive trees Pasture	7S/1E-7E - Diversion 7S/1W-10R(1) 7S/1W-10R(2) 7S/1W-10R(3) 7S/1W-10R(4) 7S/1W-10R(6) 7S/1W-10R(6) 7S/1W-10R(7)	Total of 38.00 Domestic 0.00 0.00	100.0
Properties, LLC	Temecula, CA 92390 m/t 12881 Bradley Avenue Sylmar, CA 91342	470-210-007 470-220-004	109.23		***************************************	7S/1W-10R(1) 7S/1W-10R(2) 7S/1W-10R(3) 7S/1W-10R(4) 7S/1W-10R(5) 7S/1W-10R(6)	Total of 38.00 Domestic 0.00	
EG High Desert Properties, LLC TOTAL LOWER MUR	Temecula, CA 92390 m/t 12881 Bradley Avenue Sylmar, CA 91342	470-210-007 470-220-004	109.23	10.00	***************************************	7S/1W-10R(1) 7S/1W-10R(2) 7S/1W-10R(3) 7S/1W-10R(4) 7S/1W-10R(5) 7S/1W-10R(6)	Total of 38.00 Domestic 0.00 0.00	100.00

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2013-14

APPENDIX D WATER QUALITY DATA

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chemi	ical Const	ituents - n	ng/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
Holiday Well	06/16/89	1300	775	122	39	100	2	178	66	372	40
7S/3W-20C09	10/18/91										25
	11/15/91	***									26
	12/13/91										28
	01/10/92										27
	02/07/92										27
	05/01/92										32
	05/29/92										28
	08/21/92							***			27
	01/22/93	960	605	83	29	83	2	130	84	278	33
	10/15/93										32
	03/30/94										44
	06/22/94										35
	09/14/94										31
	12/07/94										30
	03/01/95										
	06/21/95										32
	09/13/95										11
										***	27
	12/06/95										26
	03/27/96										15
	06/06/96	***		***							24
	09/11/96										22
	11/08/96						***				55
	11/14/96										25
	12/05/96										24
	03/27/97									***	20
	06/18/97										21
	12/03/97										18
	03/25/98										21
	04/22/98	1090	680	89	29	85	1	150	76	290	22
	06/17/98										23
	10/01/98										25
	12/02/98										28
	02/24/99										33
	03/24/99										26
	09/09/99										36
	12/03/99										32
	07/12/00										21
	08/04/00	1290	790	110	36	99		180	110	320	21
	10/24/01										17
	03/06/02										15
	07/11/02		780							310	
	10/03/03		800	113						332	***
	04/21/04										11
	01/27/05		980	160	47					440	
	00/00/05										35
	01/26/06	1700	1000	160	48	130	1.6	240	130		46
	01/30/06					100	1.0	240			49
	01/00/00										49

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY WESTERN MUNICIPAL WATER DISTRICT MURRIETA DIVISION

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Const	ituents - n	ng/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
House Well	06/16/89	660	345	24	0	0.5	2	07	00	450	
7S/3W-20G06	02/27/91			34	3	95	2	87	60	153	<1
73/344-20000	03/01/91	770						110	65	168	<1
	03/08/91	730 680		40				110		400	<1
	05/10/91		420	42	5	90	2	110	68	122	<1
	10/11/91	750 								***	<1
					***						<1
	11/08/91										<1
	05/22/92										<1
	08/14/92	700									<1
	01/22/93	720	415	40	5	106	2	100	68	168	<1
	09/07/94	~~~									<1
	12/27/95										<1
	03/22/95										<1
	06/14/95										<1
	09/06/95										<1
	12/27/95										<1
	03/20/96										<2
	06/12/96										<2
	09/04/96										<2
	12/26/96										<2
	03/19/97										<2
	06/12/97										<2
	12/30/97										<2
	03/18/98	***									<2
	04/15/98	660	360	30	3	94	1	91	62	130	<2
	06/10/98				-						<2
	10/01/98										<2
	12/23/98							****			<2
	02/17/99	W-40-40			***						<2
	03/17/99										<2
	06/09/99	40 At 40		-							<2
	09/01/99									-	<2
	12/22/99										ND
	03/15/00	640	370	29	3	92	2	82	61	130	<2
	06/07/00										<2
	09/27/00			-							<2
	10/24/01										<2
	03/06/02										<2
	07/11/02		440							170	
	10/03/03	630	380	34	3	103		87		140	ND
	04/21/04								~~~		<2
South Well	09/07/90	690	405	62	17	68	2	83	56	229	4
7S/3W-20D	10/04/91										2
	11/01/91										3
	11/26/91	***									2
	05/15/92										<1
	10/01/93										2
	09/28/94									AC 400	1
	12/21/94										3
	03/15/95										2
	06/07/95		***								2
	09/27/95			-							2

ND - None Detected

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chemi	ical Const	ituents - n	ng/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
Cauth Wall	40/00/05										_
South Well	12/20/95						***				3
7S/3W-20D	03/13/96				***						2
(Cont)	06/15/96						****				3
	09/25/96								***		3
	12/18/96										3
	04/09/97										2
	06/04/97 03/11/98										2
			F00	70	4.0	67			70		<2
	04/08/98 06/03/98	820	500	73	18	67	2	92	73	250	3
	10/01/98					~	-				3
	12/16/98										3
	03/10/98										2
	06/09/99										2
	09/22/99										2
	12/15/99										<2 ND
	02/09/00	810	460	 55		0.4				24.0	ND
		610	460	55	14	84	1	99	63	210	<2
	05/03/00 08/04/00					400			40	040	<2
		780	440	47	9	100		99	48	210	<2
	08/23/00										<2
	10/24/01 03/20/02		****								<2
	03/20/02	***	460							400	4
			460 460							180	
	10/03/03		460	59						207	
	04/21/04										<2
	01/27/05		610	110	28					300	
	03/30/05										5
	01/26/06	800	440	42	9.1	110	1.2	120	65		1.2
	04/12/06										6.1
	05/10/06	***									1.6
	06/14/06										1.4
	07/12/06	***	****			***					<1
	08/09/06								-		1.4
	09/13/06		***								1.5
	10/11/06	***									1.4
	11/08/06										1.3
	12/13/06									***	1.3
	01/10/07	***	***								1.4
	02/13/07								~~~		5.3
	03/14/07		****								1.2
	04/11/07										<2
	05/09/07	***							***		<2
	06/13/07										1.2
	07/11/07 08/15/07 800 480		40		400					4.7	
	08/15/07	800	480	40	8.5	100	<1	110	61	200	1.1
	09/12/07										5.6
	11/14/07									***	1.4
	12/04/07										1.2
	01/24/08										4.6

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date Sampled	Total Specific Dissolved Chemical Constituents - mg e Conductance Solids					ng/l				
		umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
South Well	03/26/08										3.9
7S/3W-20D	04/23/08										4.1
(Cont)	06/09/08										4.1
	07/14/08										5.1
	09/08/08										4.9
	01/19/09										6.7
	11/13/09	1300	820	120	34	110	1.8	200	140	320	
	11/17/09										5.8
	11/09/11										1.6
	01/26/12		***								1.5
North Well	06/16/89	730	390	40	7	98	2	98	45	201	<1
7S/3W-18J02	10/25/91										<1
	11/22/91										<1
	05/08/92										<1
	08/28/92										<1
	01/22/93	680	405	39	8	99	2	100	51	183	<1
	10/22/93										<1
	07/08/94	810	520			87		130	53		<1
	09/21/94										<1
	12/14/94										<1
	03/08/95										<1
	06/28/95										<1
	09/20/95										<1
	12/13/95										<1
	03/06/96										<2
	06/26/96										<2
	09/18/96										<2
	12/11/96										<2
	06/25/97						***				<2
	07/08/98	760	460	49	9	100	2	110	51	220	<2
	10/01/98									-	<2
	12/09/98									-	<2
	02/03/99										<2
	03/03/99										<2
	06/23/99										<2
	09/22/99										<2
	12/08/99										<2
	01/05/00	780	440	47	9	100		99	48	210	<2
	05/03/00										<2
	07/19/00										<2
	10/24/01										<2
	03/06/02					***					<2
	07/11/02		420							180	
	10/03/03		440	53							
	04/21/04										<2
	01/27/05		440	59	10					230	
	03/30/05			***				***			<2
	01/26/06	820	450	60	11	96	2	120	52		1
	05/10/06										<1
	07/19/06		***								<1
	08/16/06										<1
	09/20/06										<1
	10/18/06										<1
	11/15/06										<1

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date Sampled	Specific Conductance	Total Dissolved Solids			Chem	ical Const	ituents - n	ng/i		
		umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
N	044477107										
North Well	01/17/07										<1
7S/3W-18J02	02/21/07	***									<2
Cont)	03/21/07										<2
	04/18/07										<2
	05/16/07										<2
	07/23/07		500					***			
	07/26/07 08/15/07	830	540 530	 E0		89	4.0	440			
	09/19/07	630	520	59	11	89	1.2	110	54	230	<2
	12/04/07							****			<2
	01/24/08										1.5
	03/26/08									****	1.8
	04/23/08										2.5
	05/19/08									***	2.0
	06/16/08										2.2 2.1
	07/21/08										
	09/15/08										<2 2.0
	01/19/09										2.0
	02/23/09										<2
	03/16/09										<2
	04/20/09										<2
	05/18/09										<2
	06/02/09	830	470	54	11	92	1.6	100	54	230	<2
	06/08/09	830	410	57	10	89	1.6	110	54	230	<2
	06/15/09										<1
	07/07/09	870	490	51	10	87	1.5	110	56	220	
	07/20/09	830	460	54	10	90	1.7	110	52	220	<2
	08/03/09	820	480	49	9	82	1.4	120	49	220	<2
	08/25/09										1.2
	09/08/09	800	460	55	11	97	1.7	120	52	220	<2
	09/21/09										1.1
	10/05/09	780	470	55	11	97	1.8	110	53	220	<2
	10/19/09										<2
	11/02/09	790	470	55	11	91	1.7	110	53	220	<2
	11/16/09					~~~					<2
	12/07/09	810	480	56	11	94	1.8	110	52	220	<1
	12/21/09									*****	<2
	01/04/10	810	470	57	11	91	1.7	110	52	220	<2
	01/18/10									-	<2
	02/01/10	860	460	59	13	87	1.7	110	54	240	1.2
	02/17/10										1.1
	03/01/10	810	460	56	11	88	1.7	110	55	220	<2
	03/15/10										<2
	04/07/10	820	450	56	11	92	1.5	110	52	220	<2
	04/19/10										<2
	05/03/10	810	450	57	11	92	1.5	110	52	220	<2
	05/17/10										1.1
	06/01/10	820	520	52	11	90	1.9	100	50	220	<2
	06/21/10									~~~	<2

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Const	tituents - n	ng/l		
	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
North Well	07/19/10										-0
7S/3W-18J02	08/02/10		470	52	10	00	1.7	100	47	220	<2
(Cont)	08/16/10		470			88	1.7 	100	47 	220	<2
(GOIN)	11/17/10		510	51	20	78	3.6	94	160	120	<2 <2
	02/01/11	860	480	59	12	95	1.7	110	54	220	<2
	04/04/11	800	460	53	11	93	1.6	110	52	210	<2
	04/18/11									210	<2
	06/21/11					****				200 000 000	<2
	07/18/11					****					<1.0
	08/16/11		****					***			<1.0
	09/19/11										<1.0
	10/03/11	770	470	55	11	97	1.9	110	54	210	<1.0
	10/17/11										<1.0
	11/02/11	820	440	55	11	92	1.8	110	54	200	<1.0
	11/15/11									****	1.1
	12/06/11	820	510	52	10	95	1.6	120	55	200	1.0
	12/19/11										1.1
	12/28/11	820	440	53	11	93	1.8	110	54	200	<1.0
	01/04/12	810	480	53	10	94	1.7	110	57	200	<1.0
	01/16/12	-									<1.0
	02/01/12	830	510	57	11	93	2.1	120	58	220	<1.0
	02/06/12										<1.0
	02/15/12	810	450	52	10	88	1.7	120	55	210	<1.0
	03/01/12	760	460	62	13	87	1.8	120	57	230	1.0
	03/19/12										<1.0
	04/16/12										1.1
	04/17/12										1.2
	05/02/12	800	460	52	11	96	1.8	120	61	210	<1.0
	05/14/12										<1.0
	06/04/12	820	460	50	10	92	1.8	88	110	200	1.2
	06/19/12										<1.0
	07/02/12	830	510	54	11	93	1.7	120	55	210	1.0
	07/17/12										<1.0
	07/25/12		470								<1.0
	08/01/12	830	470	56	11	98	1.7	110	54	210	<1.0
	08/13/12	920	440		40		4.0	440			<1.0
	09/10/12	830	440	52	10	96	1.9	110	54	210	<1.0
	09/17/12 10/01/12	950	490		40		4.0	440		040	<1.0
	10/15/12	850	480	52	10	94	1.6	110	53	210	<1.0
	11/05/12	830	450	 E7	10	0.4	4.7	400			<1.0
	11/19/12		450 	57	12	94	1.7	120	56	220	<1.0
	11/27/12							***			<1.0
	12/04/12	870	460 480	61	12	94		420		220	4.4
	12/17/12	010	400	61	12	94	1.5	120	61	230	1.1
	01/07/13	860	510	62	12	0.0	1.7	110	E0	220	1.1
	01/21/13		310	63	13	98	1.7	110	58	220	<1.0
	02/05/13	860	490	60	12	92	2.1	120	61	230	<1.0
	02/19/13		490			92		120	61	230	<1.0
	03/04/13	850	520	63	12	96	1.6	120	61	230	<1.0
	03/18/13		520			90	1.0	120	61 	230	<1.0 <1.0
	04/16/13										<1.0
	05/06/13	870	470	61	13	90	1.6	120	60	230	<1.0
	00/00/10	5,0	710	UI	13	30	1.0	120	00	230	~1.0

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Const	ituents - n	ng/I		
	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
North Well	05/20/13										-4.0
7S/3W-18J02	06/04/13	990	470	63	12	98	4.0	100	 C4	220	<1.0
(Cont)	06/17/13	990	470		12	96	1.8	120	61	230	<1.0
(Gont)	07/01/13	870	470	64	13	98	1.7	110	58	230	<1.0
	07/15/13						1.7			230	<1.0 <1.0
	08/01/13	880	510	61	12	98	1.6	120	62	230	1.0
	08/19/13										<1.0
	09/04/13	850	480	61	12	94	1.4	120	58	230	<1.0
	09/16/13										<1.0
	10/01/13	860	470	60	12	94	1.6	110	59	220	<1.0
	10/14/13										<1.0
	11/04/13	860	480	58	11	95	1.7	130	61	230	<1.0
	11/18/13										1.1
	12/02/13	880	490	65	13	99	1.8	120	60	230	1.4
	12/16/13										<1.0
	01/07/14	860	450	62	12	98	1.7	110	55	220	<1.0
	01/21/14										<1.0
	02/10/14	800	470	65	13	100	1.7	120	62	230	1.1
	02/18/14										1.2
	03/17/14							****			1.0
	04/01/14	820	480	59	11	99	1.6	120	64	230	<1.0
	04/14/14										<1.0
	06/09/14							****			<1.0
	06/16/14	880	490	65	13	100	1.7	120	60	240	1.2
	07/07/14	860	500	64	13	98	1.6	120	59	230	1.2
	07/14/14										<1.0
	08/04/14	890		64	13	100	1.7	120	61	230	1.3
	08/18/14										1.6
New Clay Well	03/09/04	480	340	23	1	87	1	79	64	98	<2
7S/3W-20	01/26/06	590	310	20	1.2	93	1.2	85	57		<1
	01/31/06										7.2
	01/31/06										6.9
	04/04/06										<1
	04/12/06										<1
	05/10/06										<1
	06/07/06							****			<1
	07/05/06										<1
	08/02/06										<1
	09/06/06									*****	<1
	10/04/06	100 and 100									<1
	11/01/06	-									<1
	12/06/06										<1
	01/04/07									-	<1
	02/07/07										<1
	03/07/07										<2
	04/04/07										<2
	05/02/07										<2
	06/06/07										<2
	07/05/07	***									<2

TABLE D-3

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY WESTERN MUNICIPAL WATER DISTRICT MURRIETA DIVISION

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Cons	tituents - n	ng/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
****************			***************************************								
New Clay Well	08/01/07										<2
7S/3W-20	08/15/07	510	270	13	<1	91	1	65	50	83	<2
(Cont)	09/05/07	***									<2
	12/04/07										<2
	03/26/08										<1
	04/23/08										<1
	05/05/08										<1
	06/02/08										<1
	07/07/08		***								<1
	09/02/08										<2
	01/19/09										<2
	11/13/09	630	350	25	4.7	97	1.5	84	76	110	
	11/17/09	***									<2
	08/25/11	700	380	30	2.7	110	1.8	97	62	150	<1.0
	05/21/12										< 0.20
	06/01/12	590	340	19	<1.0	93	1.4	83	56	110	<1.0
	10/04/12	600	340	20	<1.0	96	1.1	84	55	110	<1.0
	11/05/12	560	320	18	<1.0	93	1.1	82	60	100	<1.0
	11/14/12										<1.0
	12/04/12	550	340	16	<1.0	91	<1.0	74	58	96	<1.0
	12/10/12										<1.0
	01/07/13	560	340	19	<1.0	96	1.1	78	57	93	<1.0
	01/14/13	an an an	~~~								<1.0
	02/05/13	540	300	17	<1.0	85	2.0	75	57	98	<1.0
	02/11/13	00 to 00									<1.0
	03/04/13	590	300	19	<1.0	98	<1.0	82	58	150	<1.0
	03/11/13										<1.0
	04/09/13	520	280	18	<1.0	91	1.0	74	56	80	<1.0
	05/05/14	610	340	23	<1.0	93	1.3	84	60	100	<1.0
	05/12/14									***	<1.0
	05/28/14			23	<1.0	100	1.3				
	06/02/14	580	340	22	<1.0	94	1.1	81	58	100	<1.0
	06/16/14										<1.0
	07/07/14	560	310	21	<1.0	94	1.2	80	56	94	<1.0
	08/11/14									*****	<1.0
	08/11/14	560	270	21	<1.0	92	1.2	81	62	98	<1.0
Lynch Well 7S/3W-17R02	06/16/89	760	410	70	17	55	1	86	30	262	8
Morris Well 7S/3W-19R	09/07/90	530	280	38	7	68	3	50	49	168	3
Alson Well	06/06/90	1520	915	138	46	110	1	250	81	422	21
7S/3W-7M	07/21/98	1260	880	100	37	120				433	31
7 37 3 4 4 - 7 141	09/09/98	1200	850	110	37 39	120	<1 <1	180	92	330	23
	05/03/00	1200	850				<1	180	100	320	23
	05/03/00	1290		07	26	110		100		220	20
			800 750	97	36	110	<1	180	96	330	19
	11/28/01	1290	750	93	33	110	<1	180	96	310	17
	03/06/02										20
	07/01/02		650							270	
	10/03/03	880	550	80	26	95		ND	ND	259	ND

ND - None Detected

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY WESTERN MUNICIPAL WATER DISTRICT MURRIETA DIVISION

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Const	tituents - n	ng/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
Alson Well	01/27/05	1100	640	100	32	110		150	81	320	
7S/3W-7M	01/26/06	1500	870	120	41	120	1.2	230	120		18
(Cont)	04/12/06	-	ANY MARK WAT								19
	05/10/06									****	18
	06/28/06										20
	07/26/06										20
	08/23/06										18
	09/27/06										21
	10/25/06										22
	11/22/06		MA 00 A0								22
	12/27/06		***								21
	01/24/07	***									22
	02/28/07							*****			22
	03/29/07										23
	04/25/07										19

Page Intentionally Blank

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled Ca Mg NO3 umhos (mg/l) Na κ CI SO4 HCO3 No. 101 06/01/88 810 495 76 15 79 8 116 16 314 7S/3W-34G1 08/05/88 <1 05/23/90 630 365 30 6 91 2 3 101 35 107 08/04/93 860 465 76 <1 14 78 120 22 275 08/09/96 820 480 69 14 83 2 110 15 310 <2 10/16/97 08/11/99 <2 840 510 70 14 85 2 110 17 300 <2 06/25/02 <2 08/14/02 870 500 <2 <2 <2 66 14 85 2.5 120 15 250 06/11/03 ---06/15/04 ---------------06/14/05 <1 08/09/05 880 440 75 15 87 2.5 140 22 300 <1 06/07/06 <1 ---06/01/07 ---___ <2 06/03/08 620 ---<2 08/11/08 1000 550 91 18 110 2.9 150 36 300 <2 09/09/08 620 ---01/08/09 840 ---___ ---06/25/09 810 -------<2 ---03/24/10 620 06/02/10 670 <2 ---09/01/11 620 ---12/09/11 610 ---------------03/07/12 650 ___ ___ ---06/12/12 ---650 <1 ------09/13/12 ___ 650 ---12/07/12 690 ---------------03/06/13 ---640 06/07/13 640 <1.0 09/11/13 1100 700 95 19 110 2.8 180 43 310 <1.0 12/12/13 690 ---03/14/14 660 ---06/10/14 1300 93 710 18 120 3.0 200 49 320 06/19/14 <1.0 09/17/14 680 ---No. 102 8S/3W-2Q1 01/04/89 695 370 9 2 134 101 25 195 01/15/92 930 615 38 4 160 3 160 55 250 <1 05/17/95 850 475 21 144 120 130 98 <1 06/20/95 1190 700 26 2 207 2 150 220 131 <1 06/09/97 <2 No. 105 07/06/89 500 280 30 6 66 2 71 22 134 14 7S/3W-25M1 03/17/93 480 310 17 2 80 2 67 22 110 14 No. 106 06/29/88 920 485 38 5 143 3 182 66 70 16 7S/3W-26R1 05/13/92 880 515 35 4 142 180 72 110 17 05/16/95 870 495 32 3 138 2 160 57 116 14 07/07/97 8 07/20/98 ------------9 07/20/99 ----------9 07/06/00 ---8

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled umhos (mg/l) Ca Mg Na K CI SO4 HCO3 NO3 05/01/01 490 300 <1 96 70 23 100 8 7S/3W-26R1 07/10/01 ------12 (Cont) 07/03/02 ------___ ------8 07/07/03 6.8 05/11/04 530 310 9 <1 93 1 80 25 88 8 07/13/04 ---8 ---07/07/05 ---6.5 07/19/06 ---6.1 05/02/07 290 550 8.8 <1 91 <1 84 26 85 3.7 07/03/07 ---6 07/07/08 370 ---___ ------12 01/13/09 ---440 ---------04/16/09 ---310 ---------07/01/09 03/18/10 340 ---6.8 440 05/06/10 720 410 23 1.6 120 1.5 130 57 100 12 06/02/10 390 -------------07/13/10 ---2 ---09/01/10 340 -------------------12/09/10 410 ------------04/15/11 400 ------07/06/11 300 ------6 10/04/11 320 ---------01/31/12 ---430 ---04/09/12 ---430 ---10/02/12 380 01/17/13 ---440 ---------------------04/04/13 360 05/01/13 730 420 22 1.4 120 1.4 120 56 100 9.8 07/18/13 400 11 10/01/13 ---380 01/07/14 ---360 ------------04/07/14 ---400 ------___ 07/02/14 320 5.9 ------No. 107 04/11/88 490 365 19 73 2 69 22 116 15 7S/3W-26J1 05/29/91 950 535 3 63 15 104 130 120 171 11 No. 108 05/25/88 780 455 51 11 96 2 120 68 153 14 7S/3W-25E1 05/29/91 930 500 59 14 104 3 130 110 153 10 05/13/94 640 395 23 5 100 2 120 51 104 05/16/95 5 05/13/97 540 300 7 <1 110 <1 110 15 85 4 05/05/99 8 05/16/00 630 350 7 <1 <1 110 130 12 65 3 05/02/01 2 ---11/19/02 04/14/05 2 04/18/06 05/12/06 750 360 8.2 <1 <1 140 190 7.9 50 1.1 02/13/08 1.4

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled umhos (mg/l) Ca Mg Na K CI SO4 HCO3 NO3 No. 108 08/06/08 400 7S/3W-25E1 02/05/09 340 2.2 (Cont) 05/08/09 730 380 7.2 <1 130 170 9.4 60 <2.0 <1 08/05/09 370 ---02/03/10 3 05/06/10 380 ---08/13/10 350 ------2 11/03/10 ---380 ---02/02/11 350 ___ ---05/05/11 380 ------___ ------08/02/11 ------400 ---------11/01/11 ---350 ---------02/08/12 350 <2.0 05/02/12 700 380 7.2 <1 130 1.2 180 10 63 2.3 11/06/12 350 ------02/07/13 ---2.1 380 05/01/13 350 ------------08/13/13 ------400 ---------10/23/13 390 ----------------------10/31/13 440 ------------11/12/13 340 ---02/04/14 360 ------2.1 05/01/14 480 08/05/14 ---380 No. 109 06/01/88 1400 920 136 35 120 300 296 4 100 8S/2W-17J1 08/05/88 10 06/12/91 1330 800 110 26 120 5 120 270 275 9 06/22/94 1370 1010 138 32 124 5 140 320 287 06/06/95 06/13/97 1440 1010 130 31 140 4 140 330 280 10 07/16/97 ---------2.2 as N ------___ 04/14/99 ------___ 12 04/11/00 ___ ---___ ___ 13 06/21/00 1330 870 120 28 4 280 270 130 120 3.2 04/10/01 13 06/11/03 1400 970 140 32 130 130 340 290 12 06/19/03 1400 970 150 32 120 4.2 130 340 12 290 01/07/04 ---13 01/11/05 ------13 01/04/06 12 07/12/06 1300 930 30 4.8 130 130 130 280 280 12 01/10/07 ------13 01/04/08 ---13 ------___ 07/07/08 810 ---01/13/09 860 16 04/02/09 810 ---07/06/09 770 ---01/05/10 14 04/07/10 930 ---07/01/10 1000 ---10/06/10 830 01/12/11 920 ---14 01/25/12 880 12

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	nical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Са	Mg	Na	К	CI	SO4	НСО3	NO3
			***************************************				*******				
No. 109	04/03/12		910								
8S/2W-17J1	10/02/12		880								
(Cont)	01/17/13		950								12
	04/03/13		830								
	07/02/13		910								
	10/03/13		770								
	01/09/14		710								14
	04/09/14		800								
	07/09/14		770								
No. 110	03/31/88	1100	630	70	23	132	6	115	163	268	3
8S/1W-06K1	03/11/93	1010	610	60	21	124	5	110	200	201	3
	04/27/95										1
	07/20/99										<2
	07/06/00										2
	07/10/01										2
	03/11/02	850	500	58	20	81	5	74	190	160	<2
	07/03/02										<2
	09/16/03		***								2
	09/01/04										2
	03/02/05	810	510	56	21	79	4.9	76	170	150	
	09/07/05		310				4.9	70	170	150	<2
	09/06/07										1.8
	03/04/08	980	560	59	21	95			160	400	2
	01/20/09	300	610		21	95	4.6	110	160	190	2.5
	04/02/09		550								
	07/09/09		560								
	01/06/10	***	560								
	04/07/10		630								
	07/01/10				***						
			730								
	09/01/10 10/07/10										<2
			600								
	01/12/11		520								
	04/05/11		560								
	07/06/11		530								
	09/02/11		470		***						3.8
	10/13/11		470								
	02/16/12		440								
	04/04/12		400								
	09/05/12										1.5
	10/09/12		380			~~~					
	01/09/13		420								
	04/08/13		420								
	07/09/13		450								
No. 113	03/28/88	700	400	41	12	87	2	11	20	192	18
7S/2W-25H01	03/21/91	570	290	21	5	79	2	88	17	119	11
	03/03/94	700	410	46	13	86	2	120	25	189	19
	04/27/95										24
	03/20/97	880	500	53	15	96	2	140	33	200	22
	07/20/98										23
										**	20

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	nical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	НСО3	NO3
No. 113	09/16/98	***									22
7S/2W-25H01	02/25/99	***									19
(Cont)	04/14/99		***								17
,	06/03/99		***								21
	09/14/99										22
	10/21/99										25
	11/02/99										22
	12/14/99										23
	01/11/00					***					18
	03/07/00	810	470	75	16	59	2	70	94	200	11
	04/11/00							70		200	23
	05/03/00										24
	06/21/00										23
	09/13/00	***									23
	10/06/00										
	02/14/01		***								21
	05/30/01										16
	06/12/01										23
	08/01/01										22
	11/13/01										22
	05/01/02										22
	08/06/02										19
	11/05/02	***									20
	02/07/03										21
	03/05/03	1000	640		40	440	0.5	400			22
	08/05/03		610	65	19	110	2.5	160	41	260	26
	11/13/03						***				21
	02/10/04										24
											24
	05/04/04										23
	08/10/04										24
	11/17/04										25
	02/09/05										25
	05/12/05										23
	11/02/05										25
	02/14/06										24
	03/08/06	880	540	54	15	100	2.3	140	31	210	24
	05/11/06		***								24
	08/03/06										21
	11/08/06										23
	02/07/07										24
	05/01/07										23
	08/07/07										23
	02/12/08										22
	05/06/08	***	540								21
	08/11/08		530					***			21
	11/06/08	***	570								24
	02/05/09		530								21

TABLE D-4

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 113	03/03/09	930	520	56	15	97	2.1	150	41	210	22
7S/2W-25H01	05/11/09										19
(Cont)	08/04/09		520								20
	02/02/10		510								22
	05/07/10		600								22
	08/10/10		540								22
	11/03/10		520								21
	02/15/11		550								20
	05/04/11		550								20
	08/03/11		540								20
	11/02/11		540								21
	02/02/12		580								21
	05/03/12		570								20
	08/09/12	***									20
	11/02/12		600								21
	02/12/13		550								22
	05/14/13		570								20
	08/14/13		540								20
	11/06/13		520								21
	02/07/14		480								
	02/01/14		400								20
No. 118	08/08/90	715	480	14	1	162	1	120	79	101	1
8S/3W-11B	09/26/90		***								1
	09/10/93	860	525	19	1	178	1	130	94	198	<1
	06/20/95										<1
	09/16/96	970	560	33	2	180	2	120	120	230	<2
	07/23/97										0.2 as N
	09/16/98				-					***	2
	11/02/99	1040	580	46	4	170	2	130	100	240	<2
	09/20/00										<2
	08/18/02										<2
	11/08/02	1100	590	46	4.5	160	1.3	140	94	240	<2
	09/23/03										<2
	12/30/04										<2
	01/25/05										<2
	09/07/05										<1
	11/03/05	980	590	55	5	150	1.7	140	110	240	<1
	09/05/07										1.1
	09/08/08		670								<2
	11/06/08	1100	640	71	150	150	1.9	150	140	250	ND
	12/05/08		660				1.5	100	140	250	ND
	03/03/09		620								
	06/04/09		610								
	03/03/10		640								
	06/02/10	***	630								
	09/02/10	***	640								2.2
	12/08/10		640								2.2
	12/00/10		040								

ND - None Detected

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date C Sampled	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location		umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3

No. 118	03/02/11		650								
8S/3W-11B	06/08/11		640								
(Cont)	09/02/11		620								2
	12/06/11		610								
	06/12/12	***	640							***	
	11/14/12	1100	680	70	7.2	150	2.0	140	130	250	1.1
	12/05/12	***	610								
	03/06/13		610								
	09/17/13		600								<1.0
	12/10/13	M1.00.00	640								
	03/12/14		600								
	06/05/14		630								
	09/03/14		620		***						<1.0
No. 119	07/16/96	450	280	44	9	35	<1	39	18	180	15
8S/2W-19J	08/14/97										12
	12/24/97		320								3.1 as N
	03/04/98		380								3.3 as N
	06/04/98										3.8 as N
	06/12/98		400								
	09/16/98										3.7 as N
	01/08/99		430								
	04/13/99										28
	06/02/99		560								4.8 as N
	07/27/99	940	640	103	21	58	1	70	150	264	30
	09/14/99		***								22
	09/14/99										4.8 as N
	10/26/99										24
	11/02/99										22
	12/14/99		560							***	22
	04/04/00										20
	12/14/00										4.6 as N
	03/29/01										20
	06/20/01										4.2 as N
	09/14/01										4.2 as N
	09/28/01										18
	11/16/01		***								16
	05/23/02		480								18
	07/24/02	770	490	81	15	49	1.1	51	90	240	19
	11/08/02						1.1			240	15
	02/19/03										
	02/10/04							***			17
	02/10/04										15
									440		10
	07/06/05	820	600	95	20	63	1.4	64	140	260	13
	02/07/06										15
	02/07/07		***								15
	02/12/08										15
	05/14/08		520								13
	07/08/08	810	520	88	17	57	1.4	66	120	250	14
	08/11/08		480								13
	11/17/08		520								16
	02/05/09		460								13

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
N. 446								***********			
No. 119	05/11/09	***	560								12
8S/2W-19J	08/04/09		540								14
(Cont)	01/12/10		580								15
	04/09/10		560								13
	07/01/10		620								14
	10/07/10	***	610								14
	01/12/11		480								13
	04/12/11		560								12
	07/07/11	840	560	85	18	60	1.9	84	120	250	16
	10/13/11		610					***			15
	01/10/12		520								14
	04/03/12		550								
	10/04/12		550								15
	01/16/13		530								17
	04/12/13		540								18
	07/03/13		540								16
	10/03/13		500								17
	01/28/14		600								21
	04/16/14		540								21
	07/10/14	860	560	90	18	60	1.2	73	110	260	18
	07/10/14		500								
No. 120	06/20/90	570	330	6	1	116	1	82	31	113	11
8S/2W-17G	06/10/93	590	340	6	<1	122	1	85	35	104	12
	07/19/96	630	360	6	<1	120	1	88	42	120	14
	06/16/97										10
	08/14/97	***	ACC 100								9
	06/02/99	620	360	6	<1	122	<1	84	45	120	10
	06/06/00										11
	06/13/01										12
	06/01/02	670	370	8.1	<1	130	1	86	46	130	11
	06/11/03										12
	06/22/04										15
	06/15/05	720	410	11	<1	140	1.3	90	62	140	12
	06/07/06										11
	06/01/07										10
	06/05/08	690	400	11	<1	140	104	89	66	140	10
	06/05/08		400				***				10
	09/15/08		350								***
	08/21/09		500								11
	02/02/10		440								
	05/05/10		440								
	08/09/10		430								11
	11/03/10		400								
	02/02/11		440								
	05/04/11		450							***	
	08/02/11		420								10
	11/03/11		380								
	02/07/12		430								
	05/03/12		410								
	08/09/12		400								10

TABLE D-4

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	НСО3	NO3
No. 120	00/07/40		040								
8S/2W-17G	02/07/13		810								~~~
	05/02/13	***	410							***	
(Cont)	08/19/13		460								12
	11/07/13		450								
	02/04/14		430								
	05/06/14		420								
	06/03/14	820	600	22	1.6	150	1.7	98	100	150	16
	08/08/14		410								13
No. 121	10/27/89	900	475	63	14	99	2	109	28	290	<1
7S/3W-34J	05/19/92	1000	560	72	17	120	3	170	56	270	<1
	07/18/97										ND
	07/24/97		640								ND
	08/20/97	***									ND
	09/03/97									***	ND
	06/19/02										ND
No. 122	06/23/97	***								-	6
8S/2W-20P1	07/25/97	660	460	64	13	44	1	61	65	190	8
	10/10/97										9
	12/23/97		400								1.8 as N
	03/25/98		450								2.2 as N
	06/03/98										2.4 as N
	06/05/98		460								2.7 d5 N
	09/17/98	***									2.2 as N
	01/08/99	***	450								2.2 d5 N
	06/03/99	***	470								2.1 as N
	04/13/99										2.1 as N
	09/21/99	***									2.1 as N
	03/07/00										16
	04/04/00										9
	06/28/00	780	470	79	16	62	1	73	100	210	11
	12/13/00									210	2.5 as N
	03/27/01										2.5 as N
	04/18/01										2.5 as N 10
	06/20/01										2.4 as N
	09/13/01										2.4 as N 2.7 as N
	12/13/01		550								
	05/14/02		570								9
	03/05/03										
	03/16/04										10
	03/17/05										12
	03/21/06										9
	03/06/07										9.4
											9.7
	03/03/08		620				***				8.5
	03/07/08		620		***						
	10/08/08	***	620								
	01/20/09		680								

ND - None Detected

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	НСО3	NO3
No. 122	03/10/09										0.0
8S/2W-20P1	04/16/09		660								8.9
(Cont)	07/14/09										
(Cont)	03/15/10		670								
			640								10
	03/10/11 05/25/11										9.6
	08/04/11		670								
		***	680								
	01/10/12		680								
	03/06/12		700								9.1
	04/03/12	4400	730	440		0.7	4.0				
	08/07/12	1100	710	110	20	87	1.9	84	190	260	8.0
	10/04/12		680								
	01/17/13		720	***							
	03/07/13										8.4
	04/17/13		700								
	07/03/13		740								
	10/03/13		700								
	01/28/14		730								
	03/13/14										9.5
	04/16/14	~~~	680								
	07/10/14		620								
No. 123	06/06/90	1100	690	69	27	132	6	130	170	281	4
8S/1W-7B	06/10/93	1120	690	74	25	136	6	120	190	250	5
	02/05/97	930	550	55	18	110	5	83	130	250	1.3
	04/27/99										3
	06/02/99										3
	07/20/99										2
	08/11/99										2
	09/14/99										2
	10/21/99										2
	11/02/99										2
	02/09/00	1150	610	59	20	100	5	83	150	240	3
	02/09/01										3
	03/10/03	880	550	59	20	87	4.5	80	180	170	<2
	02/03/04										2
	02/14/05										2
	02/14/06										3.6
	03/14/06	890	530	65	22	88	5	91	180	180	2.3
	04/24/07										1.4
	05/01/07										2.7
	06/05/07										2.2
	07/05/07										2.5
	08/07/07										2.2
	09/05/07										2.1
	09/06/07										2.1
	10/03/07	****									2
	12/13/07										
	12/13/01										1.9

TABLE D-4

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Site		Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Са	Mg	Na	К	CI	SO4	HCO3	NO3
No. 123	01/10/08		***								1.4
8S/1W-7B	02/13/08							***			1.1
(Cont)	03/03/08			***							1.3
` ,	03/07/08		540								1.5
	04/08/08	***			*****						2.2
	05/12/08										2.4
	06/23/08										2.7
	07/08/08										2.9
	08/12/08	***									2.6
	09/15/08							***			2.7
	11/06/08										2.6
	12/05/08	***									2.0
	01/07/09		640								ND
	02/04/09										1.6
	03/09/09	980	610	62	21	97	5	98	180	110	<2.0
	04/02/09		600		21				100	110	<2.0 <2.0
	05/07/09										<2.0
	06/01/09										<2.0
	07/09/09		590								<2.0
	08/05/09										<2.0
	01/06/10		590								1.4
	02/02/10	****									1.1
	03/03/10										1.2
	04/08/10		600		-						1.2
	05/06/10										1.5
	06/02/10	***									<2
	07/01/10		750								<2
	08/10/10										2.4
	09/01/10										2.1
	10/07/10		630				***				<2
	11/01/10										<2
	12/02/10	***									<2
	01/12/11		570								2
	02/15/11	***									2
	03/09/11										2
	04/05/11		580							***	2
	05/05/11						****				2
	06/07/11										2
	07/06/11		600								2
	08/03/11										2
	09/02/11										2.3
	10/13/11		550								2.2
	11/10/11										<2
	12/07/11										<2
	01/06/12		540								<2.0
	01/00/12	·-	040								~2.0

ND - None Detected

TABLE D-4

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	nical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
No. 123	09/05/12	***									4.4
8S/1W-7B	10/10/12										1.4
(Cont)			360								1.2
(Cont)	11/01/12	740	450								1.6
	11/28/12	710	450	46	16	69	4.3	69	110	150	1.7
	12/05/12										1.9
	01/09/13		440								1.3
	02/12/13										1.4
	03/06/13										1.6
	04/08/13		430								1.8
	05/07/13										1.9
	06/05/13										1.7
	07/09/13		470								2.2
	08/15/13										1.8
	09/05/13										1.6
	10/08/13		490								1.7
	11/06/13										1.7
	12/11/13										1.9
	01/14/14		530								1.5
	02/06/14									***	2.0
	03/05/14							***			1.3
	04/09/14		550								1.8
	05/08/14		330								
	06/03/14										1.8
	07/03/14		540								2.1
											2.1
	08/07/14										2.1
	09/03/14	***									1.2
No. 124	06/20/90	660	380	38	4	92	3	97	48	153	13
8S/2W-11R1	07/22/93	690	430	42	5	89	3	90	57	159	17
	07/18/95										11
	10/26/99	700	420	45	4	94	3	97	61	160	16
	07/06/00										17
	07/10/01										16
	07/03/02										10
	10/02/02	600	330	24	2.4	92	1.9	75			10
	01/08/03								38	150	
	07/01/03										2.3 as N
											8.3
	07/07/04										9.4
	07/06/05										8.4
	10/05/05	580	360	19	2.4	96	1.6	74	35	140	7.8
	09/26/06										17
	09/05/07										8.2
	10/28/08	780	490	52	6.5	84	3.1	91	84	150	1.8
	01/13/09		390								
	04/07/09		330								
	07/09/09		320								
	01/06/10		390								
	04/08/10		360								***
	07/01/10		390								
	10/06/10	W-10 40	320	***							10
	01/04/11	60 PM No.	390								

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 124	04/05/11		390							***	
8S/2W-11R1	07/06/11		350								
(Cont)	10/12/11	610	390	23	2.5		2.2				
(Gont)	10/12/11			23		95		80	44	150	9.8
			320				***				10
	01/10/12		330								
	04/04/12		410								
	10/09/12		360	***							9.3
	03/20/13		480								***
	04/08/13		410								
	07/19/13		360								
	10/08/13		360								11
	01/14/14		350								
	04/09/14		400					****			
	07/24/14		460				***				
No. 125	06/20/90	740	425	17	5	132	3	99	54	186	4
8S/2W-12H	06/10/93	770	450	18	5	140	3	150	60	131	3
	06/20/95										2
	06/09/97										2
	09/17/98										3
	06/03/99	720	440	10	3	135	2	89	76	170	<2
	11/02/99										3
	11/15/00										2
	07/24/01										4
	06/19/02	700	400	8.8	2.3	130	1.8	87	54	170	<2
	07/03/02										2
	01/13/03		***								.38 as N
	07/01/03										<2
	06/09/04										<2
	06/14/05	650	350	8.3	2.1	130	1.6	82	52	180	1.8
	06/13/06				2						2.8
	06/05/07										1.6
	06/10/08	770	460	17	4.6	150	2.4	93	64		
	09/15/08	770	370							190	2.7
	12/05/08		450								
	03/04/09		440								
	06/01/09										
			560								<2.0
	07/27/10		480								3.7
	10/06/10		430								
	01/14/11		420								
	04/05/11		390						***		
No. 126	05/04/88	480	290	4	<1	106	<1	53	14	64	<1
8S/2W-15H	07/06/89	500	270	2	1	108	<1	55	11	98	<1
	07/18/95	540	315	1	<1	122	<1	72	11	122	<1
	07/07/97										<2
	07/16/97										0.2 as N
	07/23/97										0.2 as N
	08/20/97		***								0.4 as N
	09/03/97										0.2 as N
	09/17/97						***				0.2 as N
	07/20/98	520	330	2	<1	120	<1	56	11	130	<2

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	S04	НСО3	NO3
No. 126	09/16/98		300								0.4 as N
8S/2W-15H	04/14/99										2
(Cont)	04/11/00						****			***	<2
	04/11/01										2
	07/12/01	530	300	2	<1	100	<1	53	12	140	<2
	06/20/02	****									<2
	08/06/02						***				<2
	01/08/03	***									0.25 as N
	11/04/03										<2
	07/22/04	520	310	1.5	ND	110	ND	59	10	120	0.27 as N
	11/03/04	***									<2
	11/02/05										<1
	11/08/06										<1
	07/03/07	530	330	1.4	<1	110	<1	62	10		<2
	11/14/07	***									1.9
	08/07/08		280								
	02/04/09		280								
	05/06/09	***	280								
	08/04/09		270								
	02/03/10		290								***
	05/06/10		390								
	07/13/10	530	300	1.6	<1	110	<1				
	08/24/10							58	11		<2
	11/03/10	***	330 300								
	02/04/11										1.5
			280								
	05/03/11		300								
	08/02/11		280								
	11/01/11		270								<2
	02/06/12		350								
	05/02/12		330								
	08/06/12		290								
	11/05/12		320								1.9
	02/05/13		290								
	05/01/13		280								
	08/01/13		290								
	08/01/13	640	310	2.4	<1.0	120	<1.0	81	13	140	2.3
	11/04/13		280								<1.0
	02/04/14		270								
	08/04/14		270								
No. 128	07/06/89	400	230	27	3	54	2	59	7	101	25
7S/3W-36M	07/08/92	390	230	21	2	59	2	55	1	110	24
	07/20/95	380	275	16	2	66	1	65	10		19
	07/07/97										15
	07/20/98	370	260	12	<1	71	1	48	11		14
	06/02/99										13
	06/08/01										14
	07/10/01	400	230	10	<1	68	<1	44	12		12
	06/20/02	400	230						12		
	01/08/03										12
	01/14/04							***			12
						67		40	44		10
	07/14/04	390	240	8.3	1	67	1	48	11	140 120 140 120 140 130 130 140 110 101 110 101 110 100 100 100	13
	01/11/05										6
	01/10/06										7.9

TABLE D-4

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled Ca Mg Na K SO4 HCO3 NO3 umhos (mg/l) CI No. 129 11/29/89 430 260 16 3 66 16 92 9 7S/2W-20L 08/08/90 440 280 20 5 64 2 72 14 119 10 04/01/92 12 09/10/93 470 275 24 6 60 74 16 110 13 08/09/96 460 270 19 3 67 2 70 15 100 02/04/97 53 12/20/00 550 330 44 13 81 47 2 14 130 20 03/22/01 ------20 20 04/17/01 ------05/02/01 ---18 06/08/01 20 ------------10/16/01 ------------19 11/13/01 18 02/26/02 05/23/02 ---16 ---------------14 09/18/02 15 No. 130 02/17/88 650 365 16 132 69 64 0 4 8S/2W-11R 02/14/91 640 365 4 <1 132 68 56 122 04/24/91 3 02/09/94 650 410 3 <1 148 81 72 146 05/16/95 ---4 02/05/97 780 450 <1 170 <1 78 82 150 5 05/14/97 04/14/99 5 5 02/10/00 750 4 ------4.1 440 <1 170 <1 76 77 170 ---04/12/00 5 ------05/25/00 6 05/24/01 6 05/24/02 5 02/19/03 820 460 <1 170 <1 87 96 180 5 05/04/04 5.1 05/12/05 5 02/14/06 800 <1 450 4.1 170 <1 83 91 200 5.1 05/12/06 4.5 ---05/01/07 4.5 05/07/08 440 4.1 ---08/12/08 470 11/09/08 560 02/11/09 4.6 840 440 <1 170 <1 91 110 150 4.8 05/11/09 480 3.5 08/31/09 ---470 ---------02/04/10 480

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Mg Location Sampled Ca Na K CI SO4 HCO3 NO3 umhos (mg/l) No. 130 8S/2W-11R 05/06/10 410 4.5 08/11/10 460 ---(Cont) 11/01/10 ---480 12/02/10 ---400 07/15/11 ---------------480 08/04/11 ---4.7 ------10/13/11 ---490 ------------___ 01/10/12 460 02/09/12 810 480 4.4 <1.0 160 1.2 80 100 180 4.0 4.2 08/08/12 ------------10/09/12 480 01/03/13 ---------500 04/08/13 ---490 07/09/13 ---460 ___ 08/15/13 ---4.2 ------------10/08/13 470 ---------01/14/14 470 04/09/14 500 07/08/14 ---480 08/07/14 4.7 No. 131 03/10/88 530 270 4 7 108 57 <1 1 52 31 1 8S/1W-12J 03/21/91 630 <1 335 120 74 65 98 3 03/03/94 660 345 9 <1 124 2 86 73 119 2 2 2 2 2 2 2 2 3 2 2 03/30/95 03/20/97 6 <1 660 370 125 81 73 100 07/07/97 ------------9 ---07/27/98 ---06/03/99 03/07/00 720 380 <1 2 81 140 80 130 06/21/00 ------------<1 ---------8 ---06/27/01 ----3 <2 <2 <2 2 3 1.7 06/05/02 03/13/03 700 390 130 1.4 88 88 130 ___ ---06/11/03 ---------06/09/04 ---06/15/05 ---03/07/06 710 9 <1 140 1.5 93 420 93 130 06/07/06 ------------06/26/07 ------2.4 06/04/08 390 ---1.5 ---------09/15/08 330 ---6 12/03/08 430 03/04/09 640 <1 71 77 370 130 1.2 130 <2.0 03/04/09 ------380 06/02/09 360 ------------<2.0 03/03/10 380 ---------06/02/10 ---2 360 09/01/10

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	S04	НСО3	NO3
No. 131	02/02/44		400								
	03/02/11		430								
8S/1W-12J	06/07/11		360								2
(Cont)	09/02/11		330	***				***		53 235 60 201 110 195 30 223 50 230 	
	12/07/11		420								
	03/02/12		410					***			
	06/05/12 09/05/12		350								1.5
	12/04/12		370		*****						
	03/06/13		370								
	06/05/13		350								
	09/04/13		360								1.8
		***	370								
	12/04/13 03/11/14		370								
	06/03/14		440								
	09/03/14		460								3.4
	09/03/14		380								
No. 132	04/18/88	1000	620	94	13	103	6	109	153	235	2
8S/1W-07D	05/08/91	920	590	64	19	110	5	100	160		<1
	05/13/94	730	460	50	15	78	5	73	110		1
	05/16/95										<1
	07/18/95	860	520	59	17	100	4	90	130	223	1
	07/20/98	900	590	69	20	110	5	89	150		2
	01/06/99										2
	02/03/99		*****								2
	04/14/99										3
	06/03/99										3
	07/27/99										5
	08/11/99										4
	09/15/99										4
	10/21/99										4
	11/02/99										3
	12/15/99										3
	05/03/00										2
	05/16/01	800	500	57	17	74	5	63	180	150	3
	05/01/02										2
	05/03/05		***								<2
	05/12/06										3.2
	05/01/07										4.7
	05/03/07	820	500	53	16	64	4.4	72	150	160	3.2
	05/06/08		670								3.6
	08/12/08		690								
	11/06/08		650								
	02/05/09		570				***				
	05/11/09		590							***	<2.0
	08/05/09		600								
	02/03/10		580								
	05/06/10	960	600	67	22	88	5.6	96	220		1.2
	08/10/10		570								
	11/01/10		610								
	02/15/11		580								
	05/04/11		590								2

TABLE D-4

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 132	08/03/11		580								
8S/1W-07D	11/02/11		510								
(Cont)	02/08/12		450								***
	05/02/12		420								3.3
	08/08/12		360								
	11/01/12		370								***
	01/29/14		520								
	02/06/14		460								
	05/15/14		510								1.5
	08/06/14		500						***		
No. 133	03/28/90	970	605	50	20	112	5	120	131	235	3
8S/1W-7C	03/11/93	970	580	48	19	120	4	110	140	204	3
	06/06/95										2
	07/18/95	850	680	26	10	142	2	120	100	174	2
	06/23/97										3
	07/20/98	790	500	24	9	140	2	96	93	170	2
	08/02/00										3
	03/28/01	800	460	22	10	130	2	98	100		<2
	08/02/01										<2
	09/18/02				****						2
	09/16/03										2
	03/12/04	810	500	25	10	130	2.4	95	99	180	2
	03/07/07	820	500	26	9.7	140	2.4	94	98		2.3
	03/03/08										2.1
	03/07/08		480								2.1
	07/08/08		470								
	01/07/09		540							235 204 	
	03/04/09							***	***		2.6
	04/02/09		460								2.0
	07/09/09		450								
	01/06/10		490								
	03/03/10	860	460	37	16	110	3.1	110	110		3
	04/08/10		490				J. I				
	07/08/10		470								
	10/06/10		460							***	
	01/12/11		490								****
	03/09/11		450								2.0
	04/05/11		460								2.9
	07/06/11		440								
	10/13/11		440								
	10/09/12		490								
	12/12/12										2.0
	01/15/13		470		***						2.8
		940		26	4.5	110	2.0	400	400		
	03/07/13	840	510	36	15	110	3.0	100	100		3.0
	04/08/13		470		***						
	07/09/13		470								***
	10/08/13		500								
	01/14/14		490								
	03/11/14										3.7
	04/09/14		530								
	07/08/14	***	540								

TABLE D-4

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	НСО3	NO3
No. 135	05/24/89	2450	1390	122	65	300	2	410	225	464	33
7S/3W-27M	06/06/90	1540	945	73	36	215	1	250	150		13
	12/11/90	4400	2670	270	109	480	4	1030	380		<1
	08/06/92	1800	810	63	33	170	1	200	160		
	01/16/97										3.7 as N
	02/04/97		***								3.5 as N
	02/12/97		***								4.0 as N
	02/20/97	***									3.4 as N
	02/25/97							***			3.4 as N
	03/04/97		***								3.7 as N
	03/18/97										3.3 as N
	03/25/97										3.5 as N
	04/08/97										3.4 as N
	04/15/97										3.4 as N
	04/22/97	***									3.5 as N
	05/06/97	1930	1050	97	48	220	2	340	190		3.3 as N
	05/14/97										3.4 as N
	05/21/97		***		***						3.3 as N
	06/04/97										3.3 as N
	06/11/97										3.3 as N
	06/18/97										3.3 as N
	06/25/97										3.3 as N
	07/02/97									464 323 314 281 360 113 92 100 100 1100 32 32	3.3 as N
	09/17/97	1960	1260					430	220		13
No. 138	10/30/90	460	240	19	2	74	2	71	13	113	18
8S/2W-6F	10/06/93	420	240	11	<1	70	1	56	10	92	14
	10/11/96	430	270	9	<1	78	1	55	8.9	100	15
	04/14/99										5
	06/03/99										3
	10/26/99	430	240	10	<1	76	1	60	11	100	19
	03/13/00	***									5
	03/22/01										17
	03/13/02										21
	06/20/02		***								16
	10/02/02	440	220	10	<1	75	1.2	58	7.8	96	17
	06/12/03										16
	12/30/04										5
	01/27/05										12
	10/18/05	430	280	11	<1	72	1.3	65	8.3	110	18
	01/06/06										17
	01/10/07									 11 32	16
	01/08/08	***		***							16
	10/08/08	430	220	12	59	82	1.1	59	11		18
	01/08/09										18
	01/12/09		280								
	04/08/09		250								

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Total Specific Dissolve Date Conductance Solids				Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
No. 138	07/06/09		240					***			
8S/2W-6F	01/06/10		250								16
(Cont)	04/08/10		270								
,	07/14/10		260					***			
	10/05/10		230								
	01/12/11		190								17
	04/06/11		290								
	07/07/11	***	250	***							
	10/04/11	440	240	10	1.0	78	1.9	62	10	110	17
	10/04/11		200		1.0						
	01/17/12		260								16
	04/03/12		280								
	10/02/12		290							***	****
	01/03/13		240								4.4
	04/03/13										14
	07/02/13		230					***			
	10/10/13		220								
			230								
	01/07/14		220								16
	04/22/14		220							***	
	07/09/14		260							***	
No. 139	12/29/87	460	295	24	7	65	1	60	11	104	7
7S/2W-32G	11/23/92	450	275	32	9	46	2	60	13	134	20
	12/19/95	500	298	36	12	50	2	72	12	156	2.8
	03/25/97		250					12			10
	03/13/00										
	03/28/01										9
	03/11/02	530	280	29	10	57	2	70	42	440	8
	03/09/04		200					73	13	140	9
	03/09/05	520		21		70	4.0	70	40	450	8
		520	310		7.7	72	1.3	78	13	150	6
	03/09/06 03/07/07										9.9
	04/15/08	 EE0	240	40	4.4		4.0			450	6.9
		550	340	40	14	43	1.9	80	10	150	14
	07/17/08		330								
	10/08/08		320								
	01/13/09		390								
	07/06/09		290								
	04/08/09		310								5.8
	05/17/10		320								
	08/09/10		340								
	10/21/10										8.9
	11/03/10		290							***	-
	02/09/11		340								
	04/21/11	570	340	39	15	45	2.3	97	16	140	12
	05/04/11	***	340								***
	07/07/11	***	350								
	08/04/11		320								

TABLE D-4

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	nical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	НСО3	NO3
N= 420	40/05/44										
No. 139	10/05/11	***									6.1
7S/2W-32G	11/02/11		310								
(Cont)	02/09/12	***	330								
	05/02/12		320								****
	08/09/12		310								***
	10/02/12		***								5.4
	11/02/12		360								
	02/07/13		320								
	05/02/13	***	300							***	
	08/13/13		330								
	10/10/13										4.9
	11/07/13		340							***	
	02/05/14		310								
	04/09/14	560	370	32	13	64	1.8	92	13	150	5.2
	05/20/14		300				1.0				
	08/07/14		370								
	00/01/14		370								
No. 140	02/18/88	560	325	33	10	65	2	77	14	153	13
7S/2W-33F	01/15/92	450	235	11	2	88	1	68	18	107	2
	02/28/95	560	325	36	11	58	2	94	14	140	12
	03/25/97										8
	02/27/98	650	360	31	11	76	2	95	16	130	5
	09/17/98							***			8
	05/16/01										11
	02/01/01	650	370	31	12	72	2	110	21	150	4
	05/24/02										7
	04/05/05	680	390	37	16	69	2.3	140	18	150	4
	04/06/06										4.4
	04/24/07										3
	04/08/08	630	340	26	9.5	79	1.9	110	21	140	
	04/08/08		350		9.5		1.9				2.7
	07/07/08										2.7
			360								
	01/07/09		400		***						
	04/15/09		380								4.6
	07/06/09		360								***
	01/06/10		350								
	04/08/10		350								2.1
	07/14/10		360					***			
	10/05/10		350								
	01/12/11		280								
	04/05/11	640	360	26	9.4	82	1.9	100	19	130	2.4
	04/05/11		340								2.7
	10/05/11		360							***	
	01/17/12		380								
	04/03/12		390								
	10/02/12		370								
	01/21/14		380								
	03/12/14										2.8
	04/03/14	660	330	32	12	84	2.1	120	23		
	04/03/14	000									3.2
			330								3.3
	07/08/14		380								***

TABLE D-4

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	nical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	HCO3	NO3
No. 141	01/06/88	780	440	64	11	82	3	65	91	217	13
8S/2W-11P	01/30/92	820	500	63	13	95	3	79	110	238	19
	03/30/95	840	490	58	11	100	3	70	97	241	14
	03/25/97										15
	03/26/98	760	480	62	12	90	3	69	86	230	16
	01/04/99										14
	02/12/99										19
	10/21/99										17
	11/03/99										14
	12/14/99										14
	06/20/00										15
	01/04/01	700	450	52	6	84	3	75	70	190	15
	- 09/28/01										18
	11/08/02										15
	09/16/03										19
	01/13/04	760	490	65	11	84	3.1	70	90	220	21
	01/06/05										18
	01/06/06										16
	06/04/08		410				***			***	11
	12/05/08		480								
	03/04/09		440								
	06/02/09		390								10
	01/05/10	760	450	62	8.1	84	3.5	77	68	200	16
	03/03/10		480								
	06/02/10	***	400								13
	09/01/10	***	370								
	01/12/11		460								
	04/05/11		420								
	06/07/11	***									12
	07/06/11		360								
	10/11/11		420	***							
	01/10/12		400								
	04/03/12		510								
	06/05/12										12
	10/09/12		400				***				
	01/03/13		490	~~~				***			
	01/03/13	830	490	70	10	89	3.6	80	81	220	17
	04/17/13		460				3.0			220	
	06/06/13		400								13
	07/09/13		450								
	10/08/13		390								
	01/28/14		520								~
	04/09/14		420								
	06/03/14										16
	07/09/14		400								16
	01/09/14	***	400								

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
No. 143	01/15/88	670	345	0	2	404		04		0.5	44
8S/2W-17J				8	2	134	1	91	57	95	11
03/200-173	10/17/90	660	345	25	4	112	2	89	62	140	12
	03/03/94	690	370	24	3	114	2	93	68	131	11
	03/30/95 03/25/97	600		4.5		440					11
	07/18/97		330	15	2	110	1	87	44	89	9
	07/18/97										2.0 as N
	08/20/97										2.0 as N
	09/03/97								***		2.3 as N
	09/17/97								***		2.2 as N
	09/17/98		350		***				-		2.0 as N
	10/21/99		350								2.3 as N
	03/07/00	730	400	24		400				440	13
	10/13/00	730	400	21	3	120	2	84	68	140	12
	10/13/00										8
	11/19/02								-		8
	01/13/03								***		10
	03/10/03	650	270	11	1.0	440				400	2.1 as N
	01/07/04		370	14	1.9	110	1	92	52	130	10
	01/18/05										12
	01/16/05						***				10
	06/08/06	560	270	0.5	4.0	400			-0.5	400	8.7
	01/10/07		270	9.5	1.3	100	1	86	<0.5	100	7.2
	01/10/07						***				7.3
	01/08/09									-	7.1
	02/04/09		200			****					9
	05/11/09		300 290							AT 700 TE	
	08/05/09		300								
	01/05/10										
	02/04/10		320								6.5
	05/06/10		330								
	08/13/10		280								
	11/01/10		350								
	01/13/11						***				0.4
	02/09/11		320								9.1
	05/04/11		300								
	08/03/11		320								***
11/02/11 01/06/12	370							****			
			200				***				7.2
	02/09/12		300					***			
	05/10/12	 E40	300	7.0	4.4	400	4.0	70			
	06/05/12	540	320	7.3	1.1	100	1.0	73	21	100	5.9
	08/07/12		310					***			

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	HCO3	NO3
No. 143	11/01/12	***	290	***	***						
8S/2W-17J	01/03/13										8.5
(Cont)	02/10/13		360							33 92 33 186 170	
` ,	05/02/13		290								
	08/19/13		330								
	11/07/13	***	290								
	01/09/14										6.4
	02/05/14		280								
	05/06/14		270								
	08/08/14		260								
No. 144	09/14/88	610	335	8	<1	114	1	95	33	92	<1
7S/3W-27D3	12/19/95	730	420	34	1	124	1	120	33		<1
	12/20/00	690	400	28	1	120	<1	120	35		<2
	05/22/01										<2
	08/20/02	***									<2
	08/27/03										<2
	12/16/03	630	420	33	1.8	110	1	110	28	170	<2
	08/12/04										<2
	10/11/05										2
	12/07/06	670	370	21	1	98	1.2	110	27	150	<1
	08/07/07										<2
	08/11/08		320							92 186 170 150 150 150	<2
	02/09/09		340								
	05/08/09		360								
	08/05/09		370								<2
	02/04/10		380								-
	05/06/10		410								
	08/10/10		370								<2
	11/10/10		400								
	02/02/11		340								
	05/04/11		350								
	08/09/11		340								<2
	11/02/11		320								
	02/08/12		320								
	05/03/12		340	***							
	08/09/12		330								<1.0
	11/02/12		370								
	12/04/12	660	350	23	1.2	110	<1.0	100	26	150	<1.0
	02/06/13		350								
	05/03/13		360								
	08/14/13		340								<1.0
	11/07/13		350								
	02/05/14	***	340								
	05/14/14		340								
	08/07/14		340		-						<1.0

TABLE D-4

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
N- 445	40/04/00										
No. 145	10/04/90	800	490	43	8	110	2	110	78	171	<1
7S/3W-28C	10/06/93	650	375	23	3	106	1	85	58	146	<1
	11/27/96	650	340	26	2	110	1	87	48	150	<2
	02/04/97	670	370	24	2	110	1	87	55	160	<2
	01/28/98	***									<2
	01/04/99										<2
	10/26/99	690	400	29	3	110	1	96	61	170	<2
	01/06/00								****		<2
	01/25/01										<2
	01/18/02										<2
	10/09/02	690	390	26	2.3	110	1.2	94	52	160	<2
	01/15/03										<2
	01/07/04										<2
	01/13/05										<2
	10/11/05	680	430	33	2.7	120	1.4	100	54	180	<1
	10/18/05	700	440	34	2.8	120	1.5	100	59	180	<1
	04/13/06										<1
	01/19/07										<1
	01/04/08	***									<2
	08/11/08		360								
	10/08/08	720	400	37	3.2	100	1.3	95	56	150	ND
	01/06/09										ND
	02/03/09		390								
	05/08/09		410								
	08/05/09		400								
	01/07/10		***								<2
	02/04/10		400								
	05/07/10		470								
	08/10/10		390								
	11/10/10		410								
	01/12/11										<2
	02/09/11		390								
	05/05/11		380								
	08/04/11		360								
	10/05/11	670	380	28	2.6	110	1.6	100	49	160	<2
	11/10/11		400						***		
	01/12/12										<1.0
	02/08/12		510		***						
	05/17/12		440								
	08/09/12		410								
	11/06/12		600							****	AT 10 AT
	01/16/13										<1.0
	02/07/13		400								
	05/03/13		390								
	08/14/13		370								

ND- None Detected

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled umhos (mg/l) Ca Mg Na κ CI SO4 HCO3 NO₃ 11/07/13 390 7S/3W-28C 01/28/14 ------------<1.0 ---(Cont) 02/11/14 350 ------05/21/14 440 ---08/19/14 370 No. 146 12/10/96 900 57 500 23 98 <1 100 64 280 15 7S/3W-28 03/02/00 4 No. 149 06/15/93 5 8S/1W-2C 10/10/01 4 03/11/02 1040 610 61 23 120 4 100 170 250 4 12/11/02 3.2 01/23/03 03/12/03 1000 600 59 22 120 3.7 100 170 230 3 01/13/04 ------4 01/11/06 2.5 03/09/06 940 580 56 21 87 110 3.8 160 220 27 01/24/07 ---2.4 ------03/11/08 550 ------------07/08/08 590 01/08/09 590 2.6 900 03/04/09 590 52 20 100 3.6 93 170 210 2.5 04/02/09 570 ---------07/13/09 ---560 ---------01/07/10 ------___ 570 2.6 ... 04/08/10 ---570 ---------------05/12/11 ------2 ---------------08/03/11 600 ---11/09/11 620 ---02/09/12 580 03/02/12 970 59 20 4.4 95 2.3 600 99 180 190 05/03/12 600 ------2.0 08/08/12 ---610 ------___ 11/01/12 ---------620 -------02/10/13 600 ------------05/14/13 610 1.8 ------08/15/13 580 ---11/06/13 560 ---------02/06/14 ------580 05/08/14 ---620 ---___ ---4.8 08/07/14 560 No. 149A 08/26/88 950 540 71 211 96 115 47 302 1 18 7S/3W-28A 10/31/91 800 480 36 3 13 122 93 110 195 No. 150 09/29/88 1950 1235 134 29 225 2 290 220 390 15 7S/3W-27P 12/21/91 1000 590 74 17 108 4 130 110 207 No. 151 07/25/91 860 485 53 16 103 4 90 130 183 8S/2W-2G 07/28/91 730 400 39 12 100 91 ___ 3 58 177 07/29/91 2 600 340 9 122 63 5 34 204 10/17/91 510 3 295 <1 45 10 118 137 08/10/94 550 340 3 <1 110 1 59 22 119 <1 06/16/97 <2 08/14/97 540 300 2 <1 110 <1 44 10 160 <2 09/16/98

TABLE D-4

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	nical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	HCO3	NO3
No. 151	01/06/00	510	300	1	<1	110	<1	33	4.6	180	<2
8S/2W-2G	01/06/05										<2
(Cont)	05/12/09	530	380	1	1	110	<1	36	7.7	140	<2.0
, ,	05/05/10						-				<2
	10/28/10		290								
	12/01/10		290								
	03/09/11		310								
	05/03/11							***			<2
	06/02/11	***	280								
	09/06/11		310							****	
	12/06/11		300								
	03/05/12		290							***	
	05/02/12	490	300	1.3	<1	110	<1	38	4.2	180	<1
	06/05/12		240								
	09/04/12		300								***
	12/03/12		290							***	
	03/06/13		260								
	05/01/13										<1.0
	06/05/13		260		***					***	-1.0
	09/03/13		280								
	01/29/14	***	340								
	03/13/14		280								
	05/01/14										<1.0
	06/02/14		290								~1.0
	09/03/14		280								
No. 151 7S/3W-34B	09/20/88 Abandoned	5780	3410	280	114	840	5	1660	670	369	<1
No. 152	01/11/02	860	550	64	20	77	6	75	190	160	<2
8S/1W-5K2	01/08/03										<2
	01/07/04										<2
	01/24/05	850	510	71	25	77	4.6	85	190	160	<2
	01/04/06										1.1
	01/10/07										<1
	04/08/08		510								
	01/02/09		580								ND
	04/06/09		620								
	07/13/09		610								
	01/06/10		740								1.7
	04/19/10		670								
	07/08/10	***	620					***			***
	10/07/10		580								
	01/11/11		710				***				3.8
	04/13/11		490		****						J.0
	07/12/11		460		***						
	10/06/11		420			***	***				
	01/11/12		270								<1.1
	04/12/12		330								~1,1
	10/10/12		420								
	11/28/12	760	590	54	20	70	5.2	80		170	1.4
ND - None Detected	. 1120/12	, 00	000	J-4	20	70	0.2	50	110	110	1.4

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Mg Ca Location Sampled SO4 HCO3 umhos (mg/l) Na K CI NO3 01/09/13 1.8 8S/1W-5K2 04/11/13 380 ---(Cont) 07/10/13 530 ---10/16/13 540 01/16/14 850 65 24 77 510 4.7 74 180 140 <1.0 01/16/14 540 <1.0 04/02/14 510 ___ ___ ---___ 07/03/14 550 ---No. 153 12/29/93 804 485 120 18 92 86 214 <1 8S/1W-5K3 04/13/99 880 540 63 23 79 5 68 220 150 <2 04/11/00 06/14/01 <2 63 22 17 75 04/02/02 820 140 500 4.2 80 190 <2 04/14/05 700 65 410 44 76 110 3 3 140 04/04/06 ---2.3 ---------------04/04/07 <2 04/08/08 920 560 62 23 79 4.3 100 170 170 1.9 01/02/09 570 ------04/06/09 610 <2.0 ---07/13/09 ------590 01/06/10 560 ------------04/08/10 1 610 ------07/08/10 ---590 ------------17 ------10/07/10 540 01/11/11 640 04/13/11 850 520 45 93 3.8 92 130 170 ---------2 04/13/11 490 ------------07/12/11 450 10/06/11 380 ---01/11/12 ___ 280 ---04/12/12 300 ---<1.0 ---------------10/10/12 ---390 ------01/09/13 420 ------04/11/13 390 <1.0 ---07/10/13 470 10/16/13 540 ---01/15/14 550 04/02/14 880 62 78 560 23 80 4.2 150 180 <1.0 04/02/14 540 ------07/03/14 550 ---No. 154 01/28/94 930 530 46 20 106 6 89 130 214 3 8S/1W-5L2 No. 155 09/16/93 680 355 22 2 108 90 64 104 <1 7S/3W-28C 02/23/95 760 445 30 3 126 1 120 82 140 4 06/06/95 ---08/14/97 4 02/25/98 5 880 540 43 5 130 1 100 100 190 07/27/98 ---3 2 2 02/09/00 09/13/00 690 410 23 2 120 100 72 130 ---02/14/01 02/21/02 ---2 02/28/03 <2 01/07/04 600 360 10 <1 120 100 60 100 <2

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	nical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	HCO3	NO3
No 155	00/00/04										_
No. 155	02/23/04	***									6
7S/3W-28C	10/11/05										2
(Cont)	02/16/05								***		5
	02/07/06		***							4 HCO3	4.9
	02/07/07										2.5
No. 156	08/11/08	670	350	48	13	78	2.2	70	62	190	1.9
7S/3W-18	08/11/08		370								1.7
	05/08/09		400							62 190	
	08/05/09		410								1.5
	02/03/10		370								
	05/07/10		470								
	08/10/10		390				****				<2
	11/10/10	****	410								
	02/09/11		410								
	05/04/11		400								
	08/04/11	660	380	44	11	72	1.8	75			2
	08/04/11		380								1.4
	11/10/11		390								
	02/08/12		340								
	05/03/12		360				***				
	08/09/12		360								1.3
	11/02/12		420								1.5
	02/06/13		390								
	05/02/13		370								
	08/14/13		370								1.2
	11/07/13		390								1.2
	02/05/14		390								***
	05/23/14		400								
	08/07/14	650	380	42	11	78	1.8	86	62		1.5
No. 157	0.4/4.2/00	000	200	50	0.4	440	~				_
	04/13/99	930	600	59	21	110	7	95	150		<2
8S/1W-5L	04/11/00										2
	06/14/01										<2
	04/02/02	830	520	60	22	78	4.1	78	190		<2
	04/14/05	720	420	47	18	69	3.2	74	120		2
	04/04/07										<2
	04/08/08	1100	640	68	24	110	4.3	130	170	230	2.6
	07/08/08		580								
	01/02/09		560								
	04/06/09		640								<2.0
	07/13/09		590								
	01/07/10		660								
	04/08/10		620								<2
	07/08/10		610								
	10/07/10		540								
	01/11/11		590								
	04/13/11	830	520	49	17	84	3.4	89	120	180	<2
	04/13/11		490								<2
	07/12/11		460								
	10/06/11		370	***							

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled Ca umhos (mg/l) Mg Na Κ CI SO4 HCO3 NO3 01/11/12 260 8S/1W-5L 04/12/12 ---330 ---------------------<1.0 (Cont) 10/10/12 360 11/28/12 930 530 68 25 82 5.1 110 110 230 1.1 01/09/13 470 04/11/13 370 ---1.1 07/10/13 ---------480 ... 10/16/13 ------___ ___ ---510 ---01/16/14 510 ---___ 04/02/14 960 540 66 24 79 81 160 1.2 4.1 190 04/02/14 560 07/03/14 560 No. 158 06/21/94 1090 620 67 23 124 7 120 170 259 8S/1W-5K 04/14/99 1050 660 63 24 120 7 110 160 270 <2 04/11/00 ---------------2 06/14/01 <2 2 04/02/02 900 550 61 22 92 5.7 93 190 180 04/14/05 800 450 51 19 79 4.6 83 150 160 04/04/06 3.9 ---04/04/07 4.6 04/08/08 1300 760 77 25 140 6.4 150 180 280 3.5 07/08/08 750 ------------01/02/09 640 ___ 04/06/09 650 <2.0 ------------07/13/09 ------670 ---01/06/10 810 ------------------------04/08/10 800 ------1.5 ---------------07/08/10 680 ---10/07/10 750 ---01/11/11 710 870 97 2 2 04/13/11 43 16 100 4.8 180 510 130 04/13/11 530 ----------___ 07/12/11 ------610 ------___ 10/06/11 ---------570 ------------------02/09/12 520 ---------04/12/12 <1.0 ---05/02/12 460 ---------08/08/12 550 ---------11/01/12 740 02/12/13 470 ---------04/11/13 ---------1.3 ------05/14/13 620 ------------------08/14/13 ---------710 ------11/06/13 720 ------02/06/14 710 04/02/14 1200 700 70 25 120 6.2 120 170 250 1.7 05/08/14 660 ---08/06/14 480 ---No. 201 03/28/91 530 315 19 6 83 2 83 16 110 2 7S/2W-27J 03/11/93 460 300 8 2 87 51 20 146 <1

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Ca Sampled Mg Na K CI SO4 HCO3 NO3 umhos (mg/l) No. 202 12/11/88 740 440 47 18 3 97 48 223 17 84 7S/2W-36J1 No. 203 05/18/88 960 580 50 39 110 96 115 275 8S/1W-6P1 06/29/88 970 530 44 36 112 120 123 250 5 06/12/91 800 415 21 17 108 3 91 90 174 2 06/22/94 980 645 59 38 99 4 130 130 256 06/07/95 5 06/23/97 880 31 530 26 3 120 100 110 230 08/14/97 3 11/02/99 06/22/00 820 580 94 18 58 63 110 250 22 07/12/00 08/08/00 880 570 43 33 120 3 100 130 240 ------6 ------11/22/00 5 11/20/01 ---------------------___ 5 11/08/02 ---------------4 01/08/03 .90 as N 06/10/03 850 460 31 23 100 2.2 92 100 220 5 11/04/03 11/18/04 06/08/06 940 39 32 540 110 3 100 130 220 5.5 06/01/07 ------5.1 06/04/08 520 ------___ 4.3 09/16/08 450 ---------___ ------12/02/08 ------500 ---03/04/09 470 ---06/01/09 440 2.7 ---03/03/10 460 ---06/02/10 490 ---------3.3 09/01/10 440 ------------12/08/10 450 ---------------03/31/11 490 ---06/02/11 ---430 ------3.2 ------09/02/11 420 ------------12/07/11 450 06/05/12 740 430 19 15 110 2.3 72 94 180 3.2 09/05/12 ------440 12/05/12 ---------410 03/06/13 420 ------------06/05/13 400 ------2.7 ---09/05/13 ------430 ------12/05/13 440 ---___ ---------03/11/14 430 ---06/03/14 480 4.4 09/04/14 440 No. 204 05/22/91 740 425 50 12 85 3 120 18 198 19 7S/2W-26G 05/13/94 690 375 3 37 85 130 19 125 19

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Specific I Date Conductance					Chem	ical Cons	stituents	- mg/l		
Location	Sampled	umhos	Solids (mg/l)	Ca	Mg	Na	К	CI	SO4	нсоз	NO3
No. 205	03/28/88	500	290	23	3	81	2	83	27	107	21
7S/3W-35A	03/13/91	490	275	22	3	75	2	62	23	113	21
	03/03/94	510	275	20	2	72	2	72	24	104	20
	04/26/95										22
	03/25/97	480	270	20	2	75	2	66	18	110	21
	05/09/01	410	270	21	3	67	1	60	17	120	23
	11/13/01									120	21
	02/19/02										20
	05/14/02										18
	08/27/02										20
	11/20/02										18
	01/08/03									***	
	03/31/03										4.5 as N
			***								18
	06/11/03										18
	09/16/03	***		~~~							21
	12/04/03										20
	03/09/04										18
	06/09/04					***					18
	09/01/04										19
	12/07/04										20
	03/08/05										21
	06/07/05										17
	09/13/05										16
	12/05/05									***	15
	03/09/06										17
	06/07/06		***								17
	04/15/09	500	290	19	2	71	1.4	68	18	120	20
	07/14/09		270								20
	01/06/10		280								17
	04/08/10										14
	04/20/10		290								
	07/20/10	***	260								16
	10/05/10		240								15
	01/04/11		210								19
	04/12/11	***	280								15
	07/08/11		260								14
	10/04/11		260								16
	01/12/12		250								16
	04/03/12		300								18
	04/24/12	470	260	16	1.4	73	1.6	70	18	98	16
	10/02/12		240		1.4						15
	01/03/13	***	270							15	
	04/03/13		250							14	
	07/02/13		270								
										18	
	10/02/13	***	280								16
	01/07/14		280								14
	04/15/14		280								15
	07/03/14		280								14

TABLE D-4

Site Location	Date Sampled	Specific Conductance umhos	Total Dissolved Solids (mg/l)	Chemical Constituents - mg/l								
				Ca	Mg	Na	К	CI	SO4	НСО3	NO3	
No. 207	09/01/88	510	245	1	<1	108	<1	54	26	82	<1	
8S/2W-14B	09/14/88	480	305	3	<1	106	<1	58	23	24	1	
	08/14/91	480	245	1	<1	100	<1	52	28	55	<1	
	08/10/94	440	285	2	<1	91	1	56	29	76	2	
	08/15/97	510	280	2	<1	97	<1	52	25	98	<2	
	07/27/98										2	
	12/27/00	480	280	2	<1	100	<1	53	30	120	2	
No. 208	09/01/88	680	415	44	15	77	3	119	14	186	18	
7S/2W-35M	09/14/88	690	440	44	14	77	3	129	14	183	16	
	08/14/91	600	340	23	7	89	2	85	18	162	4	
	08/10/94	560	370	22	6	89	2	93	20	156	5	
	06/06/95										4	
	08/12/96										2	
	07/27/99										15	
	08/18/99										20	
No. 209	05/22/91	790	435	40	14	105	2	150	35	162	8	
7S/2W-28J	05/13/94	760	525	64	22	48	3	150	15	153	25	
	06/20/95										5	
	05/15/97	690	390	10	3	130	<1	110	56	130	1.3	
No. 210	04/15/59	1366		101	23	150	10	149	200	275	3	
8S/2W-12K	01/18/63	400	926	99	30	17.5	4.5	145		329	4	
	11/30/67	1415	890	136	5	152	10	146	230	305	3	
	07/26/68	1250	825	96	22	144	8	130	190	290	5	
	09/06/68	1310	840	82	26	132	5	142		276	12	
	07/19/73	1200	579	84	21.4	149	6.8	122		301	19.7	
	08/08/75	1140	695	84	14	150	6	101	190	287	15	
	06/22/76	1240	675	76	26	142	7	101	205	278	36	
	10/13/76	1120	640	92	22	100	6	110		262	5	
	06/16/77	1130	610	84	18	114	6	110		259	11	
	05/20/80	580	340	30	8	75	4	51	67	152	9	
	04/03/86	800	540	65	17	86	4.5	75		235	3.5	
	07/15/86	830	560	72	19	86	4	87	118	250	4	
	03/28/88	1030	575	76	22	93	5	99		247	4	
	09/25/91	1040	600	74	20	120	5	120		238	5	
	09/19/94	645	460	52	14	79	4	70	100	198	2	
	09/16/96						****				3	
	09/16/98		***								3	
	12/15/98										2	
	01/04/99										2	
	02/03/99										2	
	04/08/99										3	
	06/02/99										3	
	09/07/99										4	

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

No. 210		•		Total Dissolved Solids (mg/l)			Chem					
88/ZW-12K (Cont) 12/15/99 — — — — — — — — — — — — — — — — — —					Ca	Mg	Na	K	CI	SO4	HCO3	NO3
85/2W-12K (Cont)	No. 240	40/04/00										_
(Cont)												5
09/13/00 830 560 64 17 100 4 74 190 180												5
05/08/01	(Cont)											5
05/13/02												4
01/08/03												4
08/20/03												3
09/18/03 830 560 65 18 78 4.5 76 180 160 08/10/04												.52 as N
08/10/04												2.2
08/02/05												2
08/15/06												3.2
08/14/07												5.4
08/12/08												6.7
03/05/09 570												12.0
06/02/09 570												7.6
08/05/09												***
03/03/10 600				570								
06/02/10 600								***				4.9
08/11/10												
No. 211 No.				600								
12/08/10 590												3.6
No. 211 No.												
No. 211 06/08/11 06/08/11 06/08/11 06/08/11 06/08/11 06/09/12 05/02/12 05/02/12 08/09/12 09/05/12 840 530 60 19 84 56 86 150 180 11/01/12 09/05/13 08/15/13 08/15/13 08/15/13 08/15/14 08/06/14 04/08/97 720 400 67 14 54 12/23/97 410 08/05/98 06/03/98 06/03/98 09/17/98 09/17/98 09/17/98 09/17/98 12/11/98 04/04/00 04/04/00 700 430 71 45 12/14/99 310 04/04/00 700 430 71 14 52 15 76 6220 06/22/00												
No. 211												
No. 211							~~~					
No. 211 04/08/97 720 400 67 14 54 1 59 65 220 88/2W-20R1 12/23/97 - 410 3.1 as 03/25/98 06/05/98 - 480												3.8
No. 211 04/08/97 720 400 67 14 54 1 59 65 220 88/2W-20R1 12/23/97 410				560								
No. 211 04/08/97 720 400 67 14 54 1 59 65 220 88/2W-20R1 12/23/97 410												
No. 211											***	
No. 211 04/08/97 720 400 67 14 54 1 59 65 220 88/2W-20R1 12/23/97 410 3.6 ac 06/05/98 480 3.3 ac 12/11/98 430 3.3 ac 12/11/98 430 3.3 ac 12/11/99 310			840	530	60	19	84	5.6	86	150	180	12
No. 211 04/08/97 720 400 67 14 54 1 59 65 220 88/2W-20R1 12/23/97 410 3.6 as 06/03/98 620 3.4 as 12/17/98 430 3.3 as 12/17/98 430 3.4 as 12/17/98 430 3.4 as 12/17/98 430 3.4 as 12/17/98 430 3.4 as 12/17/98 430												2.8
No. 211 04/08/97 720 400 67 14 54 1 59 65 220 88/2W-20R1 12/23/97 410 3.6 as 06/03/98 480 3.4 as 12/11/98 430 56 66 06/03/99 430 56 66 3.4 as 12/11/98 310 56 66 220 3.4 as 12/11/99 310 3.4 as 12/11/99 310		02/12/13		460								
11/14/13 440				420								
No. 211				420								
No. 211		11/14/13		440								2.4
No. 211 No. 211 8S/2W-20R1 12/23/97				430								
No. 211 04/08/97 720 400 67 14 54 1 59 65 220 8S/2W-20R1 12/23/97 410 3.1 a: 03/25/98 620 3.6 a: 06/03/98 480 3.3 a: 06/05/98 480 3.3 a: 09/17/98 430 56 66 3.4 a: 06/03/99 430 3.4 a: 06/03/99 310		05/15/14	***	480								
88/2W-20R1 12/23/97 410 3.1 ar 3.2 ar 3.2 ar 3.2 ar 3.3		08/06/14		440								
03/25/98 620 3.6 ar 06/03/98 3.4 ar 06/05/98 480 56 66 3.3 ar 12/17/98 430 56 66 06/03/99 430 56 66 3.4 ar 06/03/99 310 57 66 220 06/22/00 400			720		67	14	54	1	59	65	220	13
06/03/98 3.4 a: 06/05/98 480 3.3 a: 09/17/98 56 66 12/17/98 430 56 66 06/03/99 430 3.4 a: 12/14/99 310 3.4 a: 04/04/00 700 430 71 14 52 1 57 66 220 06/22/00 400	8S/2W-20R1											3.1 as N
06/05/98 480 3.3 at 12/17/98 430 56 66 06/03/99 430 56 66 3.4 at 12/14/99 310 3.4 at 12/14/90 700 430 71 14 52 1 57 66 220 06/22/00 400		03/25/98		620								3.6 as N
09/17/98 3.3 at 12/17/98 430 56 66 3.4 at 12/14/99 430 3.4 at 12/14/99 310 3.4 at 12/14/90 700 430 71 14 52 1 57 66 220 06/22/00 400												3.4 as N
12/17/98 430 56 66 06/03/99 430 56 66 3.4 a 12/14/99 310 57 66 220 06/22/00 400		06/05/98		480								
12/17/98 430 56 66 06/03/99 430 5 5 3.4 a: 12/14/99 310 57 66 220 06/22/00 400		09/17/98					***					3.3 as N
06/03/99 430 3.4 a 12/14/99 310 04/04/00 700 430 71 14 52 1 57 66 220 06/22/00 400		12/17/98		430					56	66		16
12/14/99 310 04/04/00 700 430 71 14 52 1 57 66 220 06/22/00 400		06/03/99										3.4 as N
04/04/00 700 430 71 14 52 1 57 66 220 06/22/00 400		12/14/99	***									10
06/22/00 400		04/04/00	700		71	14	52	1	57		220	17
												15
												4.5 as N
												4.5 as N

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled Ca Mg HCO3 umhos (mg/l) Na Κ CI SO4 NO₃ No. 211 06/20/01 2.7 as N 8S/2W-20R1 09/13/01 ------4.7 as N (Cont) 11/13/01 ---450 ---------05/14/02 370 12 07/15/03 630 370 61 11 46 1.2 46 51 220 11 12/09/08 480 ---22 ---03/09/09 ---560 17 06/02/09 ---------480 14 ---01/12/10 ---360 ---6.3 04/15/10 ---500 ---------------------16 ---07/21/10 510 ------15 ---10/07/10 540 ------14 01/18/11 ---550 ___ 15 04/06/11 ---560 16 07/07/11 520 13 09/01/11 840 86 16 56 1.2 460 66 100 260 13 10/12/11 14 14 ---420 ---------------01/10/12 520 ---___ ---04/18/12 510 ---------14 ---10/02/12 13 520 ------01/10/13 520 ---13 ---04/17/13 510 ---12 ---07/03/13 540 14 10/03/13 550 ---------14 01/28/14 ---560 ------15 ---04/16/14 ---430 ---------------11 07/10/14 590 14 09/04/14 840 92 17 60 1.3 67 100 260 13 No. 212 03/28/88 640 330 42 2 74 3 81 33 146 14 8S/2W-11N 09/25/91 600 320 41 2 82 86 35 146 14 No. 215 08/15/90 650 380 40 13 71 3 100 14 162 11 7S/2W-34M 09/26/90 13 06/22/94 41 630 400 13 67 2 16 159 110 11 06/16/97 630 370 29 9 2 81 110 16 160 6 08/15/97 08/11/04 630 380 35 12 76 2.6 100 14 150 <2 09/09/04 ---9 06/26/06 ---------------6.6 06/05/07 2.4 08/14/07 590 22 320 7.3 85 2.2 88 16 150 2.2 12/02/08 370 ---------------------03/09/09 ---380 ---------------------06/04/09 ---------300 ------03/04/10 340 ------06/18/10 340 ---08/18/10 580 330 20 6.5 79 1.9 82 16 150 2.5 09/03/10 330 ---------2.2 12/17/10 ---350 03/15/11 250 ---------------------06/07/11 320 ---------------------12/06/11 320

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 216	06/01/88	480	280	25	4	65	2	71	11	134	
8S/2W-7W	06/29/88	480	275	29	5	59	3	81	7	110	26
	06/12/91	500	285	30	5	59	2	76	9	113	23
	05/27/92	470	285	33	6	53	2	72	10	119	20
	04/25/01	490	300	28	4	55	2	74	13	120	12
	09/21/04	540	320	31	5.6	53	2.1	74	10	130	14
	10/26/04										15
	11/02/04										15
	11/10/04										16
	10/18/05										19
	10/12/06									***	19
	09/07/07	510	300	28	4.7	57	3.5	82	12	110	18
	10/03/07										17
	04/23/09										14
	03/18/10		370								
	04/08/10	****									12
	06/10/10		380								
	09/01/10	***	340								
	09/01/10	570	320	41	6.9	58	2.3	86	16	130	16
	12/08/10		360								
	12/14/10		390								
	06/08/11	***	390								
	08/10/11										15
	12/08/11		400								
	06/08/12		420								
No. 217	03/28/88	580	285	8	1	108	1	81	20	113	15
8S/2W-17M1	08/10/88	570	280	8	1	105	1	82	20	55	13
	08/14/91	570	305	17	2	99	2	74		134	16
	08/10/94	610	365	20	3	97	2	82	38	134	16
	08/15/97	660	370	20	3	107	1	80	41	130	13
	05/09/00										15
	10/12/00	650	380	19	2	110	1	81	49	150	16
	05/14/01										17
	05/14/02										12
	10/15/03	690	400	25	3.3	110	1.6	84	58	150	16
	05/06/04		****								17
	05/11/06										15
	05/15/07										16
	05/06/08		400								14
	08/12/08		430								
	05/11/09		400								13
	08/05/09		400								
	02/02/10		390								****
	05/06/10		480								17
	08/09/10		470		****						
	11/16/10		420								

TABLE D-4

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	НСО3	NO3

No. 217	02/02/11		410								
8S/2W-17M1	05/04/11		440								15
(Cont)	08/02/11	***	440							***	
	11/03/11		400								
	02/07/12		420								
	05/02/12		440								16
	08/07/12		450								
	10/02/12	790	440	31	4.0	120	1.7	89	79	170	16
	11/01/12	***	440								
	02/06/13		440					***			
	05/02/13		440								17
	08/19/13		470								
	11/05/13		450				****				
	02/05/14		420								
	08/08/14		470								
			470								
No. 231 8S/2W-20B6	08/15/90 09/26/90	1280	805	126	18	120	5	100	310	244	9
03/200-2000		1700	4070	400		400		440			6
	03/04/92	1700	1270	180	51	160	6	140	510	332	5
	06/20/95	1640	1300	171	44	124	6	75	520	287	5.3
	02/27/98										3
	05/16/00										5
	05/24/01	1490	1080	140	35	120	5	120	340	330	3
	05/13/02										2
	07/12/05										2.2
	07/20/06	No. of Contract and									3.7
	05/02/07	1400	830	120	27	110	4	130	250	300	2.1
	03/07/08		900				****				2.4
No. 232	08/15/90	960	590	71	19	110	5	98	130	235	30
8S/2W-11J3	09/26/90										35
	09/25/91	980	565	74	19	106	5	98	120	244	37
	09/19/94	805	495	54	14	92	4	80	110	207	15
	09/13/96										22
	11/04/97	1000	660	76	20	110	4	97	130	230	29
	07/27/98										38
	12/10/98	***									22
	01/06/98										30
	01/29/99			~~~							10
	02/03/99		***								26
	02/24/99										37
	04/08/99				***						33
	04/21/99										34
	06/23/99						***				33
	07/08/99										36
	08/25/99										33
	09/21/99										33 31
	10/06/99										
	11/17/99										30
	12/14/99										32
	12/14/33										32

TABLE D-4

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	К	CI	SO4	нсоз	NO3
No. 232	01/18/00									****	31
8S/2W-11J3	02/29/00										10
(Cont)	03/21/00										25
()	04/11/00										29
	05/25/00										26
	06/21/00										26
	07/11/00							***			25
	09/13/00	920	590	65	17	105	4	91	150	210	21
	10/06/00									210	18
	11/08/00	***									17
	12/13/00										20
	01/04/01										19
	02/28/01										10
	04/10/01										20
	10/10/01										26
	05/14/02										22
	08/06/02										4*
	01/08/03					~~~					6.0 as N
	03/31/03										
	06/10/03										11 31
	07/08/03										
	08/20/03										30 28
	09/16/03	1100	680	67	18	110	4.3	100	150	240	33
	10/14/03	1100			10	110				240	
	01/14/04										31
	02/10/04										23
	04/14/04							***			21
	05/06/04	***									25
	06/22/04										26
	07/14/04										25
	08/10/04		***								25
	09/08/04										31
	10/26/04				***					***	26
											15
	11/18/04	***	an an an								26
	12/07/04 01/10/05										16
											20
	02/14/05										14
	03/11/05										11
	04/13/05										25
	06/08/05										24
	07/12/05										22
	08/02/05										18

^{*} Sample may have been switched with Well 233

SANTA MARGARITA RIVER WATERSHED **WATER QUALITY DATA**

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location SO4 HCO3 Sampled (mg/l) Ca Mg Na K CI NO3 umhos No. 232 09/20/05 19 8S/2W-11J3 10/18/05 18 (Cont) 11/08/05 18 12/06/05 ---19 01/04/06 15 02/14/06 18 03/13/06 8.3 12 15 11 04/18/06 05/12/06 ---06/22/06 07/19/06 13 08/15/06 14 11/02/06 01/10/07 15 13 15 15 14 02/07/07 03/14/07 04/17/07 13 05/01/07 06/01/07 07/05/07 12 14 13 08/14/07 10/03/07 12/05/07 ---12 11 01/08/08 6.9 9.7 ---13 02/13/08 03/04/08 03/07/08 610 04/08/08 05/07/08 07/10/08 12 580 12 07/28/08 08/12/08 ---13 14 14 13 12/03/08 01/13/09 660 02/05/09 03/04/09 12 04/02/09 05/11/09 06/02/09 580 13 11 11 07/13/09 12 12 580 08/05/09 01/06/10 590 12 02/03/10 10 03/10/10 8.5 04/08/10 570 12 05/07/10 13

13

06/03/10

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled Ca Mg Na K CI SO4 HCO3 NO3 umhos (mg/l) 07/08/10 570 13 8S/2W-11J3 08/10/10 14 (Cont) 09/02/10 3.6 10/06/10 590 ---15 11/16/10 13 ---12/01/10 ---14 01/04/11 490 7.9 03/09/11 8.4 04/05/11 560 ---------13 05/03/11 11 06/08/11 11 07/06/11 590 ___ 10 08/03/11 10 ---09/02/11 10 10/14/11 610 11 ---11/02/11 ---11 11 12/07/11 ---01/11/12 590 9.9 02/02/12 9.4 03/07/12 9.7 04/04/12 05/02/12 580 8.4 ---9.4 06/05/12 ---------9.6 08/08/12 10 09/05/12 950 610 69 19 100 4.5 99 200 190 11 ---10/17/12 620 10 ---11/01/12 11 12/04/12 ------10 ---01/09/13 610 ---9.9 ---02/12/13 11 03/12/13 10 04/11/13 600 ---------12 05/02/13 13 ------06/05/13 ------11 07/10/13 580 ------12 ---08/14/13 ---12 09/05/13 13 10/15/13 630 14 11/06/13 ---------14 12/05/13 ---14 01/15/14 620 ---16 02/05/14 ---15 ------------03/12/14 ---------------11 04/03/14 560 11 ---05/27/14 8.7 06/04/14 14 ------07/16/14 610 ----14 ---08/06/14 ---------16 09/03/14 16 No. 233 (Old 112) 06/15/88 900 535 71 21 100 136 247 5 96 8S/2W-12K2 03/27/91 1020 580 66 19 5 95 247 12 114 140 03/03/94 425 50 71 2 14 75 100 186 04/27/95 03/27/97 880 510 57 15 100 4 81 120 220 01/04/99 ------02/03/99 ------4 04/08/99 ___ ---------4 06/03/99

TABLE D-4

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location Sampled Ca Mg Na K CI SO4 HCO3 umhos (mg/l) NO3 No. 233 (Old 112) 07/20/99 5 ---8S/2W-12K2 08/11/99 ---4 ---(Cont) 09/07/99 4 10/21/99 5 11/03/99 04/11/00 970 64 18 570 110 4 85 150 230 10/06/00 ---3 10/10/01 ---4 08/06/02 ------------75 ------------------26* 01/13/03 ---1 as N 07/07/03 ---2.7 07/13/04 07/12/05 2.8 960 04/04/06 600 20 4.5 87 93 180 180 7.3 08/04/06 ---------11 08/14/07 ---------8.1 ---08/13/08 ---530 ------6.1 02/05/09 570 04/02/09 960 580 70 20 88 4.7 6.8 100 160 200 05/11/09 610 ------08/04/09 570 5 ---02/02/10 560 05/06/10 ---660 ---------08/10/10 580 ---5.1 07/02/11 630 ---------------08/03/11 ---4.2 ---10/14/11 620 ------01/10/12 580 04/12/12 930 560 67 20 93 5.5 91 190 180 4.7 ------04/12/12 570 ---08/08/12 5.3 10/17/12 ------540 ---------01/09/13 520 ------------04/11/13 500 ---07/10/13 ___ 440 ------08/15/13 ------------4.1 10/15/13 490 ---01/15/14 480 ---04/17/14 ------550 07/16/14 ---___ ---450 08/06/14 2.8 ---No. 234 (Old 114) 03/31/88 840 480 54 15 100 61 109 241 18 8S/2W-11P 03/27/91 1020 605 69 19 5 114 77 138 256 37 06/20/95 11 09/26/96 ---02/04/97 12 04/25/97 840 500 56 15 95 77 120 230 8 01/19/99 12

^{*} Sample might have been switched with Well 232

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
No. 234 (Old 114)	02/12/99										40
8S/2W-11P											16
(Cont)	04/21/99	***									15
(Cont)	06/03/99		***								16
	07/27/99										18
	08/19/99										17
	09/21/99							***			16
	10/26/99										13
	04/13/00	900	550	64	18	10	4	70	150	220	13
	07/06/00										12
	07/12/01										7
	08/02/01										<2
	11/20/02									****	3
	12/11/02	850	520	62	17	80	3.7	74	170	170	4
	11/04/03										10
	11/05/04										10
	11/03/05										12
	12/06/05	890	620	70	19	89	4.1	85	180	200	12
	11/08/06										14
	11/16/07										16
	08/12/08		610								
	11/06/08		570								20
	12/03/08	960	660	83	21	89	4.9	87	160	230	20
	02/05/09		590								
	05/07/09		620								
	08/04/09		590								
	02/03/10		610								-
	05/06/10		680								***
	08/10/10		610								
	08/11/10		610								
	11/01/10		610								21
	02/09/11		620								
	05/03/11		620								
	08/03/11		570								***
	11/02/11		560								20
	12/06/11	990	660	71	20	99	4.2	91	160	240	21
	05/03/12		620							2.10	
	08/08/12		620								
	11/01/12		620								22
	02/07/13		580								
	05/02/13		610								
	08/15/13		620								
	11/07/13		620								21
	02/05/14		640								
	05/15/14	***	630								***
	08/13/14		610								
No. 235 (Old 137)	06/24/88	460	310	40	10	41	2	58	10	140	15
3S/3W-1Q1	06/20/90	420	230	22	4	56	2	50	6	128	18
	06/10/93	370	235	15	2	65	2	51	9	113	17
	07/16/96	410	230	16	2	60	1	48	8.9	110	20
	06/09/97				_		•				

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Mg Location Sampled Ca Na SO4 HCO3 NO3 umhos (mg/l) ĸ CI No. 235 (Old 137) 06/03/99 390 240 13 63 46 6.7 98 8S/3W-1Q1 11/03/99 16 (Cont) 11/09/00 ---15 11/20/01 13 06/11/02 380 210 10 <1 62 1.2 48 7.2 100 16 11/05/02 ------------17 ---11/18/03 ------11 11/18/05 18 06/22/05 380 230 9 <1 68 1.1 49 7.3 96 16 11/08/05 17 ------------11/14/06 16 06/11/08 400 210 11 1 72 1.4 48 8.4 100 15 ---07/07/08 ---200 ---------01/13/09 260 04/07/09 ------210 ___ 07/13/09 ------200 ------------01/06/10 ------------230 ------04/08/10 220 ---------------07/14/10 ---------10/05/10 180 11/16/10 15 170 01/12/11 08/17/11 380 13 1.7 16 210 1.2 65 48 8.4 100 08/17/11 230 ------------------11/02/11 200 15 02/09/12 ---200 ---05/03/12 220 ------------08/09/12 200 ------11/02/12 220 ------14 ---02/10/13 230 05/02/13 ---200 ---09/10/13 220 ---------11/07/13 250 14 02/05/14 ---200 ------05/20/14 180 08/07/14 370 190 9.4 <1.0 68 51 110 15 07/29/92 02/27/97 No. 301 500 290 20 6 80 45 56 143 <1 7S/3W-18Q1 580 350 45 16 48 2 49 54 200 4 08/15/97 6 7 <2 12/27/00 570 360 15 2 49 53 55 180 57 02/22/02 ---05/14/02 550 340 57 50 3 ---12/11/02 580 2.5

TABLE D-4

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Location NO3 Sampled umhos (mg/l) Ca Mg Na ĸ CI SO4 HCO3 No. 302 04/11/88 690 360 36 100 65 77 192 7S/3W-18H 05/15/91 760 425 58 9 87 83 72 220 <1 05/14/92 270 12 2 90 <1 48 48 05/05/94 870 530 69 16 84 2 110 88 238 <1 05/16/95 <1 07/16/96 530 320 60 54 2 73 05/13/97 14 2 560 500 94 110 86 240 <2 07/27/99 <2 <2 <2 <2 05/17/00 520 320 11 1 <1 99 51 50 130 06/13/00 520 310 ------07/11/00 ---12/20/01 790 500 140 <2 110 ---12/11/02 870 510 ND 06/19/03 03/17/04 620 370 22 3.8 95 <1 77 63 140 <2 830 510 110 85 <2 06/22/04 ---------------<2 09/21/04 900 550 ------110 82 ---<2 No. 309 08/15/90 690 370 19 3 2 119 140 25 73 5 7S/3W-27H 04/11/91 <.001 09/25/91 730 365 19 2 122 150 27 82 5 08/11/94 2 730 430 20 120 2 160 30 73 02/16/95 ---18 07/16/97 ---------1.1 as N 07/23/97 ---------1.2 as N 08/20/97 ---1.1 as N ---09/03/97 ------------------1.1 as N 09/18/97 1.1 as N 10/03/97 790 520 21 2 130 2 170 33 85 6 08/06/98 09/16/98 ___ 460 1.4 as N 2 ------07/20/99 ---6 05/10/00 <1 450 20 130 85 07/06/00 6 08/02/00 740 21 2 450 140 180 87 1 38 07/19/01 ---11/19/02 01/13/03 1.1 as N 08/20/03 880 490 21 140 1.5 190 33 83 5 01/07/04 6 11/11/05 6

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

Total Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids Mg Location CI SO4 HCO3 NO3 Sampled Ca Na ĸ umhos (mg/l) No. 309 01/04/06 5.4 7S/3W-27H 12/07/06 870 470 21 1.9 140 2 190 36 84 5.4 (Cont) 01/10/07 5.3 01/08/08 5.4 ---08/12/08 01/06/09 ------470 6.7 02/03/09 450 ---04/01/09 ___ ------25 2.9 ------05/11/09 460 ------08/04/09 450 01/07/10 5.7 02/02/10 480 ---------05/06/10 08/09/10 ---500 490 11/10/10 460 ---01/04/11 ---5.8 ---02/02/11 480 ---05/04/11 470 08/04/11 480 11/02/11 460 ---5.5 01/17/12 02/08/12 480 ---05/03/12 490 ---08/09/12 ---440 11/02/12 500 12/04/12 950 24 2.5 150 1.7 190 45 92 5.8 500 01/10/13 ------5.5 ------02/05/13 490 05/02/13 ---------470 08/14/13 460 11/05/13 460 01/21/14 5.9 ------02/05/14 ---480 05/23/14 ---560 06/26/14 200 06/26/14 510 220 06/26/14 510 200 06/26/14 06/26/14 530 240 510 240 06/26/14 430 210 06/26/14 480 200 06/26/14 410 180 08/07/14 480

Page Intentionally Blank

TABLE D-5

Site	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	ents - n	ng/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3*	NO3
Pechanga Indian	Reservation	***************************************								*******	
8S/2W-28M03	08/26/99	562	319	38	13	52	0.77	68	15		2.59 as N
	08/12/03	534	344	40.7	14.7	53.5	0.86	58.9	14.1		4.21 as N
	08/19/04	708	440	61.4	22.5	51	0.93	87.6	52		6.16 as N
	08/02/05	746	459	69.7	26.9	44.3	1.01	87.8	61.8		5.09 as N
	08/02/06	678	413	55.9	21	42.6	0.85	74.9	43.1	153	8.25 as N
	09/04/07	663	392	53.7	19.5	51.1	0.92	70.1	32.1	158	8.32 as N
8S/2W-28M05	09/01/09	457	253	10.7	0.483	77.7	0.53	65.6	17.4	91	0.08 as N
	07/26/10		261	11	0.942	83.3	0.53	78.3	17.1		E 0.048
	08/31/11	482	272	10.7	0.999	86.0	0.49	77.8	16.9	88	0.052
	08/13/13	475	281	12.3	1.14	81.9	0.51	77.6	15.8	87.9	<.177
	09/17/14	475	256	10.9	0.98	83.9	0.52	74.2	15.1	85.9	0.177
8S/2W-28Q02	10/05/89	629	378	48	19	49	0.7	76	14	169	4.2 as N
	07/26/90	613	383	48	18	47	0.6	75	12	171	3.9 as N
	07/18/91	618	379	49	18	49	0.7	83	14	172	3.0 as N
	07/28/93	620	400	51	20	47	0.7	63	15	174	9.6 as N
	08/17/94	641	396	51	21	50	0.8	60	17	179	11.0 as N
	08/31/95	653	396	53	21	48	0.7	60	19	184	12.0 as N
	08/28/96										11.0 as N
	08/12/97	614	411	47	19	47	0.7	63	15	176	8.9 as N
	08/19/98	625	402	47	20	47	0.7	60	14		9.85 as N
	08/21/02	598	394	47	19	46	0.7	64	15		8.5 as N
	08/12/03	604	405	48.8	19.8	47.8	0.7	69.1	14.0		7.1 as N
	08/18/04	615	386	51.6	20.2	45.6	0.9	78.8	16.5		4.03 as N
	08/02/05	822	514	76.8	30.2	54	8.0	93.7	30.9		14.7 as N
8S/2W-28R01	08/03/89	495	286	41	4.0	60	0.9	37	13	177	1.1 as N
	07/26/90	525	296	48	4.8	54	1.0	45	14		1.5 as N
	07/17/91	462	261	31	3.2	66	8.0	44	12		.8 as N
	07/27/93	445	269	44	4.4	43	0.5	28	14		1.9 as N
	08/15/94	421	232	32	3.3	55	0.9	28	11	156	1.5 as N
	08/30/95	375	200	21	2.2	55	0.6	31	11		.7 as N
	08/27/96										1.5 as N
	08/13/97	398	241	20	2.1	59	0.62	37	11		.572 as N
	08/20/98	481	282	36	3.9	60	0.85	38	14		1.1 as N
	08/25/99	446	252	28	3.1	59	0.66	41	12		.758 as N
	08/22/00	456	265	29	3.3	61	0.73	39	14		.759 as N
	08/21/01	522	320	51	5.9	48	1.0	42	16		1.73 as N
	08/21/02	457	284	33	3.7	61	0.87	41	13		1.09 as N
	08/12/03	518	330	55	6.5	50.4	1.1	39.7	14.3		1.94 as N
	08/18/04	516	317	56.8	6.2	47.9	1.4	42.6	14.2		1.64 as N

^{* -} Alkalinity as CaC03 E - estimated

TABLE D-5

Site	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	ents - n	ng/l	
Location	Sampled		(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3*	NO3
Pechanga Indian	Reservation (Continued)									
8S/2W-28R01	08/03/05	541	333	60.5	6.5	45.3	1.2	40.2	14.1		2.23 as N
(Cont)	09/10/08	480	278	37.2	4.67	62.4	1.14	41.2	11.4		
,	08/04/09	543	329	50	5.49	55.5	1.12	38.7	18.4		1.78 as N
	07/26/10	564	335	58.3	6.57	49.9	1.12	41.9	18.7		9.89
	08/22/11	548	357	55.0	6.75	52.9	1.07	41.3	18.8		10.5
	08/21/12	507	287	44.7	5.19	60.5	0.95	39.2	17.4		8.33
	07/24/13	498	302	43.9	4.87	60.6	0.91	39.8	17.4		7.63
	09/17/14	592	339	59.3	7.23	54.7	1.17	43.4	20.8		10
8S/2W-29A01	08/02/89	346	207	31	11	24	0.4	18	7.0	131	2.0 as N
	07/24/90	354	193	32	11	25	0.4	24	6.7		2.0 as N
	07/18/91	361	194	32	10	26	0.4	25	6.0		1.8 as N
	08/15/94	363	216	33	12	25	0.5	24	7.7		2.6 as N
	08/31/95	363	208	32	11	23	0.4	21	8.1		2.6 as N
	08/28/96										2.9 as N
	08/12/97	368	238	32	12	24	0.44	22	7.4		3.05 as N
	08/19/98	411	246	36	11	31	0.45	25	8.2	-	2.94 as N
	08/25/99	375	222	33	12	23	0.39	20	6.7		3.81 as N
	08/22/00	374	237	33	12	24	0.42	18	7.3		3.48 as N
	08/21/01	374	236	34	12	24	0.46	20	7.3		3.56 as N
	08/02/05	382	243	38.7	11.6	27.1	0.53	27.6	7.7		2.79 as N
8S/2W-29A02	08/02/06	392	242	36.2	10.9	26.6	0.43	29.4	7.94	139	2.64 as N
	08/04/09	394	245	29.8	11.3	32.2	0.64	34.5	7.38		0.81 as N
	07/26/10		268	37.5	11.9	32.5	0.55	38.5	12.9		E 10.8
	08/22/11	434	299	35.9	12.0	35.7	0.59	41.9	12.7		9.30
	08/21/12	465	298	42.0	13.2	38.1	0.55	42.4	15.8		11.8
	07/24/13	464	297	39.7	13.6	37.0	0.62	45.6	16.3		11.3
	09/17/14	481	284	38.7	13.2	36.4	0.63	46	16.3		11.2
8S/2W-29B02	03/01/90	456	257	5.5	0.14	89	0.8	66	22	100	
	03/06/90	456	256	5.9	0.13	90	0.7	66	20		<0.1 as N
8S/2W-29B03	03/06/90	478	275	14	1.9	84	0.8	65	16	123	<0.1 as N
8S/2W-29B05	03/02/90	397	229	29	9.5	43	1.2	35	4.9	141	1.8 as N
8S/2W-29B06	03/02/90	406	259	34	11	38	0.8	38	10	143	
	03/06/90	427	240	32	11	40	1.0	40	8.1	148	1.2 as N
8S/2W-29B07	03/07/90	396	230	8.6	2.5	71	0.9	51	11	102	<0.1 as N
	08/16/90	371	199	8.4	1.8	69	8.0	50	14	106	<0.1 as N

^{* -} Alkalinity as CaC03 E - estimated

TABLE D-5

Site	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	ents - m	ng/l	
Location	Sampled		(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3*	NO3
Pechanga Indian	Reservation (Continued)								***********	
8S/2W-29B08	03/07/90	464	272	31	9.4	52	1.2	58	12		0.45 as N
	08/16/90	458	261	34	9.1	48	1.1	59	17	135	0.4 as N
8S/2W-29B09	03/07/90	343	210	21	9.2	39	1.0	24	6.7	131	1.3 as N
	08/17/90	317	197	26	10	26	1.1	22	3.4	130	1.6 as N
8S/2W-29B10	08/19/98	367	223	12	0.64	75	0.62	50	10	121	<.05 as N
	08/26/99	393	219	12	0.72	68	0.56	46	11		<.05 as N
	08/22/00	393	228	12	0.76	69	0.58	43	11		<.05 as N
	08/21/01	398	231	11	0.62	72	0.57	49	15		.04 as N
	08/12/03	387	239	11.3	0.65	75.1	0.57	47.2	18.4		2.41as N
	08/18/04	390	232	11.2	0.64	72.6	0.64	48	20.8		<.06 as N
	08/02/05	404	242	12.5	0.67	69.9	0.65	47.2	23.2		<.06 as N
	08/03/06	381	222	12.3	0.77	62.8	0.54	40.3	17.3	110	<.06 as N
	09/04/07	430	237	12.1	0.70	78.3	0.65	47.2	27.5	107	<.06 as N
	09/15/08	420	242	11.2	0.664	77.3	0.59	45.3	29.6	106	E .03 as N
	08/04/09	381	217	12.1	0.76	66	0.64	39.9	23.7	108	E .03 as N
	07/26/10	394	220	11.4	0.67	71.6	0.64	42.2	26	107	E 0.079
	08/22/11	421	265	11.5	0.697	75.5	0.58	45.5	31.0	99	0.115
	08/21/12	432	245	12.8	0.734	82.4	0.62	47.1	34.9	106	<.177
	07/24/13	451	264	13.6	0.756	83.6	0.63	49.2	43.1	107	<.177
	09/17/14	490	274	14.8	0.853	84.8	0.67	51.1	52	105	0.177
8S/2W-29B11	08/02/06	483	285	30.1	7.84	51.5	0.93	57.1	11.8	138	1.44 as N
	08/04/09	497	281	33	8.51	51	0.98	52.6	16.6	140	2.33 as N
	07/26/10		287	34.7	9.09	53.4	1.05	56.8	15.3		E 10.3
	08/22/11	482	308	32.7	9.52	53.0	1.00	54.2	16.0	131	10.9
	08/21/12	492	300	35.9	10.0	55.9	1.03	54.3	17.9	142	11.9
	07/24/13	505	300	36.2	10.1	57.2	1.05	54.5	20.4	144	12.3
	09/17/14	542	315	37.1	10.4	55.3	1.11	56.2	23.9		13.8
8S/2W-29F3	08/03/06	378	251	21.9	7.67	38.9	1.9	47.2	10.4	104	0.46 as N
8S/2W-29J02	08/26/99	565	329	39	15	47	1.6	66	14		2.67 as N
	08/22/00	562	337	39	15	47	1.5	65	14		2.70 as N
	08/21/01	574	351	40	15	50	1.6	70	15		2.63 as N
	08/21/02	554	345	41	16	50	1.8	68	14		2.93 as N
	08/12/03	592	372	45.4	16.6	54.2	1.65	78.2	15.4		2.41 as N
	08/19/04	598	362	48.8	16.9		1.88	80	17		3.06 as N
8S/2W-29J03	08/02/06	532	337	40.3	13.2	43.1	1.34	44.8	17.5	152	8.48 as N

^{* -} Alkalinity as CaC03 E - estimated

TABLE D-5

Site	Date (Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	ents - m	ng/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3*	NO3
Pechanga Indian I	Reservation (Co	ontinued)									
8S/2W-34B04	10/05/89	617	371	51	8.2	67	1	58	30	192	.47 as N
	07/26/90	605	341	50	8	65	1	61	31	194	.50 as N
	07/18/91	564	339	46	7.4	67	1	53	27	185	.87 as N
	07/27/93	267	170	18	2.8	34	0.5	14	9.7	96	1.10 as N
8S/2W-35D01	08/03/89	660	358	43	5.5	87	1.2	78	35	169	.35 as N
	07/26/90	669	384	41	4.9	92	1.5	82	36	176	.40 as N
	07/17/91	641	371	40	4.4	98	1.7	81	36	175	.39 as N
	07/27/93	638	374	49	5.9	79	1.8	71	27	199	.34 as N
	08/16/94	601	334	30	3.2	95	1.5	71	29	163	.16 as N
	08/30/95	587	322	33	4	81	1.5	68	25	178	.11 as N
	08/27/96	596	352	28	3.3	92	1.4	72	29	167	.10 as N

^{* -} Alkalinity as CaC03

TABLE D-5

Site	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	ents - n	ng/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3*	NO3
Cahuilla Indian R	Reservation										
7S/2E14M01	12/14/83	1220	708	130	40	45	11	53	390	98	0.04 as N
7S/2E-23H01	05/18/06	428	288	39.6	5.7	33.7	3.1	31	14		8.26 as N
7S/2E-23Q01	05/18/06	245	160	15.6	2.55	26.6	2.5	29.5	5.4		1.07 as N
7S/2E-26B03	07/11/07	296	197	23.7	3.04	31	2.94	33.9	7.64	76	1.79 as N
7S/2E-33N1	08/02/89	355	206	16	2.1	53	3.5	48	15	78	.73 as N
7S/2E-36J01	02/03/84		252	43	4.4	36	4.8	32	5.4		3.40 as N
7S-3E-14P03	08/10/05	1080	741	113	42.4	70	9.7	66.8	296		.15 as N
7S-3E-20J05	08/23/07	753	466	49.4	7.09	89.2	3.19	87.9	83.6	110	6.88 as N
7S/3E-21L01	05/27/53 08/02/89 08/01/90 07/17/91 08/23/07	750 1050 1020 995 1040	675 610 636 677	66 90 87 93 96.1	20 19 18 18 20.2	70 100 100 100 90.9	3.5 3.4 3.7 3.67	67 84 85 95 96.2	76 190 180 180 169	216 217 206	3.1 as N 3.0 as N 2.5 as N 3.42 as N
7S/3E-31L02	02/03/84		184	23	4.8	24	2.9	24	0		2.0 as N
7S/3E-31N01	07/27/84	684	412	69	12	37		75	12		
7S/3E-34E01	07/07/76 09/22/77 07/19/78 06/28/79 07/02/80 07/08/81 06/29/82 08/10/83 08/21/84	 309 311 306 319	190	25 25 26 26 26 27 27 27 27	4.6 4.9 5.1 5 4.9 5 5.3 5	21 23 22 22 23 23 27 23 24	4.2 4.4 4.5 4.3 4.7 4.7 4.9 4.8 4.3	26 25 24 24 28 26 27 29	7.3 6.9 6.5 6 6.9 7.7 10 7.7 7.2	 81 88 90 92	4.0 as N 3.7 as N 3.7 as N 4.1 as N 4.0 as N 3.8 as N 3.7 as N
	08/01/85	321		28	5.2	24	4.6	29	7.0	86	3.5 as N

^{* -} Alkalinity as CaC03

TABLE D-5

Site	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	ents - m	ng/l	
Location	Sampled		(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3*	NO3
Cahuilla Indian F	Reservation (Co	ontinued)									
7S/3E-34E01	08/14/87	332	207	29	5.6	25	4.8	28	8.0	96	3.5 as N
	07/20/89	338	204	30	5.6	26	5.0	29	7.0	98	3.3 as N
	07/31/91	337	109	31	5.5	25	4.5	31	6.3	99	3.5 as N
	07/16/91	335	209	31	5.9	26	4.7	32	6.3	99	3.5 as N
8S/2E-4P01	01/21/86	1870		190	54	64	7.9	480	13	136	4.0 as N
	05/18/06	794	441	59.8	19.3	44.1	4.44	101	10.4	***	5.45 as N
8S/3E-2A01	02/05/86	591		54	11	43	3.2	93	21	103	3.4 as N
8S/3E-2D01	07/08/81	293		17	2.2	39	1.7	30	8.8	68	2.5 as N
	07/24/85	279		11	1.2	42	1.5	28	8		2.1 as N
8S/3E-2E01	12/07/50			30	10	53		50	14		
	11/15/51			38	8	43		50	6		
	05/27/76			39	9.4	32	2.2	49	12		4.9 as N
	09/22/77		280	39	9.6	33	2.6	42	8.4		~~~
	07/19/78			42	10	36	2.4	57	13		5.7 as N
	06/28/79		284	40	9	32	2.8	42	9		
	07/02/80			34	6.5	22	2.4	27	7.4		0
	07/08/81	296		33	4.8	19	1.9	36	1	61	2.0 as N
	06/29/82	494		43	9.7	41	3	54	14	127	5.7 as N
	07/26/83	427		40	9.6	32	3	42	9.7	131	4.8 as N
	08/21/84	428		42	9.3	32	2.9	39	9.6	129	4.7 as N
	08/13/87	428	276	39	9.4	32	3.2	37	9.6	129	4.6 as N
	08/10/05	424	283	42.4	10.2	33.6	3.4	39.9	9.14	***	4.88 as N
8S/3E-2K01	09/22/77			43	10	48	3.2	65	18		
	07/19/78			42	9.8	48	3.4	68	17		3.7 as N
	06/28/79		342	46	10	46	3.1	69	19		
	07/02/80			64	12	92	2.7	140	48		4.1 as N
	06/29/82	454		41	10	38	3.7	46	13	129	3.6 as N
	08/10/83	435		39	9.5	32	3.6	43	13	133	3.6 as N
	08/21/84	561		50	11	48	3.1	68	27	139	4.0 as N
	08/01/85	472		41	9.7	34	3.4	48	15	125	3.7 as N
	08/13/87	451	282	40	9.9	31	3.4	41	16	133	3.6 as N
	07/20/89	531	323	46	11	41	3.4	60	22	136	3.6 as N
	08/01/90	508	310	46	11	38	3.3	60	19	134	3.8 as N
	07/16/91	522	306	50	10	39	3.3	61	21	139	3.7 as N

^{* -} Alkalinity as CaC03

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site	Date	Specific Conductance	Total Dissolved Solids			Che	mical	Consti	tuents	- mg/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/5W-26C1	10/60	1060	639	66.5	24.0	116.0	4.5	160	110.0	264.0	trace
(Bldg 220001)	06/62	1190	718	60.0	33.2	123.0	3.8	190	124.0	232.0	1.4
	07/64	1217	734	79.2	27.8	144.0	1.6	180	150.0	248.9	
	05/65 01/66	1485 	896	75.2	30.3	158.0	2.4	180	120.0	253.8	0
	06/66		808 684	76.8 75.2	33.2 26.8	157.0 112.0	3.4 2.4	170 128	180.0 148.0	292.8 263.5	0.62 3.9
	01/67		856	81.6	26.3	138.0	3.5	162	140.0	310.0	3.9
	08/67		880	99.2	38.1	156.0	3.6	160	230.0	322.1	5.3
	02/68		768	65.6	25.4	156.0	3.4	160	164.0	236.7	0
	04/69		852	66.0	32.0	162.0	3.2	166	210.0	249.0	0
	11/69		844	87.0	31.0	140.0	3.6	164	180.0		Ö
	07/70		672	99.0	32.0	139.0	3.0	158	205.0		2.7
	12/70	1180	712	83.0	28.0	138.0	3.0	166	170.0		0
	09/71	1062	640	83.0	27.0	128.0	2.8	136	175.0	278.0	0.4
	05/72	1130	681	56.0	24.0	140.0	2.8	136	165.0	220.0	0
	10/72	1165	703	64.0	27.0	159.0	3.6	132	180.0	293.0	1.8
	10/73	1140	688	72.0	27.0	131.0	3.8	144	190.0	200.0	0.3 as N
	02/76	1140	688	70.4	28.3	143.0	3.1	132	182.0		1.8 as N
	09/76	1100	663	67.0	25.0	152.0	2.5	152	131.0		2.8 as N
	03/77	1080	651	67.0	28.0	173.0	3.1	128	160.0		4.4 as N
	10/78	1150	694	70.0	25.0	120.0	3.5	139	145.0		<1 as N
	06/79	1100	663	72.0	27.3	125.0	3.0	134	142.0		<1 as N
	10/80	1200	693	78.8	23.7	136.0	3.3	172	136.0		0.2 as N
	04/81	1160	737	82.4	22.4	126.0	3.6	140	134.0		<0.5 as N
	11/81 11/81	1300	863	97.6	31.5	169.0	2.2	204	209.0		0.8 as N
	05/82	950 1100	573 663	74.0 80.8	18.3 26.6	120.0 140.0	2.1	144	130.0		0.3 as N
	03/83	1000	603	84.0	20.5	144.0	1.5 3.2	181 152	138.0 143.0		<0.5 as N <0.5 as N
	05/84	1150	694	80.0	27.6	126.0	3.1	133	150.0		0.2 as N
	06/85	1100	680	89.0	26.0	140.0	3.0	150	64.0		0.2 as N <0.4
	09/85	1242	724	78.0	28.0	122.0	6.0	154	149.1	244.4	<0.4
	05/86	1387	750	85.2	29.1	130.7	4.3	166	130.8		<1
	06/89	1302	734	78.1	23.0	85.9		136	145.0		<0.4
	01/91	1271		81.0	36.1	152.0		166			<0.04
	06/91	1290	752	99.0	32.4	133.0		167	136.0		<0.4
	03/92	1210	792	91.0	29.8	146.0		159	135.0		<0.4
	06/93	1290	764	68.3	27.5	149.0		168	130.0	265.0	<0.4
	03/94	1210	783	100.0	37.1	100.0		145	167.0		2.2
	08/94	1160	741	87.5	35.5	96.1		141	187.0		4.23
	06/95	1330	806	97.7	37.4	142.0	-	207	166.0		< 0.04
	01/96	1300	764	91.0	33.0	140.0		177	142.0		
	06/96	1300	751	93.0	30.0	130.0		164	156.0		
	06/97	1215	758	88.0	29.0	130.0	<2.0	151	148.0		<2 as N
	12/97	1200	690	81.0	29.0	140.0	3.0	155	150.0		ND
	04/98	1200	790	83.0	31.0	101.0	3.0	165	156.0		ND
	06/98	1230	714	85.0	30.0	136.0	3.0	163	158.0		ND
	02/99	1250	731	84.0	29.0	127.0	3.0	160	140.0		ND
	04/99	1220	769 704	0.88	30.0	127.0	3.0	168	160.0		ND
	05/01	1300	794	98.0	36.0	130.0	3.0	173	179.0	317.0	ND

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Site	Date	Specific Conductance	Dissolved Solids			Che	mical	Consti	tuents	- mg/l	
Location	Sampled	umhos	(mg/l) 	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/5W-18M5	06/89	1156	688	74.6	24.4	67.9		130	138.0	197.0	8.9
(Bldg 23073)	01/90	1120	630	86.4	32.3	101.0		156	166.0	210.0	< 0.05
(Previously	04/90	1160	720	98.8	34.8	107.0		152	146.0	218.0	1.4
reported as 10S/4W-18M4)	01/91	1202	700	84.1	40.5	117.0		162	153.0		<0.04
103/400-101014)	06/91 03/94	1180 1020	736	102.0	37.1	106.0		163	138.0	197.0	<0.4
	08/94	1110	658 684	69.6 81.4	27.8 32.2	104.0 178.0		135	140.0		0.89
	06/95	1170	679	95.3	35.2	113.0		144 145	157.0 116.0		<0.44 13.8
	06/96	1100	682	86.0	32.0	95.0		155	261.0	210.0	<0.0
	02/97	1180	640	79.0	32.0	110.0		142	162.0	190.0	<2 as N
	06/97	1117	709	85.0	33.0	110.0	<5.0	150	164.0		<2 as N
	12/97	1100	700	82.0	33.0	110.0	3.0	141	157.0	220.0	ND
	03/98	1100	710	83.0	33.0	100.0	3.0	182	158.0	150.0	ND
	06/98	1200	720	85.0	34.0	119.0	4.0	159	154.0	281.0	ND
	02/99	1020	613	70.0	30.0	85.0	4.0	130	85.0		8
	05/00	1020	709	81.0	33.0	94.0	4.0	146	149.0		ND
	08/00	1160	728	83.0	33.0	89.0	4.0	161	178.0	232.0	ND
	02/01	1200	736	85.0	35.0	116.0	4.0	164	180.0	244.0	0.7
	04/01 09/01	1200	606	85.0	34.0	112.0	4.0	154	177.0	232.0	ND
	11/01	1250 1290	761 737	90.0 91.0	37.0 37.0	115.0 118.0	4.0	166	188.0	232.0	ND
	02/02	1290	737 781	89.0	36.0	123.0	3.0 4.6	181 170	207.0 189.0	256.0	0
	04/02	1250	755	90.0	37.0	116.0	4.0	170	195.0	255.0 200.0	1.3
	05/02	1290	750	92.0	38.0	110.0	4.0	157	194.0		1 0.6
	07/02	1260	753	90.0	37.0	114.0	4.0	171	196.0		0.0
	01/03	1350	816	96.0	40.0	131.0	4.6	160	201.0	193.0	0
	04/03	1210	738	95.0	27.0	118.0	3.9	175	210.0	192.0	0
	10/03	1290	752	91.0	37.0	134.0	5.0	167	193.0	199.0	0
	01/04	1230	717	93.0	38.0	111.0	6.0	159	194.0	173.0	0
	04/04	1280	722	82.0	36.0	112.0	6.0	168	213.0		2.2
	07/04	1080	739	88.0	37.0	92.0	7.0	156	198.0	190.0	0
	11/04	1230	563	91.0	38.0	124.0	4.8	172	215.0		0
	01/05	1240	687	96.0	39.0	124.0	4.0	172	215.0		0
	04/07 04/08	1240	770	98.0	40.0	100.0	3.8	160	220.0	240.0	0
	04/08	1370 1300	908 800	100	42	110	3.7	180	240	234	<2
	8/11/10	1300	780	97 97	39 39	120 110	3.7	140	200	220	8.7
	4/22/11	1300	810	90	39 37	110	3.6 3.6	180 170	220 230	220 220	<2
	4/20/12	1200	810	94	38	120	3.8	160	230	220 240	<2 2.0
	4/18/13	1200	780	88	37	100	3.9	160	200		<2.0
	7,10/13	1200	700	00	31	100	3.5	100	200	210	<2

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Specific Dissolved Chemical Constituents - mg/l Site Date Conductance Solids											
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/5W-23J1	05/56	1090	685	61.5	24.3	142.0		142	110.0	293.0	0.06
(Bldg 2301)	12/56	1060	666	67.0	27.0	96.0		124	85.0	274.0	
	12/57		780	66.3	23.9	159.0		138	155.0	308.0	10.6
	05/59	1100	691	75.2	25.3	112.0		136	152.0	297.7	
	01/60	1120	704	72.7	27.3	116.5		112	144.0	291.0	
	10/60	1045	657	63.2	21.4	99.0	3.6	140	112.0	242.0	0
	05/61	1280	770	76.0	36.5	136.0	3.0	124	195.0	299.6	0
	05/62	1133	712	68.8	30.3	136.0	2.0	128	175.0	275.7	
	01/63	1111	698	72.0	35.1	127.0	2.8	128	199.0	268.4	
	06/63	1108	696	78.4	25.4	118.0	2.9	148	130.0	258.6	0 as N
	07/64	1165	732	74.4	27.8	128.0	1.2	139	160.0	268.4	
	05/65	1130	710	80.0	26.4	145.0	2.1	148	120.0	268.4	0.14
	01/66		736	88.0	18.1	142.0	2.8	124	155.0	263.5	1.8
	06/66		736	75.2	29.3	138.0	2.7	145	175.0	295.2	4.8
	01/67		744	76.8	25.9	118.0	3.0	136	125.0	287.9	2.2
	08/67		680	70.4	28.3	128.0	2.3	140	100.0	292.8	8.4
	02/68	***	660	48.0	19.5	130.0	2.8	124	119.0	234.0	6.1
	04/69		708	70.0	28.0	126.0	2.5	128	170.0	278.0	0
	11/69		684	73.0	28.0	126.0	2.8	138	165.0	273.0	0
	05/70	4000	716	74.0	25.0	122.0	0.1	134	170.0	210.0	4.4
	12/70	1090	385	78.0	25.0	126.0	2.6	142	170.0	250.0	3.1
	09/71	1025	644	75.0	38.0	120.0	2.7	124	190.0	229.0	0.9
	05/72	1050	660	75.0	21.0	124.0	2.3	124	155.0	244.0	2.2
	10/73	1140	716	74.0	22.0	128.0	2.8	136	160.0	220.0	0.5 as N
	06/74	1060	680	74.0	13.0	131.0	2.9	158	138.0	220.0	0.01 as N
	02/76	1050	660	73.6	25.4	136.0	2.9	119	170.0	248.9	2.0 as N
	09/76	1100	691	58.0	32.0	146.0	2.6	140	148.0	321.8	2.6 as N
	03/77	1080	679	69.0	29.0	110.0	3.0	128	155.0	259.0	4.3 as N
	01/78	1100	691	70.0	23.0	147.0	3.0	140	135.0	259.0	4.4 as N
	10/78 04/79	1150	723	74.0	22.0	120.0	2.9	134	149.0	248.9	<1 as N
		1000	628	70.4	22.4	118.0	2.6	122	138.0	239.1	<1 as N
	10/80	1150	745	74.0	22.5	128.0	3.0	152	138.0	239.1	0.2 as N
	05/81	1020	580	67.2	17.3	116.0	3.1	132	111.0	205.0	<0.5 as N
	03/83 12/83	900	599	65.6	19.5	129.0	2.8	136	129.0	234.2	<0.5 as N
		1000	628	72.4	22.4	127.0	2.6	140	150.0	249.0	<0.1 as N
	05/84	1100	691	78.8	25.9	120.0	2.8	130	150.0	254.0	0.2 as N
	06/85	1100	691	59.0	26.0	130.0	3.0	140	70.0	440.0	3.5
	09/85 06/89	1203	705	66.0	26.0	110.0	6.0	150	144.0	226.6	< 0.4
		1139	662	71.5	21.7	80.8		117	128.0	209.0	<0.4
	01/90	1150	632	90.6	32.4	102.0		160	170.0	214.0	<0.5
	01/91	1112		73.7	32.0	128.0		136	136.0		<0.04
	06/91	1090	662	87.4	29.7	117.0		140	121.0	204.0	<0.4
	03/92	1080	644	74.2	25.8	133.0		127	118.0	282.0	1.3
	03/93	1210	674	72.8	24.5	117.0		127	124.0	261.0	<0.4
	06/93	1090	670	63.9	25.7	119.0		117	128.0	237.0	<0.4
	03/94	1120	683	73.9	27.0	121.0		141	130.0		<0.4

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Site	Date	Specific Conductance	Dissolved Solids			Che	mical	Consti	tuents	s - mg/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na 	K	CI	SO4	HCO3	NO3
10S/5W-23J1	08/94		707	78.9	28.2	129.0		139	153.0		<0.44
(Bldg 2301)	06/95		742	88.2	28.8	131.0		165	147.0		<0.04
(Cont)	01/96 06/96		690 674	79.0	29.0	140.0		147	131.0		
	02/97	1100	650	82.0 74.0	29.0 27.0	120.0 150.0		134 126	129.0 172.0		<2 as N
	03/97	1073	630	77.0	28.0	130.0		142	134.0		<2 as N
	02/99	1180	647	75.0	27.0	125.0	3.0	150	130.0		ND
	04/99	1240	722	81.0	30.0	124.0	3.0	157	150.0		ND
	08/99	1180	735	79.0	29.0	120.0	3.0	190	183.0		ND
	12/99	1190	699	83.0	30.0	118.0	3.0	100	158.0	278.0	ND
	02/00	1110	723	81.0	30.0	116.0	3.0	90	163.0		ND
	05/00	1070	714	81.0	29.0	115.0	3.0	170	152.0		ND
	08/00	1200	735	80.0	29.0	117.0	3.0	150	118.0		ND
	02/01 04/01	1230	730	84.0	31.0	132.0		158	158.0		ND
	09/01	1190	636	81.0	30.0	123.0	3.0	146	148.0		ND
	10/01	1300 1380	751 757	88.0 88.0	32.0 33.0	132.0	3.0	155	160.0		ND
	02/02	1220	737 724	86.0	31.0	133.0 124.0	3.0 2.6	152 146	159.0 156.0		ND ND
	04/02	1210	726	89.0	32.0	124.0	2.8	151	162.0		
	07/02	1280	735	85.0	31.0	129.0	3.1	155	165.0		ND
	10/02	1300	701	87.0	31.0	141.0	2.9	157	170.0		ND
	01/03	1260	760	88.0	32.0	139.0	3.5	146	162.0		ND
	02/03			68.0	32.0	139.0	3.5				
	04/03	1200	708	87.0	32.0	127.0	2.8	158	175.0		ND
	10/03	1210	696	82.0	30.0	144.0	3.0	167	177.0		0 as N
	01/04	1170	678	87.0	31.0	121.0	4.0	151	175.0		0 as N
	04/04 07/04	1270 1030	697 702	82.0	31.0	120.0	4.0	155	171.0		0 as N
	10/04	1230	879	87.0 89.0	31.0 31.0	98.0 102.0	5.0 5.0	138 158	151.0		0 as N
	02/05	1170	704	88.0	31.0	134.0	3.1	158	176.0 171.0		0 as N 0 as N
	04/05	1220	755	88.0	30.0	121.0	2.7	137	167.0		0 as N
	07/05	1190	725	83.0	29.0	117.0	2.8	153			0 as N
	04/07	1200	708	89.0	32.0	120.0	2.6	150	170.0		0
	04/08	1210	718	90	32	100	2.5	150	170		<2
	04/09	1200	720	90	32	110	2.6	130	160		<2
	04/14/10	1200	740	92	33	120	2.6	150	180	260	<2
	04/22/11	1200	770	90	32	110	2.6	160	190	260	<2
	04/20/12	1200	790	96	34	120	2.9	160	190		<2
	05/02/13	1200	790	93	34	120	2.8	160	190	240	<2
10S/5W-23J8 (Bldg 23001)	06/11/14	1300	810	100	35	120	2.7	160	200	250	<2
10S/4W-18E3	06/89	1166	758	80.5	28.1	67.4		132	157	198.0	9.5
(Bldg 230093)	01/90	1230	748	97.4	39.7	106.0		178	179		< 0.05
	04/90	1190	733	99.6	37.5	112.0		159	156		2.5
	06/91	1130	680	97.6	37.6	100.0		139	142		2.7
	02/94	1180	731	83.3	35.5	104.0		142			11.1
	08/94	1150	725	84.3	35.2	102.0		147	164		1
	06/95	932	636	75.4	29.1	86.6		102	140		14

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Site	Date	Specific Conductance	Dissolved Solids			Che	mical	Consti	tuents	- mg/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/4W-18E3	06/96	1117	710	92.0	36.0	93.0		180	297	206.0	
(Bldg 230093)	02/97	1100	686	89.0	38.0	110.0		157	166	220.0	<2 as N
(Cont)	03/97	1116	673	87.0	36.0	110.0		147	113	213.0	<2 as N
	06/97	1131	779	90.0	37.0	99.0	<5.0	151	177	199.0	<2 as N
	09/98	1160	727	83.0	36.0	90.0	3.0	160	181	232.0	ND
	10/99	1200	325	88.0	39.0	117.0	4.0	130	180	268.0	ND
	02/00	1100	739	84.0	37.0	100.0	4.0	130	180	281.0	ND
	05/00	1030	717	80.0	35.0	96.0	4.0	168	183	229.0	2
	02/01	1360	798	97.0	44.0	111.0	4.0	184	212	244.0	ND
	04/01	1310	728	94.0	42.0	114.0	4.0	168	208	232.0	ND
	09/01	1330	791	96.0	42.0	115.0	4.0	173	209	224.0	1
	03/02	1320	778	102.0	44.0	123.0	4.4	196	229	242.0	. 1
	04/02 07/02	1300 1390	808 778	101.0	44.0	117.0	4.0	183	220	200.0	1.1
	10/02		763	96.0 97.0	42.0 41.0	114.0	3.7	180	214	209.0	ND
	01/03	1290	763 749	96.0	40.0	126.0 116.0	4.0 3.7	180 172	207 200	214.0 200.0	ND
	04/03	1210	783	99.0	42.0	129.0	3.7	172	229	191.0	ND 1.3
	10/03	1320	775	97.0	41.0	126.0	5.0	168	231	174.0	0
	01/04	1270	763	101.0	42.0	106.0	6.0	162	220	180.0	0
	04/04	1320	781	96.0	43.0	105.0	6.0	179	250	195.0	0
	07/04	1370	784	100.0	43.0	89.0	6.0	169	219	203.0	0
	10/04	1300	857	99.0	42.0	88.0	6.0	188	245	210.0	0
	01/05	1270	760	99.0	42.0	115.0	4.3	170	234	185.0	2.7
	07/05	1120	724	89.0	36.0	91.0	3.5	133		203.0	0 as N
	11/05	1230	815	101.0	40.0	113.0	4.1	153	213	174.0	0 as N
	04/06	1350	832	110.0	44.0	120.0	3.8	180	250	220.0	0 as N
	04/07	1298	806	100.0	45.0	110.0	3.7	180	247	230.0	0
	04/08	1270	816	92	40	100	3.4	150	220	202	4.7
	04/09	1300	840	100	43	120	3.8	150	220	230	<2
	04/28/10 07/27/11	1200	700	83	36	99	3.4	140	200	190	2.8
	04/25/12	1200 1200	810 830	88 95	39 42	98	3.4	160	230	190	4.3
	05/08/13	1300	800	88	42 37	100 120	4.0 3.6	170	240	190	<2
	06/24/14	1300	820	95	41	120	3.5	170 170	220 240	190 190	<2 <2
10S/4W-7R2	06/89	1281	765	76.5	25.1	82.4		149	153	209.0	10.3
(Bldg 260003)	04/89	1270	788	104.0	36.5	126.0		173	161	215.0	2.6
	06/91	1400	836	111.0	41.1	130.0		195	155	215.0	0.04
	02/94	1260	738	83.3	32.0	131.0		169	155		< 0.04
	08/94	1260	738	84.3	33.7	129.0		166	149		< 0.44
	06/95	1290	897	93.6	35.2	129.0		202	164		0.69
	02/97	1200	720	84	36	130		150	152	240	<1 as N
	03/97	1143	708	83	35	130		152		240	<2 as N
	06/97	1227	831	94	34	120	<5.0	185	147	247	<2 as N
	12/97	1200	700	84	36	120	3.0	150	173	240	ND
	12/97	1200	700	84	36	120	3.0	150	173	240	ND
	03/98	1200	780	85	36	110	3.0	187	162	180	ND
	06/98 02/99	1190	734	83	35	110	3.0	160	167	275	ND
	02/99	1160	663	76	32	102	3.0	150	150	214	ND

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total **Dissolved** Chemical Constituents - mg/l **Specific** Site Date Conductance Solids Mg Location Sampled umhos (mg/l) Ca Na Κ CI SO4 HCO3 NO3 10S/4W-7R2 08/99 1120 727 76 33 230 281 ND 99 3.0 156 (Bldg 260003) 10/99 1130 660 78 33 120 3.0 110 160 262 ND (Cont) 02/00 1030 592 79 35 96 3.0 120 160 244 ND 05/00 1010 699 76 33 96 3.0 129 127 229 ND 08/00 1140 720 77 33 87 3.0 ND 12/02 1120 617 73 32 102 132 164 174 0.4 01/03 1150 689 76 34 113 3.6 135 165 185 ND 04/03 1190 717 82 37 122 4.0 164 182 209 ND 05/03 1190 156 182 37 10/03 737 81 130 5.0 192 1250 0 163 201 01/04 1240 694 86 39 107 6.0 153 182 185 0 04/04 1320 750 84 40 108 6.0 170 210 220 0 07/04 1100 761 92 41 205 88 7.0 172 204 0 10/04 93 1280 893 41 88 179 6.0 222 0 02/05 1270 839 44 121 5.2 180 215 198 0 04/05 1300 880 41 109 3.8 158 216 183 0 as N 07/05 1380 870 101 43 109 430 0 as N 11/05 1310 865 104 43 115 3.8 164 221 181 0 as N 04/06 1220 810 100 43 110 3.8 170 240 206 0 as N 04/071400 856 99 44 110 3.6 170 250 210 04/08 1290 888 91 39 100 3.4 160 230 207 2.6 10S/4W-7R3 04/09 1300 830 100 45 110 4.5 170 240 220 <2 (Bldg 260002) 04/13/10 1300 800 100 43 100 240 160 200 <2 3.6 04/13/11 1300 870 240 <2 96 42 98 3.7 160 200 04/25/12 1300 860 100 44 110 3.6 260 <2 170 200 04/18/13 1300 840 96 41 100 4.0 180 240 <2 220 04/23/14 1300 830 41 110 3.9 170 220 200 <2 10S/4W-7H2 08/56 1060 882 78.0 30.0 112.0 150 82 326.0 (Bldg 260071) 01/60 820 500 55.2 14.7 85.0 76 98 224.0 10/60 1300 793 74 5 20.5 126.0 4.3 182 116 320.0 05/61 1390 840 100.0 29.2 170.0 3.3 170 135 362.0 05/62 744 1220 70.4 39.0 142.0 2.4 184 86 312.3 01/63 1300 740 65.6 26.4 162.0 2.4 166 153 259.0 0.7 07/63 1100 671 64.0 25.4 118 0 97 280.6 0.0 as N 2.7 148 01/64 1020 622 70.4 33.2 98 302 6 117 0 27 172 3.3 07/64 1400 854 83.2 27.3 134.0 1.4 164 98 322.1 04/65 1490 909 97.6 23.4 152.0 4.7 196 110 346.5 0.9 01/66 832 102.0 28.0 166.0 3.1 194 88 414.8 6.6 06/66 768 86.4 26.3 150.0 3.1 184 110 331.8 6.9 01/67 768 72.0 29.3 128.0 324.5 72 6.9 08/67 608 57.6 24.4 116.0 132 251.3 10.2 02/68 572 67.2 17.6 105.0 2.4 118 251.0

636

820

604

640

656

1075

74.0

72.0

66.0

65.0

77.0

19.0

33.0

24.0

26.0

24.0

112.0

138.0

116.0

115.0

120.0

3.0

2.8

2.8

2.4

28

144

180

140

142

144

96

140

110

120

125

268.0

285.0

259.0

183.0

273.0

0.4

0.9

1.8

3.1

1.3

ND - None Detected

09/68

04/69

11/69

05/70

09/71

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Site	Date	Specific Conductance	Dissolved Solids			Che	mical	Consti	tuents	s - mg/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/4W-7H2	05/72	1000	610	46.0	24.0	117.0	2.4	140	130	141.0	0
(Bldg 260071)	10/72	1110	677	88.0	26.0	105.0	3.6	144	126	283.0	3.5
(Cont)	10/73	1120	683	75.0	23.0	118.0	2.7	132		200.0	0.6 as N
	06/74 01/75	1210	712	72.0	19.0	150.0	3.1	208	112	195.0	0.01 as N
	02/76	850 1200	519 732	61.0 91.2	21.0 20.5	93.0 126.0	2.4 3.2	102 176		212.0 244.0	2.3 as N
	09/76	1200	732	48.0	29.0	180.0	2.4	192		336.7	2.6 as N 4.2 as N
	03/77	1400	854	94.0	33.0	158.0	2.4	216		342.0	4.2 as N 2.8 as N
	01/78	1000	610	66.0	23.0	100.0	2.7	128	123	205.0	4.4 as N
	10/78	1300	793	82.0	31.0	134.0	2.7	160		258.6	<1 as N
	04/79	1200	732	84.8	28.3	144.0	3.1	164		312.3	<1 as N
	01/80	1450	885	93.0	30.0	163.0	3.0	196		273.0	<1 as N
	10/80	1050	591	70.4	21.7	104.0	3.7	140		219.6	2.0 as N
	05/81	1000	645	72.4	21.7	105.0	3.5	128		209.8	<0.5 as N
	05/82	1330	811	100.8	35.9	176.0	1.6	269	198	263.5	<0.5 as N
	03/83	890	669	77.2	23.7	95.0	3.4	132		209.8	0.65 as N
	12/83	1000	610	70.4	23.7	123.0	2.6	136	150	224.0	0.5 as N
	05/84	1100	671	77.2	24.6	116.0	2.7	133	155	244.0	0.2 as N
	09/84	1300	650	6.6	29.0	120.0	2.6	200		250.0	12
	11/84	1100	671	81.6	23.4	124.0	2.7	149		249.0	1.2 as N
	05/86	1592	994	104.7	39.7	167.3	4.4	232		301.8	<1 as N
	06/89	1137	826	79.1	28.5	85.5		157		246.0	12.6
	01/90 04/90	1290 1320	772 817	96.3 109.0	38.6	116.0		184		252.0	0.9/1.2
	01/91	401	017		42.1 44.4	128.0		177		249.0	5.4
	03/93	1500	824	87.3 92.6	33.1	103.1 136.0		205 194		277.0	1.1 1.8
	03/94	1370	827	103.0	36.4	135.0		163		211.0	0.9
	08/94	1270	762	91.1	35.5	129.0		162			5.64
	06/95	1260	771	100.0	35.8	127.0		197			2.8
	06/96	1300	751	96.0	36.0	120.0	*****	162		247.0	1.1
	02/97	1300	830	100.0	41.0	150.0	***	186		186.0	<2 as N
	06/97	1323	831	94.0	36.0	140.0	<5.0	158	149	271.0	2 as N
	12/97	1200	670	91.0	36.0	120.0	3.0	150	169	220.0	ND
	12/97	1200	710	87.0	35.0	120.0	2.0	152	182	220.0	1.5
	03/98	1200	810	89.0	36.0	120.0	3.0	201		240.0	ND
	06/98	1390	830	91.0	36.0	140.0	2.0	185		366.0	ND
	02/99	1130	663	75.0	31.0	106.0	3.0	150		238.0	5
	05/99	1170	711	75.0	32.0	85.0	4.0	400		268.0	ND
	08/99	1040	692	74.0	30.0	94.0	2.0	100		207.0	ND
	10/99	1210	757 766	86.0	35.0	120.0	3.0	154		295.0	3
	08/00 02/01	1290	766 707	83.0	33.0	89.0	2.0	184		323.0	ND
	04/01	1140 1190	707 718	85.0 88.0	35.0 37.0	107.0 112.0	2.0 3.0	152		232.0 218.0	4.9 5
	09/01	1200	718 729	89.0	38.0	106.0	3.0	153 158			5 4.6
	11/01	1210	693	90.0	38.0	106.0	3.0	169		214.0	5.4

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Site	Date	Specific Conductance	Dissolved Solids			Che	mical	Consti	tuents	s - mg/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
10S/4W-7H2	02/02	1190	726	94.0	39.0	106.0	2.7	147	184	218.0	5.9
(Bldg 260071)	04/02		724	91.0	38.0	107.0	2.9	153			6.6
(Cont)	07/02		755	88.0	37.0	107.0	3.1	162	201		6
	10/02		722	91.0	38.0	99.0	2.6	150	197	177	6.2
	01/03		781	95.0	39.0	119.0	3.2	144			4.5
	04/03	1310	776	93.0	38.0	125.0	3.0	178			4.1
	04/04	1660	890	112.0	47.0	143.0	4.0	208			ND
	07/04 05/06	1460	785	98.0	38.0	109.0	4.0	186			3.4
	04/07	1380 1300	870	100.0	41.0	110.0	2.3	180			3.0
	04/07	1300	812 830	99.0 100	41.0	110.0	2.5	160			5.2
	04/22/10	1300	790	100	43 42	110 110	2.9 2.7	170 170	260 230		4.7
	04/20/11	1400	860	97	42	110	3.2	180			4.2 2.4
	04/20/12	1200	840	93	40	110	3.3	160	220		5.1
	04/14/13	1300	830	88	40	100	3.6	160			12
	04/28/14	1400	860	93	42	110	3.1	170			3.7
10S/4W-7A2	05/56	920	651	59.0	22.0	100.0		104	94	213.0	
(Bldg 260073)	05/59		745	52.8	16.5	60.3		84	41	207.4	
	01/60 10/60	970	840	51.2	17.6	95.0		98	92	210.0	
	05/61	870 1180	566 710	62.0	23.0	80.0	4.2	110	104	234.0	0
	05/62		518	72.0 63.2	34.0 23.4	114.0 75.0	3.3 2.0	104 100	150 96	227.0 214.7	
	01/63	1195	730	64.0	24.9	157.0	3.1	162	183	220.0	0
	07/63	574	610	57.6	19.5	85.0	2.7	102	100	244.0	0.3 as N
	01/64	760	494	59.2	19.3	82.0	3.3	100	85	253.7	0.5 as N
	07/64	980	637	64.0	21.5	94.0	1.4	100	95	241.6	
	04/65	1230	800	73.3	22.5	106.0	4.5	120	110	248.9	1.3
	01/66		448			86.0	2.5	82	75	190.3	9.7
	06/66		540	60.8	21.0	81.0	2.5	102	95	222.0	9.1
	01/67		544	60.8	19.5	88.0	2.9	106	69	229.4	6.9
	08/67		504	54.4	20.0	79.0	2.1	96	58	214.7	8
	02/68		456	60.8	17.6	86.0	2.7	94	78	222.0	0
	09/68		600	67.0	18.0	90.0	3.0	110	96	232.0	0
	04/69		428	46.0	18.0	73.0		76	90	183.0	3.1
	11/69	****	476	59.0	18.0	88.0	2.7	98	110	198.0	0.9
	05/70 12/70	700	416	54.0	18.0	79.0	2.6	92	90	151.0	2.9
	05/72	780 990	507	64.0	16.0	89.0	2.7	100	90	222.0	10.1
	10/72		644 627	77.0 77.0	24.0 27.0	86.0 94.0	2.8 2.9	116 104	135 145	207.0 239.0	0 5.3
	10/73	960	624	72.0	19.0	105.0	2.8	112	140	195.0	
	06/74	950	548	68.0	19.0	103.0	3.1	138	102	207.0	0.9 as N 0.35 as N
	01/75	840	546	58.0	22.0	87.0	2.7	98	95	217.0	2.2 as N
	02/76	820	533	68.8	20.5	76.0	3.0	106	88	217.0	2.2 as N
	09/76	900	585	48.0	45.0	98.0	2.3	116	112	258.6	3.0 as N
	03/77	900	585	70.0	23.0	76.0	2.8	123	113	195.0	2.6 as N
	01/78	950	618	64.0	24.0	100.0	2.7	124	108	200.0	4.3 as N
	10/78	1050	683	74.0	20.0	80.0	3.0	113	128	205.0	<1 as N
	04/79	950	618	65.6	19.5	98.0	3.1	109	118	190.3	<1 as N

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Site	Specific Dissolved Chemical Constituents - mg/l Date Conductance Solids										
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/4W-7A2	01/80	1000	650	67.0	23.0	00.0	2.4	400	444	407.0	N
(Bldg 260073)	10/80	900	546	67.0	20.5	99.0 86.0	3.1 3.4	128 108	111 86	187.0 205.0	<1 as N 2.3 as N
(Cont)	05/81	810	585	57.2	14.4	83.0	3.4	92	84	180.6	0.7 as N
(/	11/81	800	451	57.2	16.3	85.0	2.0	92	110		0.7 as N
	05/82	930	605	68.8	21.5	97.0	1.6	115	96		<0.5 as N
	03/83	900	663	78.8	23.7	95.0	3.4	132	135		0.7 as N
	09/84	1000	530	51.0	23.0	80.0	2.9	110	110		4.2
	11/84	850	553	67.2	28.3	73.0	2.9	111	137	190.0	1.7 as N
	09/85	1007	593	66.0	26.0	64.0	5.8	124	139	180.6	6
	05/86	1051	623	72.6	26.5	79.5	3.5	131	124	153.6	8.8
	06/89	1073	688	72.1	23.9	59.6		120	140		15.9
	01/89	1080	572	91.2	34.2	80.2		151	178		1.4
	04/90	1130	718	111.0	42.1	91.0		148	167		9.1
	06/91	1190	718	113.0	40.3	93.8		173	180		7.5
	03/93	1370	708	86.9	32.8	93.3		147	93.3		4.9
	03/94	1210	783	100.0	37.1	100.0		145	167		2.2
	08/94 06/95	1160	741	87.5	35.5	96.1		141	184		4.23
	06/96	1200 1129	788 739	99.4 91.0	37.5	101.0 90.0		173	200		2.9
	02/97	1100	690	82.0	37.0 35.0	140.0		188 127	312		NI
	03/97	1109	695	91.0	39.0	93.0		137	131 191		<2 as N 2.2 as N
	06/97	1096	749	89.0	36.0	90.0	<5.0	138	178		2.2 as N
	12/97	1100	690	84.0	36.0	83.0	4.0	140	181		<.2 as N
	05/99	1050	648	78.0	32.0	111.0	3.0	171			ND
	08/99	1040	696	78.0	33.0	84.0	4.0	120	390		ND
	10/99	1070	663	78.0	34.0	90.0	4.0	132	120		6 as N
	02/00	1010	559	83.0	36.0	82.0	4.0	140	190		4 as N
	05/00	972	688	80.0	34.0	79.0	4.0	144	167		4 as N
	02/01	1200	753	92.0	40.0	100.0	3.0	164	212	195	ND
	04/01	1210	736	91.0	40.0	103.0	5.0	159	217	183	4.2
	09/01	1200	741	93.0	41.0	98.0	4.0	153	202		7.6
	11/01	1220	750	92.0	41.0	106.0	4.0	170	228		8.0
	02/02	1230	769	99.0	43.0	101.0	4.2	173	218		7.9
	04/02	1260	793	101.0	45.0	102.0	4.5	170	229		8.5
	07/02	1350	784	98.0	43.0	103.0	4.3	183	239		4.8
	10/02	1370	788	102.0	45.0	104.0	4.3	175	241		3.4
	01/03	1330	825	108.0	45.0	121.0	5.4	180	231		2.4
	04/03 10/03	1260	721 701	90.0	40.0	102.0	4.3	170	228		9.9
		1340	791	94.0	41.0	121.0	6.0	180	268		3
	01/04 04/04	1390 1270	800 739	99.0	46.0	105.0	7.0	173	264		4.1
	07/04	1390	739 764	86.0 97.0	42.0 45.0	98.0 87.0	6.0 7.0	160 176	252 262		5.1
	10/04	1290	943	95.0	45.0 44.0	84.0	7.0	178	262 267		3.7 3.6
	01/05	1030	610	76.0	35.0	93.0	3.8	136	194		6.9
	04/05	1060	630	77.0	34.0	82.0	3.2	125	174		2.71
	07/05	1120	750	81.0	35.0	84.0	3.4	129			0 as N
								0		0	0 00 11

SANTA MARGARITA RIVER WATERSHED

WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total Dissolved Specific Chemical Constituents - mg/l Site **Date** Solids Conductance Location Ca Mg Sampled umhos (mg/I)Na Κ CI SO4 HCO3 NO3 10S/4W-7A2 11/05 1170 790 94.7 41.2 97.9 3.7 138 199 156 7.53 (Bldg 260073) 04/06 1140 704 39.0 91.0 98.0 150 7.3 4.5 220 180 (Cont) 04/07 1200 716 97 44 97 3.7 160 240 190 4.2 04/08 1270 900 98 45 97 3.8 180 260 170 14 04/09 1200 780 94 42 100 3.7 130 230 180 22 04/13/10 1300 770 93 3.8 100 160 240 180 8.7 04/13/11 1200 780 83 38 150 170 3.9 04/19/12 1300 790 92 42 94 3.8 160 240 260 6.2 04/17/13 1200 780 85 40 94 4.3 160 230 190 04/23/14 1200 770 84 40 93 3.7 150 220 170 2.8 10S/5W-23G3 06/91 1160 684 83.4 28.3 125.0 145 124 223 < 0.04 (Bldg 33926) 03/92 1060 674 127.0 75.9 24.1 139 111 269 < 0.4 03/93 1182 584 110.0 67.8 21.1 135 101 274 < 0.4 06/93 1020 623 60.5 22.4 116.0 125 107 225 < 0.4 03/94 1120 665 0.08 25.0 122.0 129 117 1.8 08/94 1150 699 78.7 26.4 125.0 ___ 141 118 <0.44 06/95 1060 673 75.9 118.0 158 114 <0.04 01/96 1200 619 71.0 24.0 120.0 262 139 107 07/96 10S/5W-23K2 06/89 1207 698 75.6 22.8 84.0 138 137 231 <0.4 (Bldg 33924) 04/89 1240 728 100.0 32.9 129.0 158 148 245 1.3 01/91 1193 35.2 <0.04 80.6 131.0 21 146 06/91 1160 676 29.6 224 88.1 118.0 141 129 < 0.04 03/92 1130 705 26.0 76.7 126.0 149 279 125 < 0.4 06/92 1130 717 66.8 26.7 124.0 146 140 232 < 0.4 03/93 1285 331 72.1 23.8 115.0 131 122 273 < 0.402/97 1200 780 32.0 130.0 89.0 166 165 250 <2 as N 03/97 1230 700 94.0 34.0 140.0 187 162 264 <2 as N 06/97 1231 778 91.0 31.0 130.0 <2.0 171 165 264 <2 as N 12/97 1200 710 82.0 30.0 130.0 2.0 156 162 ND 03/98 1200 710 82.0 30.0 110.0 2.0 191 146 240 ND 06/98 1170 658 79.0 28.0 123.0 2.0 157 151 293 ND 02/99 1170 698 75.0 27.0 123.0 3.0 160 130 259 ND 04/99 1210 667 76.0 27.0 118.0 3.0 148 140 268 ND 08/99 1140 714 27.0 79.0 116.0 3.0 180 165 268 ND 10/99 1150 721 110 80.0 28.0 131.0 3.0 150 281 NΠ 02/00 1050 619 82.0 28.0 108.0 3.0 100 140 293 ND 05/00 1060 0.08 29.0 112.0 716 3.0 173 141 268 ND 08/00 1210 722 82.0 29.0 105.0 162 3.0 156 268 ND 04/01 1210 705 85.0 130.0 3.0 163 157 281 ND 09/01 1190 672 81.0 30.0 125.0 152 149 ND 10/01 1200 680 81.0 29.0 143.0 3.0 162 159 281 ND 02/02 1160 675 80.0 29.0 129.0 3.5 143 152 268 ND 04/02 1180 682 84.0 31.0 124.0 2.9 151 155 230 ND 07/02 1210 706 0.08 29.0 127.0 2.9 156 156 221 ND

ND - None Detected

10/02

01/03

1210

1320

669

801

83.0

97.0

30.0

34.0

122.0

140.0

2.9

2.8

151

154

162

180

206

245

ND

SANTA MARGARITA RIVER WATERSHED

WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Т	otal	
---	------	--

Site	Date	Specific Conductance	Dissolved Solids			Che	mical	Consti	tuents	- mg/l	
Location	Sampled	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3	NO3
10S/5W-23K2	04/03	1330	743	89.0	32.0	133.0	2.8	165	183	234	ND
(Bldg 33924)	10/03	1210	712	87.0	31.0	135.0	4.0	155	177	204	ND
(Cont)	04/04 07/04	1320 1070	713 703	85.0 89.0	32.0 32.0	121.0 101.0	5.0 5.0	165	167	228	ND
	10/04	1230	806	91.0	33.0	101.0	5.0	147 166	173 183	230	ND ND
	02/05	1310	837	104.0	37.0	136.0	4.2	175	191	253	0 as N
	07/05	1170	750	83.0	29.0	114.0	2.7	139		210	ND
	11/05	1260	750	91.9	29.6	119.0	3.1	144	171	225	ND
	04/06 04/07	1220 1010	774 706	92.0 86.0	32.0 29.0	120.0	2.8	160	180	284	ND
	04/08	1270	706 792	91	30	120.0 110	2.7 2.6	150 160	170 190	260 175	0 < 2
	04/09	1300	800	100	34	120	2.7	160	200	260	<2
	04/15/10	1200	740	95	34	120	2.8	150	180	260	<2
	04/27/11	1200	740	87	29	110	2.7	160	170	230	<2
	04/30/12	1200	800	92	32	110	2.6	170	190	220	<2
	05/16/13	1200	740	92	32	120	3.0	160	190	220	<2
10S/5W-23G9 (Bldg 330924)	06/12/14	1200	780	90	30	120	2.4	160	190	210	<2
10S/5W-13R2	01/90	1030	540	96.0	26.6	94.8		141	130	200	0.7
(Bldg 230063)	06/91	1150	702	98.7	32.0	109.0		149	125	288	1.3
	06/93 03/94	1130	705	72.0	28.4	107.0		140	139	262	0.9
	06/95	1020 1140	658 636	69.6 92.5	27.8 30.7	104.0 115.0		135 149	140 151		0.89 14.2
	06/96	1103	680	91.0	31.0	100.0		148	251	233	14.2
	06/97	1082	708	85.0	29.0	110.0	<5.0	135	145	244	<2 as N
	12/97	1000	640	81.0	28.0	100.0	2.0	119	128	250	ND
	03/98	1100	620	85.0	31.0	110.0	2.0	161	144	220	ND
	06/98 09/98	1100 1160	680 662	83.0 81.0	30.0 28.0	109.0 90.0	3.0 3.0	137 144	140 90	275	0.68
	04/01	1100	612	83.0	29.0	106.0	3.0	131	146	256 238	ND 3.5
	09/01	1150	679	89.0	31.0	103.0	2.0	142	156	241	3.2
	11/01	1130	658	87.0	30.0	104.0	2.0	148	169	262	3.4
	02/02	1120	674	85.0	30.0	112.0	3.2	140	160	257	3.1
	04/02 07/02	1120 1150	682 676	89.0 83.0	32.0 30.0	106.0 111.0	2.7 2.7	142	167	205	2.8
	10/02	1220	711	87.0	31.0	110.0	2.7	145 149	64 175	205 203	2.3 ND
	01/03	1210	713	91.0	33.0	106.0	2.7	138	165	197	2
	05/03	1230	728	93.0	33.0	112.0	2.9	155	183	181	2.2
	10/03	1190	741	93.0	33.0	123.0	3.0	188	212		0 as N
	04/04 07/04	1270	701	87.0	32.0	103.0	4.0	163	186		ND
	4/25/12	1270 1200	701 790	220.0 100	32.0 37	103.0 120	4.0 2.8	163 160	186 220		0 as N <2
10S/4W-7D1	03/99	1280	765	91.0	34.0	127.0	2.0	190			ND
(Previously	06/99	1080	706	76.0	31.0	88.0	2.2	163			ND
reported as 10S/4W-7A3	08/99 10/99	1080 1070	690 660	76.0 76.0	32.0 32.0	93.0	3.0 3.0	160		244	ND
(Bldg 260072)	05/00	1010	702	76.0 79.0	32.0 34.0	100.0 94.0	3.0	131 177		232 254	4 ND
. 3,	08/00	1170	732	84.0	36.0	89.0	3.0	155			5

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site	Date	Specific Conductance	Total Dissolved Solids			Che	mical	Consti	tuents	- mg/l	
Location	Sampled	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3	NO3
10S/4W-7D1	02/01	1230	753	89.0	39.0	113.0	2.0	170	198	220	2.7
(Previously	04/01	1230	726	89.0	39.0	115.0	4.0	160	191	243	2.7
reported as	09/01	1210	735	89.0	39.0	107.0	4.0	153	185	217	5.3
10S/4W-7A3	11/01	1240	725	89.0	39.0	117.0	3.0	168	205	220	5.6
(Bldg 260072)	02/02	1250	765	97.0	43.0	109.0	3.4	155	198	234	4.7
(Cont)	04/02	1290	790	98.0	44.0	109.0	3.4	158	208	200	3.9
	07/02	1320	809	96.0	43.0	117.0	3.7	182	217	200	ND
	10/02	1380	787	99.0	43.0	113.0	3.7	170	216	203	2.8
	01/03	1370	810	101.0	44.0	134.0	4.0	155		217	ND
	04/03 10/03	1440	789	93.0	40.0	125.0	3.6	177	205	216	2.1
	01/04	1370 1350	820 747	91.0 97.0	40.0 42.0	130.0	4.0	175	235	180	4.3
	04/04	1400	747 766	97.0	42.0 42.0	114.0 112.0	6.0 6.0	168	226	184	2.1
	07/04	1410	784	98.0	43.0	92.0	6.0	162 171	228 231	198 200	2 3.8
	11/04	1290	831	100.0	43.0	134.0	4.2	176	224	203	ND
	01/05	1310	804	102.0	44.0	125.0	3.7	184	241	200	2.7
	04/05	1100	690	78.0	34.0	84.0	3.2	128	177	162	2.6
	07/05	1160	716	84.0	35.0	96.0	3.0	136		166	0 as N
	11/05	1180	785	92.5	40.4	97.1	3.8	138	202	174	5.93 as N
	04/06	1280	786	98.0	43.0	110.0	3.3	160	220	233	7.1
	04/07	1400	784	98.0	43.0	110.0	3.4	165	230	230	5
	04/08	1230	840	88	40	98	3.4	160		169	7.1
	11/09	4200			40	400		470			<2
	04/13/10 07/27/11	1300 1200	820	96	42	120	3.5	170	240	220	4.5
	04/19/12	1200	800 860	89 97	39 42	110 120	3.2 3.8	150 180	200 210	220 160	5.0
	04/18/13	1500	960	120	45	150	4.0	200	210	370	<2 <2
10S/5W-23G4	06/99	1070	668	69	23	106	1.7	163	144	305	ND
(Bldg 330925)	08/99	1090	657	72	25	115	2.0	180	153	317	ND
	10/99	1150	716	79	27	140	2.0	120	140	305	ND
	02/00 05/00	956	522	67	23	117	2.0	90	120	268	ND
	08/00	1040 1180	686 722	77 80	27	116	2.0	181	141	307	ND
	02/01	1100	722 706	73	28 25	105 125	2.0 2.0	155 149	143 164	232 268	ND
	04/01	1170	700	81	29	128	2.0	154		282	ND ND
	09/01	1180	671	80	28	126	2.0	149	143	271	ND
	10/01	1180	678	81	28	132	2.0	161	156	281	ND
	02/02	1170	685	80	28	134	2.8	143	144	279	ND
	04/02	1200	711	87	31	127	2.3	150	204	235	ND
	07/02	1180	730	83	29	130	2.5	158	151	230	ND
	10/02	. 1180	649	78	27	115	2.1	135	138	217	ND
	01/03	1210	740	87	30	129	2.2	145	154	225	ND
	04/03	1200	681	79	27	128	2.5	150	152	215	ND
	10/03	1160	647	80	27	136	3.0	152	155	216	ND
	04/04	1140	604	66	24	117	3.0	147	133	215	ND
	08/04	1180	657	68	24	99	4.0	140	114		ND
	10/04	1170	712	85	29	97	5.0	160	172		ND

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Site	Date	Specific Conductance	Dissolved Solids			Che	mical	Consti	tuents	s - mg/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na 	K	CI	SO4	НСО3	NO3
10S/5W-23G4	02/05	1070	661	84	29	125	3.3	154	148	185	ND
(Bldg 330925)	07/05	1050	655	72	23	118	2.0	127			ND
(Cont)	11/05	1080	665	76	23	121	2.0	135	125		ND
	05/06	1110	650	71	24	120	1.9	140	130		ND
	04/07 04/08	950	632	72	25	120	1.9	140	130		0
	04/09	1150 1100	672 670	73 76	25 26	120 120	1.8 2.1	150 150	130 140		<2
	04/22/10	1100	660	70	24	120	1.8	140	120		<2 <2
	04/20/11	1200	720	83	29	110	2.1	150	170		<2
	04/30/12	1100	720	83	29	120	2.0	150	160		<2
	04/17/13	1200	750	82	29	110	2.4	160	170		<2
	04/24/14	1300	770	88	31	120	2.3	160	180		<2
10S/5W-23K3	06/99	1150	700	75.0	27.0	106.0	2.2	163	155		ND
(Bldg 330923)	08/99	1170	722	79.0	28.0	114.0	3.0	330	161		ND
	10/99 02/00	1170	723	78.0	28.0	140.0	3.0	120	140		ND
	02/00	1120 1240	712 758	83.0 85.0	30.0	117.0	3.0	120	157		ND
	04/01	1240	735	85.0	31.0 31.0	136.0 135.0	3.0 3.0	167 162	152 154		ND ND
	09/01	1240	682	81.0	29.0	132.0	3.0	162	144		ND
	10/01	1330	746	87.0	32.0	134.0	3.0	166	156		ND
	02/02	1190	720	83.0	29.0	140.0	3.5	150	155		ND
	04/02		691	82.0	29.0	127.0	2.7	145	142		ND
	07/02	1230	738	81.0	29.0	134.0	3.1	167	151		ND
	10/02	1270	716	85.0	30.0	137.0	2.9	150	162	221	ND
	01/03	1340	826	100.0	35.0	141.0	2.6	156	185		0.4
	04/03	1350	733	85.0	30.0	129.0	2.6	162	171		ND
	10/03	887	800	84.0	30.0	141.0	3.0	160	173		ND
	02/04	1250	698	83.0	29.0	120.0	4.0	154	172		ND
	04/04 07/04	1240 1040	706 729	78.0	28.0	121.0	4.0	163	170		ND
	10/04	1180	857	84.0 86.0	30.0 30.0	99.0 97.0	5.0 5.0	158 159	169 172		ND ND
	02/05	1160	685	87.0	31.0	125.0	3.7	159	168		ND
	04/05	1230	760	91.0	30.0	122.0	2.6	149	148		ND
	07/05	1170	755	83.0	29.0	115.0	2.6	135			ND
	11/05	1230	735	92.8	29.5	123.0	3.0	141	165		ND
	04/06	1190	720	89.0	31.0	120.0	2.7	160	170	233	ND
	04/07	1010	718	87.0	30.0	120.0	2.6	160	170	250	0
	04/08	1250	754	91	32	110	2.5	160	180		ND
	04/09	1200	760	92	33	120	2.7	160	180		<2
	04/15/10	1200	760 760	98	34	120	2.6	160	180		<2
	04/13/11 04/16/12	1300 1200	760 760	88 98	30 34	110	2.6	160	180		<2
	04/10/13	1300	780 780	95	33	120 130	2.9 3.3	170 160	190 190		<2 <2
10S/5W-26C3	09/01	1410	819	101.0	38.0	138.0	3.0	173	175	296	ND
(Bldg 220002)	10/01	1370	814	104.0	38.0	131.0	3.0	199	198		ND
•	02/02	1380	834	99.0	36.0	128.0	3.0	172	183		ND
	04/02	1370	808	104.0	39.0	124.0	3.2	180	184		ND
	07/02	1450	829	101.0	37.0	137.0	3.3	187	193		ND
	10/02	1400	793	98.0	35.0	143.0	3.4	179	195	248	ND

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Total

Site	Date	Specific Conductance	Dissolved Solids			Che	mical	Consti	tuents	- mg/l	
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/5W-26C3	04/02	4200	000								
(Bldg 220002)	01/03 04/03		806	94.0	33.0	144.0	2.0	163	180	235	ND
(Cont)	04/03	1290 1290	759 750	94.0	33.0	137.0	3.1	182	198	230	ND
(Cont)	10/03		759 764	94.0	32.0	137.0	3.1	182	198	230	ND
	01/03	1340	761	90.0	31.0	146.0	4.0	162	188	210	ND
	04/04		743	94.0	32.0	124.0	5.0	182	212	203	ND
	07/04	1350	731	90.0	32.0	127.0	5.0	184	197	235	ND
	10/04	1100	773	91.0	32.0	98.0	5.0	167	197	215	ND
		1290	826	93.0	32.0	106.0	5.0	187	185		ND
	02/05 04/05	1260	735	101.0	35.0	127.0	3.7	175	188	215	ND
		1300	760	98.0	33.0	122.0	2.8	160	184	200	ND
	07/05	1450	1260	97.0	33.0	119.0	2.9	154		200	ND
	11/05	1240	795	99.0	32.0	122.0	2.9	159	169	202	ND
	06/06	1300	796	95.0	34.0	140.0	2.9	180	170	250	ND
	04/07	1080	764	91.0	31.0	130.0	2.9	190	190	250	0
	04/08	1260	694	80	29	140	2.7	180	150	286	<2
10S/5W-18B1	04/01/10		840	100	42	110	3.6	170	230	240	<2
(Bldg 260018)	04/20/11	1400	880	100	41	100	3.4	180	250	220	<2
	04/25/12	1300	910	100	44	120	3.8	180		230	<2
	04/18/13	1300	880	98	42	120	4.2	180	240	220	<2

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

SURFACE STREAMS SAMPLED BY USGS ON CAHUILLA CREEK

Site	Date	Specific Conductance	Total Dissolved Solids			Chem	ical Con	stituents :	- mg/l		
Location	Sampled	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
Cahuilla Creek	02/28/05	644	446	41.90	11.20	76.90	10.10		***		.23 @N
Cahuilla Creek Below Highway 371	02/28/05	476	337	34.20	10.10	51.90	3.69	36.9			.64 @N
Unnamed Tributary to Cahuilla Creek	02/14/05	783	529	64.00	17.50	80.70	8.94	35.2	***	***	3.05 @N

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2013-14

APPENDIX E

COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS CALENDAR YEAR 2014

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

JANUARY 2014 - BELOW NORMAL YEAR

								•			CAME	CAMP PENDLETON GROUNDWATER BANK	ETON R BANK	
Day	USGS Official Discharge	USGS Daily Website Discharge	10-Day Running Average of Website Discharge	Minimum Flow Maintenance Requirement	Running Average Less Required Flow	WR-34 Make-Up Discharge	ake-Up 1rge	Climatic Credit Earned	dit Earned	Input 3/	Input	Output	Output	Cumulative Balance
	cfs	cfs	cfs	cfs	cfs	cfs	AF	cls	AF	cfs	AF	cts	AF	AF
-	9.6	8.6				10.0	19.9	3.7	7.4	1.7	3.4	0.0	0.0	5,000.0
7	10.0	10.0				10.2	20.3	3.9	7.8	1.7	3.4	0.0	0.0	5,000.0
က	6.6	6.6				10.2	20.3	3.9	7.8	1.7	3.4	0.0	0.0	5,000.0
4	6.6	6.6				10.1	20.1	3.8	9.7	1.7	3.4	0.0	0.0	5,000.0
ı,	න. ග	න න				10.1	20.0	3.8	7.5	1.7	6. c	0.0	0.0	5,000.0
(O)	æ. ö,	8.0				10.0	19.8	3.7	7.3 1.3	1.7	3.4	0.0	0.0	5,000.0
_ `	10.0	10.0				10.0	7.0 8.0 1	3.7	7.3). - 	4.	0.0	0.0	5,000.0
∞ ∘	10.0	10.0				χ, α, α	19.5	3.5	0.7	7.1	4.	0.0	0.0	5,000.0
D (0.01	0.01				χ. α	4.04	ري د د د	و و و	7.7	ئ 4. د	0.0	0.0	5,000.0
2.7	ω . ∞ . c	ω. ¢	c	0	Č	0.0	. 6		0.0	7	ა. 4. ა	0.0	0.0	0,000.0
= \$	0.0	0.0	n c	0 0		9.0	- 6	 	0.0		ა ი 4. ∠	0.0	0.0	5,000.0
7 2	n o	n o	၈ တ ၈ တ) () () ()	0.0	9.6	19.1	. c.	 6.6	· /-	. e.	0.0	0.0	5,000.0
14	8.6	9.8	6.6	8.6	0.1	9.6	19.1	3.3	9.9	1.7	3.4	0.0	0.0	5,000.0
15	6.7	9.7	6.6	8.6	0.1	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
16	9.7	9.7	6.6	8.6	0.1	9.6	19.1	3.3	9.9	1.7	3.4	0.0	0.0	5,000.0
11	8.6	8.6	6.6	8.6	0.1	9.7	19.2	3.4	6.7	1.7	3.4	0.0	0.0	5,000.0
18	6.7	6.7	9.6	8.6	0.0	9.7	19.3	3.4	6.8	1.7	3.4	0.0	0.0	5,000.0
19	8.6	8.6	9.8	8.6	0.0	8.6	19.4	3.5	6.9	1.7	3.4	0.0	0.0	5,000.0
20	8.6	8.6	9.8	8.6	0.0	9.7	19.3	3.4	6.8	1.7	3.4	0.0	0.0	5,000.0
21	8.6	8.6	8.6	8.6	0.0	9.7	19.3	3.4	8.9	1.7	3.4	0.0	0.0	5,000.0
22	10.0	10.0	9.6	8.6	0.0	9.7	19.3	3.4	8.9	1.7	4.6	0.0	0.0	5,000.0
23	10.0	10.0	න. ග	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
24	8.6	9.8	8.6	8.5 5	0.0		18.5	3.0	6.0	7.7	3.4	0.0	0.0	5,000.0
25	8.6	8.6	8,6	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
56	6.6	9.9	9.8	8.6	0.0	9.6	19.1	3.3	9.9	7.7	3.4	0.0	0.0	5,000.0
27	9.6	9.6	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
28	8.6	8.6	8.6	8'6	0.0	9.7	19.2	3.4	6.7	1.7	3.4	0.0	0.0	5,000.0
53	8.6	8.6	8.6	8.0	0.0	9.6	19.1		6.6	7.7	4. 4	0.0	0.0	5,000.0
30	10.0	10.0	6.6	8.6	0.1	9.7	19.3	3.4	ο. Θ.	/ -	4.6	0.0	0.0	5,000.0
31	9.8	9.8	6.6	8.6	0.1	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
TOTAL SFD	305.4	305.4	206.7	205.8	6.0	301.8		106.5		52.7		0.0		
TOTAL AF	605.8	605.8	410.0	408.2	1.8		599.5		212.0		105.4		0.0	5,000.0

Required flows for January through April are equal to 11.5 cfs less 1.7 cfs of credits (406 AF of Climatic Credit earned in 2013).
 Climatic Credits equal the WR-34 discharge less the Actual Flow Maintenance Requirement which is the flow indicated in Section 5 of the CWRMA minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs. Input to Groundwater equal the flow indicated in Section 5 of the CWRMA minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs. Input to Groundwater Bank shown but cumulative balance did not increase due to account balance maximum of 5,000 AF.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

FEBRUARY 2014 - BELOW NORMAL YEAR

CAMP PENDLETON

											GROUP	GROUNDWATER BANK	BANK	
	USGS Official	USGS Daily Website	10-Day Running Average of	Minimum Flow Maintenance Requirement	Running Average Less Required	WR-34 Make-Up	ake-Up	Climatic Credit Earned	lit Earned					Cumulative
Day	Discharge	Discharge	Website Discharge	1/	Flow	Discharge	rge	2/		Input 3/	Input	Output	Output	Balance
	cfs	cfs	cfs	cfs	cfs	cfs	AF	cls	AF	cfs	AF	cfs	ΑF	AF
1	9.6	9.6	9.6	8.6	0.0	9.4	18.6	3.1	6.1	1.7	3.4	0.0	0.0	5,000.0
7	8.6	9.8	9.8	9.8	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
က	6.6	6.6	9.6	9.8	0.0	9.6	19.1	3.3	9.9	1.7	3.4	0.0	0.0	5,000.0
4	9.8	8.6	9.8	9.8	0.0	9.5	18.8	3.2	6.3	1.7	3.4	0.0	0.0	5,000.0
5	9.6	9.8	9.8	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
9	6.6	6.6	9.8	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
7	6.6	6.6	9.8	9.6	0.0	9.5	18.8	3.2	6.3	1.7	3.4	0.0	0.0	5,000.0
80	8.6	9.8	9.8	9.8	0.0	9.5	18.8	3.2	6.3	1.7	3.4	0.0	0.0	5,000.0
6	6.6	6.6	8.6	8.6	0.0	9.5	18.8	3.2	6.3	1.7	3.4	0.0	0.0	5,000.0
10	8.6	9.6	8.6	8.6	0.0	9.4	18.6	3.1	6.1	1.7	3.4	0.0	0.0	5,000.0
11	8.6	9.8	9.6	8.6	0.0	9.4	18.7	3.1	6.2	1.7	3.4	0.0	0.0	5,000.0
12	6.6	6.6	6.6	8.6	0.1	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
13	8.6	8.6	9.8	8.6	0.0	9.4	18.7	3.1	6.2	1.7	3.4	0.0	0.0	5,000.0
14	8.6	8.6	8.6	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
15	6.7	9.7	8.6	8.6	0.0	9.4	18.7	3.1	6.2	1.7	3.4	0.0	0.0	5,000.0
16	8.6	8.6	8.6	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
17	9.6	8.6	8.6	8.6	0.0	9.5	18.8	3.2	6.3	1.7	3.4	0.0	0.0	5,000.0
18	6.6	6.6	8.6	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
19	6.6	6.6	8.6	8.6	0.0	9.5	18.8	3.2	6.3	1.7	3.4	0.0	0.0	5,000.0
20	8.6	9.8	8.6	8.6	0.0	9.4	18.6	3.1	6.1	1.7	3.4	0.0	0.0	5,000.0
21	8.6	9.6	8.6	8.6	0.0	9.4	18.7	3.1	6.2	1.7	3.4	0.0	0.0	5,000.0
22	8.6	9.8	8.6	8.6	0.0	9.4	18.7	3.1	6.2	1.7	3.4	0.0	0.0	5,000.0
23	8.6	9.8	8.6	8.6	0.0	9.4	18.7	3.1	6.2	1.7	3.4	0.0	0.0	5,000.0
24	6.6	6.6	8.6	8.6	0.0	9.4	18.7	3.1	6.2	1.7	3.4	0.0	0.0	5,000.0
25	8.6	9.8	8.6	8.6	0.0	9.3	18.5	3.0	0.9	1.7	3.4	0.0	0.0	5,000.0
26	9.8	9.8	9.8	8.6	0.0	9.3	18.4	3.0	5.9	1.7	3.4	0.0	0.0	5,000.0
27	6.6	6.6	8.6	8.6	0.0	9.3	18.5	3.0	6.0	1.7	3,4	0.0	0.0	5,000.0
28	741.0	741.0	83.0	8.6	73.2	0.2	0.3	0.0	0.0	1.7	3.4	0.0	0.0	5,000.0
TOTAL SED	1 006 2	1 006 2	7 7 7	274.4	73.3	255.3		85.0		47.6		0.0		
TOTAL AF	1,995.8	1,995.8	689.7	544.3	145.4		506.7		168.9	!	95.2		0.0	5,000.0

Required flows for January through April are equal to 11.5 cfs less 1.7 cfs of credits (406 AF of Climatic Credit earned in 2013).
 Climatic Credits equal the WR-34 discharge less the Actual Flow Maintenance Requirement which is the flow indicated in Section 5 of the CWRM4 expressed in Section 5 of the CWRM4 minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs. Input to Groundwater Bank shown but cumulative balance did not increase due to account balance maximum of 5,000 AF.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

MARCH 2014 - BELOW NORMAL YEAR

GROUNDWATER BANK CAMP PENDLETON

				Minimum Flow										
Dav	USGS Official Discharge	USGS Daily Website Discharge	10-Day Running Average of Website Discharde	Maintenance Requirement	Running Average Less Required Flow	WR-34 Make-Up Discharge	ake-Up	Climatic Credit Earned	dit Earned	Input 3/	Input	Output	Output	Cumulative Balance
	cfs	cfs	cfs	cfs	cfs	cfs	AF	cfs	AF	cfs	AF	cfs	AF	AF
1	1,370.0	1,370.0	219.0	9.8	209.2	0.0	0.0	0.0	0.0	1.7	3.4	0.0	0.0	5,000.0
7	226.0	226.0	240.6	9.8	230.8	0.0	0.0	0.0	0.0	1.7	3.4	0.0	0.0	5,000.0
8	47.0	47.0	244.3	9.8	234.5	0.0	0.0	0.0	0.0	1.7	3.4	0.0	0.0	5,000.0
4	15.0	15.0	244.8	9.8	235.0	0.0	0.0	0.0	0.0	1.7	3.4	0.0	0.0	5,000.0
2	9.7	9.6	244.8	9.8	235.0	6.0	11.9	0.0	0.0	1.7	3.4	0.0	0.0	5,000.0
9	10.0	6.6	244.8	9.8	235.0	8.8	17.4	2.5	4.9	1.7	3.4	0.0	0.0	5,000.0
7	6.6	9.7	244.8	8.6	235.0	9.1	18.1	2.8	5.6	1.7	3.4	0.0	0.0	5,000.0
~	6.6	9.7	244.8	9.8	235.0	9.4	18.7	3.1	6.2	1.7	3.4	0.0	0.0	5,000.0
6	9.8	9.7	244.8	8.6	235.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
10	6.6	8.6	171.6	9.8	161.8	9.7	19.3	3.4	6.8	1.7	3.4	0.0	0.0	5,000.0
11	10.0	6.6	35.6	8.6	25.8	8.6	19.5	3.5	7.0	1.7	3.4	0.0	0.0	5,000.0
12	10.0	6.6	14.0	9.8	4.2	9.8	19.5	3.5	7.0	1.7	3.4	0.0	0.0	5,000.0
13	10.0	6.6	10.3	9.8	0.5	9.8	19.4	3.5	6.9	1.7	3.4	0.0	0.0	5,000.0
14	10.0	6.6	8.6	9.8	0.0	9.7	19.2	3.4	6.7	1.7	3.4	0.0	0.0	5,000.0
15	10.0	6.6	8.6	9.6	0.0	9.7	19.2	3.4	6.7	1.7	3.4	0.0	0.0	5,000.0
16	10.0	9.7	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
17	10.0	9.6	9.6	8.6	0.0	9.7	19.2	3.4	6.7	1.7	3.4	0.0	0.0	5,000.0
18	10.0	9.8	8.6	8.6	0.0	9.6	19.1	3.3	9.9	1.7	3.4	0.0	0.0	5,000.0
19	10.0	9.6	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
20	10.0	9.8	9.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
21	10.0	6.6	9.8	9.8	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
22	10.0	6.6	9.6	9.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
23	10.0	9.6	8.6	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
24	10.0	9.6	8.6	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
25	10.0	6.6	8.6	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
56	10.0	6.6	8.6	8.6	0.0	9.4	18.6	3.1	6.1	1.7	3.4	0.0	0.0	5,000.0
27	10.0	9.8	9.8	9.8	0.0	9.3	18.4	3.0	5.9	1.7	3.4	0.0	0.0	5,000.0
28	10.0	9.8	9.8	9.8	0.0	9.3	18.5	3.0	0.9	1.7	3.4	0.0	0.0	5,000.0
29	10.0	9.8	8.6		0.0	9.3	18.5	3.0	0.9	1.7	3.4	0.0	0.0	5,000.0
30	10.0	9.6	9.6	8.6	0.0	9.3	18.5	3.0	0.9	1.7	3.4	0.0	0.0	5,000.0
31	10.0	9.7	8.6		0.0	9.5	18.8	3.2	6.3	1.7	3.4	0.0	0.0	5,000.0
L SFD	1.927.2	1.922.7	2,580.6	303.8	2,276.8	253.2		83.4		52.7		0.0		
TOTAL AF	3,822.5	3,813.6	5,118.5	602.6	4,516.0		502.4		165.5		105.4		0.0	5,000.0

Required flows for January through April are equal to 11.5 cfs less 1.7 cfs of credits (406 AF of Climatic Credit earned in 2013).
 Climatic Credits equal the WR-34 discharge less the Actual Flow Maintenance Requirement which is the flow indicated in Section 5 of the CWRMA less applicable credits, but not less than 3.0 cfs.
 Art. 17 - Camp Pendleton rights to groundwater equal the flow indicated in Section 5 of the CWRMA minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs. Input to Groundwater Bank shown but cumulative balance did not increase due to account balance maximum of 5,000 AF.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

APRIL 2014 - BELOW NORMAL YEAR

CAMP PENDLETON GROUNDWATER BANK

Day	USGS Official Discharge	USGS Daily Website Discharge	10-Day Running Average of Website Discharge	Minimum Flow Maintenance Requirement 1/	Running Average Less Required Flow	WR-34 Make-Up Discharge	³ke-Up rge	Climatic Credit Earned 2/	dit Earned	Input 3/	Input	Output	Output	Cumulative Balance
	cfs	cfs	cfs	cfs	cfs	cfs	AF	cfs	AF	cfs	AF	cfs	AF	AF
1	10.0	9.8	9.6	9.8	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
7	10.0	9.8	9.6	8.6	0.0	9.4	18.6	3.1	6.1	1.7	3.4	0.0	0.0	5,000.0
က	10.0	9.7	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
4	10.0	6.6	9.8	8.6	0.0	8.6	19.4	3.5	6.9	1.7	3.4	0.0	0.0	5,000.0
2	10.0	10.0	9.8	9.8	0.0	8.6	19.4	3.5	6.9	1.7	3.4	0.0	0.0	5,000.0
9	10.0	9.8	8.6	8.6	0.0	9.7	19.3	3.4	8.9	1.7	3.4	0.0	0.0	5,000.0
7	10.0	6.6	8.6	8.6	0.0	9.6	19.5	3.5	7.0	1.7	3.4	0.0	0.0	5,000.0
80	10.0	9.8	8.6	8.6	0.0	6.6	19.6	3.6	7.1	1.7	3.4	0.0	0.0	5,000.0
6	10.0	9.8	8.6	8'6	0.0	6.6	19.6	3.6	7.1	1.7	3.4	0.0	0.0	5,000.0
10	10.0	9.7	8.6	8.6	0.0	6.6	19.6	3.6	7.1	1.7	3.4	0.0	0.0	5,000.0
11	10.0	9.7	8.6	8.6	0.0	10.0	19.8	3.7	7.3	1.7	3.4	0.0	0.0	5,000.0
12	10.0	8.6	8.6	8.6	0.0	10.0	19.8	3.7	7.3	1.7	3.4	0.0	0.0	5,000.0
13	10.0	9.6	8.6	8.6	0.0	10.0	19.8	3.7	7.3	1.7	3.4	0.0	0.0	5,000.0
14	10.0	6.6	8.6	8.6	0.0	10.0	19.9	3.7	7.4	1.7	3.4	0.0	0.0	5,000.0
15	10.0	8.6	8.6	8.6	0.0	10.0	19.8	3.7	7.3	1.7	3.4	0.0	0.0	5,000.0
16	10.0	10.0	8.6	8.6	0.0	10.0	19.8	3.7	7.3	1.7	3.4	0.0	0.0	5,000.0
17	6.6	6.6	8.6	8.6	0.0	9.7	19.2	3.4	6.7	1.7	3.4	0.0	0.0	5,000.0
18	6.6	6.6	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
19	8.6	8.6	8.6	8.6	0.0	9.2	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
20	9.7	9.7	8.6	8.6	0.0	9.5	18.8	3.2	6.3	1.7	3.4	0.0	0.0	5,000.0
21	9.7	9.7	8.6	8.6	0.0	9.5	18.9	3.2	6.4	1.7	3.4	0.0	0.0	5,000.0
22	8.6	9.6	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
23	8.6	8.6	9.8	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
24	9.7	6.7	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
52	9.7	9.7	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
56	6.6	6.6	8.6	9.6	0.0	9.7	19.2	3.4	6.7	1.7	3.4	0.0	0.0	5,000.0
27	6.6	6.6	8.6	8.6	0.0	9.6	19.1	3.3	9.9	1.7	3.4	0.0	0.0	5,000.0
28	8.6	9.6	8.6	8.6	0.0	9.6	19.0	3.3	6.5	1.7	3.4	0.0	0.0	5,000.0
29	8.6	9.6	8.6	8.6	0.0	9.6		3.3	9.9	1.7	3.4	0.0	0.0	5,000.0
30	9.6	9.6	8.6	8.6	0.0	9.5	18.8	3.2		1.7	3.4	0.0	0.0	5,000.0
TOTAL SFD	297.0	294.2	294.0	294.0	0.0	291.5		102.5		51.0		0.0		
TOTAL AF	589.1	583.5	583.1	583.1	0.0		577.8		202.8		102.0		0.0	5,000.0

Required flows for January through April are equal to 11.5 cfs less 1.7 cfs of credits (406 AF of Climatic Credit earned in 2013).
 Climatic Credits equal the WR-34 discharge less the Actual Flow Maintenance Requirement which is the flow indicated in Section 5 of the CWRMA extra Flow Maintenance Requirement which cannot be less than 3.0 cfs.
 Art. 17 - Camp Pendleton rights to groundwater equal the flow indicated in Section 5 of the CWRMA minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs. Input to Groundwater Bank shown but cumulative balance did not increase due to account balance maximum of 5,000 AF.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

MAY 2014 - BELOW NORMAL YEAR

											CAMF	CAMP PENDLETON GROUNDWATER BANK	TON	
Dav	USGS Official Discharge	USGS Daily Website Discharde	10-Day Running Average of Website Discharde	Minimum Flow Maintenance Requirement 1/	Running Average Less Required Flow	WR-34 Make-Up Discharde	ake-Up	Climatic Credit Earned	dit Earned	nont	Inout	Outout	Output	Cumulative Balance
	cfs	cfs	cfs	cfs	cfs	cfs	AF	cfs	AF	cfs	AF		AF	AF
1	5.2	5.5				5.8	11.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
2	5.4	2.7				6.1	12.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
က	5.4	5.7				6.1	12.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4	5.5	5.8				5.9	11.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
S	5.4	5.7				5.8	11.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
9	5.6	5.9				5.7	11.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	5.5	5.8				5.5	11.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
∞	5.5	5.8				5.5	10.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
6	5.5	5.8				5.4	10.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
10	5.5	2.7				5.2	10.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	5.2	5.5	5.7	2.7	0.0	5.2	10.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
12	5.3	5.6	2.7	2.7	0.0	5.2	10.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
13	5.4	5.6	2.7	2.7	0.0	5.3	10.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
14	5.3	5.6	2.7	5.7	0.0	5.4	10.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
15	5.3	5.6	2.7	2.7	0.0	2.7	4.11	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
16	5.4	2.7	2.7	2.7	0.0	5.8	11.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	5.3	5.8	2.7	2.7	0.0	5.9	11.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
18	5.3	5.9	2.7	2.7	0.0	5.9	11.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
19	5.3	5.6	2.7	2.7	0.0	5.8	11.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
20	5.6	5.9	2.7	2.7	0.0	6.1	12.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
21	5.5	5.8	5.7	5.7	0.0	0.9	11.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	5.3	5.6	5.7	5.7	0.0	5.9	11.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
23	5.2	5.7	5.7	5.7	0.0	6.1	12.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
24	5.2		5.7	5.7	0.0	6.1	12.1	0.0	0.0	0.0	0.0	0 0	0.0	5,000.0
C 7	7.0	0.0	, c	- 1 - 1	9.5	† L	2.0	9.0	9 6	9 6	9 6	9 0	9 0	0.000, 4
50	4.¢	5.0		5.7	- c	4. ∠ υ υ	0 0 0 0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
/7	7.6	7.0	7.0). 1	0.0	4. 7.	9.0	0.0	0.0	5.0	0.0	9 0	0.0	2,000.0
28	9.4.9	5.6	5.7	5.7	0.0	4 ·	v	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
67	5.0	D. C.	0.7	7.7	0.0	0, t	- 0	0.0	0.0	0.0	2 0	9 0	9 0	2,000.0
30 31	6. 4. 0. 0.	5.6 5.6	5.7	5.7	0.0			0.0	0.0	0.0	0:0	0.0	0.0	5,000.0
0.141.01	707	0 927	0	1407		160.0		c		0		0		
TOTAL AF	326.5	350.9	237.6	237.4	0.2	2	336.0	9	0.0		0.0		0.0	5,000.0

1/ Minimum Flow Maintenance Requirement equals the Section 5 flow for a Below Normal year.
2/ Climatic Credits not applicable in May through December.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

JUNE 2014 - BELOW NORMAL YEAR

CAMP PENDLETON GROUNDWATER BANK	Climatic Credit Earned Coutput Output Output Output	AF cfs AF cfs AF cfs	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
PENDLE			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CAMF	Input	AF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	9
	Input	cfs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	dit Earned	AF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	2
	Climatic Crec	cfs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	WR-34 Make-Up Discharge	AF	7.6	7.7	6.7	7.9	7.9	7.9	7.9	7.7	7.7	9.8	10.1	10.1	9.6	9.5	9.5	9.5	9.2	9.5	9.5	9.2	9.5	9.2	9.5	9.5	9.5	9.5	9.5	9.3	9.3	9.3	7070	
	WR-34 Diso	cfs	3.8	3.9	4.0	4.0	4.0	4.0	4.0	3.9	3.9	4.9	5.1	5.1	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.7	4.7	4.7	136.7	
	Running Average Less Required Flow	cfs											0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
	Minimum Flow Maintenance Requirement 1/	cfs											4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	98.0	1
	10-Day Running Average of Website Discharge	cfs											4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	98.0	† •
	USGS Daily Website Discharge	cfs	4.9	4.9	4.9	4.9	4.9	4.9	5.0	4.9	4.9	4.8	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9		4.9	147.0	0.162
	USGS Official Discharge	cfs	4.4	4.2	4.1	4.1	4.1	4.1	4.1	3.9	3.9	4.8	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.8	4.8	4.7	4.7	4.8	4.8	4.8	4.9	4.7	4.7	4.7	138.2	1.4.7
	Day		1	7	က	4	2	9	7	∞	6	10	11	12	13	14	15	16	11	18	19	70	21	22	23	24	52	76	27	28	59	30	TOTAL SFD	O AL AL

1/ Minimum Flow Maintenance Requirement equals the Section 5 flow for a Below Normal year. 2/ Climatic Credits not applicable in May through December.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

JULY 2014 - BELOW NORMAL YEAR

CAMP PENDLETON GROUNDWATER BANK

Day	USGS Official Discharge	USGS Daily Website Discharge	10-Day Running Average of Website Discharge	Minimum Flow Maintenance Requirement 1/	Running Average Less Required Flow	WR-34 Make-Up Discharge	ike-Up rge	Climatic Credit Earned 2/	dit Earned	Input	Input	Output	Output	Cumulative Balance
	cfs	cfs	cfs	cfs	cfs	cfs	AF	cfs	AF	cfs	AF	cfs	AF	AF
1	4.3	4.3				4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
2	4.3	4.3				4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
m	4.3	4.3				4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4	4.2	4.2				3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
2	4.2	4.2				4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
9	4.3	4.3				4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	4.3	4.3				4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
80	4.3	4.3				4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
6	4.3	4.3				4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
10	4.3	4.3				4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	4.3	4.3	4.3	4.3	0.0	4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
12	4.3	4.3	4.3	4.3	0.0	4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
13	4.3	4.3	4.3	4.3	0.0	4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
14	4.4	4.4	4.3	4.3	0.0	4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
15	4.3	4.3	4.3	4.3	0.0	4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
16	4.3	4.3	4.3	4.3	0.0	4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
17	4.3	4.3	4.3	4.3	0.0	4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
18	4.3	4.3	4.3	4.3	0.0	4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
19	4.3	4.3	4.3		0.0	4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
20	4.5	4.5	4.3	4.3	0.0	4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
21	4.6	4.7	4.4	4.3	0.1	3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	4.5	4.5	4.4	4.3	0.1	3.5	6.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
23	4.3	4.3	4.4	4.3	0.1	3.6	7.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
24	4.4	4.4	4.4	4.3	0.1	4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
25	4.3	4.3	4.4	4.3	0.1	4.0	7.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
56	4.3	4.3	4.4	4.3	0.1	4.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
27	4.3	4.3	4.4	4.3	0.1	4.0	7.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
28	4.3	4.3	4.4	4.3	0.1	3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
53	4.1	4.1	4.4	4.3	0.1	3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
30	4.1	4.1	4.3	4.3	0.0	3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
31	4.0	4.0	4.3	4.3	0.0	3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
TOTAL SED	133.3	133 4	91.2	90.3	6:0	125.2		0.0		0.0		0.0		
TOTAL AF	264.4	264.6	180.9	179.1	1.8		248.1		0.0		0.0		0.0	5,000.0

1/ Minimum Flow Maintenance Requirement equals the Section 5 flow for a Below Normal year. 2/ Climatic Credits not applicable in May through December.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

AUGUST 2014 - BELOW NORMAL YEAR

CAMP PENDLETON GROUNDWATER BANK

ds cfs	Dav	USGS Official Discharge	USGS Daily Website Discharge	10-Day Running Average of Website Discharge	Minimum Flow Maintenance Requirement 1/	Running Average Less Required Flow	WR-34 Make-Up Discharde	e-Up	Climatic Credit Earned	dit Earned	Input	Input	Output	Output	Cumulative Balance
44 44 44 44 45 45 46 47 84 00 47 84 00 60 84 00 60 <td< th=""><th></th><th>cfs</th><th>cfs</th><th>cfs</th><th>cfs</th><th>cfs</th><th>cfs</th><th>AF</th><th></th><th></th><th>cfs</th><th>AF</th><th>cfs</th><th>AF</th><th>AF</th></td<>		cfs	cfs	cfs	cfs	cfs	cfs	AF			cfs	AF	cfs	AF	AF
4.5 4.5 4.6 4.4 6.0 4.2 8.4 0.0 4.4 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.4 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.4 4.4 4.4 0.0 4.4 0.0 4.4 0.0 4.4 4.4 4.4 4.4 0.1 4.4 0.1 4.4 0.0 4.4 4.4 4.4 0.1 4.4 0	1	4.4	4.4				4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.4 4.4 4.4 4.4 4.1 8.1 0.0 4.4 4.4 4.4 4.4 4.1 8.1 0.0 4.4 4.4 4.4 4.4 4.1 8.1 0.0 4.4 4.4 4.4 4.4 4.2 8.3 0.0 4.4 4.4 4.4 4.4 4.2 8.4 0.0 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.8 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.8 4.4 4.4 0.0 4.2 8.4 0.0 4.4 4.4 4.4 0.0 4.7 9.4 0.0 4.4 4.4 4.4 0.1 4.4 0.0 0.1 4.4 0.0 4.4 4.4 4.4 0.1 4.4 4.4 0.1 4.4 0.0 4.4 4.4 4.4 4.4 0.1 4.4 0.1 4.4 0.0 4.4 4.4 4	2	4.5	4.5				4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.3 4.3 4.4 4	က	4.4	4.4				4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4,4 4,4 4,4 4,4 4,1 8,1 0.0 4,4 4,4 4,4 4,4 4,1 8,1 0.0 4,4 4,4 4,4 4,4 4,2 8,3 0.0 4,4 4,4 4,4 4,4 4,2 8,5 0.0 4,4 4,4 4,4 4,4 0.0 4,2 8,5 0.0 4,4 4,4 4,4 4,4 0,0 4,2 8,5 0.0 4,4 4,4 4,4 4,4 0,0 4,2 8,6 0.0 4,4 4,4 4,4 4,4 0,0 4,2 8,6 0.0 4,4 4,4 4,4 4,4 0,0 4,7 9,4 0.0 4,4 4,4 4,4 4,4 0,1 4,8 9,6 0.0 4,4 4,4 4,4 4,4 4,4 0,1 4,1 8,0 0.0 4,4 4,4 4,4 4,4 4,4 0,1 4,1 8,0 0.0 4	4	4.3	4.3				4.0	7.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.2 8.3 0.0 4.4 4.4 4.4 4.4 4.4 4.4 6.0 4.3 8.5 0.0 4.4 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.4 4.4 4.4 4.4 0.1 4.8 9.6 0.0 4.4 4.4 4.4 0.1 4.4 0.0 4.2 0.0 4.4 4.4 4.4 0.1 4.4 0.0 4.4 0.0 4.4 4.4 4.4 0.1 4.4 0.1 4.1 8.0 0.0 4.4 4.4 4.4 0.1 4.4 0.1 4.1 8.0 0.0 4.4 4.4 4.4 0.1 4.4 0.1 4.1 0.0 4	5	4.4	4.4				4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.2 8.3 0.0 4.4 4.4 4.4 4.4 4.4 0.0 4.3 8.5 0.0 4.4 4.4 4.4 4.4 4.4 0.0 4.2 8.4 0.0 4.8 4.8 4.4 4.4 4.4 0.0 4.7 8.4 0.0 4.8 4.8 4.4 4.4 4.4 0.0 4.7 9.4 0.0 4.8 4.8 4.4 4.4 0.0 4.7 9.4 0.0 4.4 4.4 4.4 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.4 4.4 0.1 4.1 8.1 0.0 4.4 4.4 4.4 0.1 4.4 0.1 4.1 8.0 0.0 4.4 4.4 4.4 0.1 4.1 4.1 8.0 0.0 4.4 4.4 4.4 0.1 4.4 0	9	4.4	4.4				4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4,4 4,4 4,4 4,4 4,4 4,4 4,2 8,3 0.0 4,4 4,4 4,4 4,4 4,4 4,2 8,4 0.0 4,4 4,4 4,4 4,4 4,4 0.0 4,2 8,4 0.0 4,4 4,4 4,4 4,4 4,4 0.0 4,7 9,4 0.0 4,4 4,4 4,4 4,4 0.0 4,7 9,4 0.0 4,4 4,4 4,4 4,4 0.0 4,7 9,4 0.0 4,4 4,4 4,4 0.0 4,7 9,4 0.0 4,4 4,4 4,4 0.0 4,7 9,4 0.0 4,4 4,4 4,4 0.1 4,1 8,2 0.0 4,4 4,4 4,4 4,4 0.1 4,1 8,2 0.0 4,4 4,4 4,4 4,4 4,4 0.1 4,1 8,2 0.0 4,4 4,4 4,4 4,4 0.1 4,4 0	7	4.4	4.4				4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
44 44 44 44 44 43 85 0.0 44 44 44 44 44 43 85 0.0 44 44 44 44 44 42 84 0.0 48 48 48 44 44 60 47 84 0.0 48 48 44 44 44 0.0 47 84 0.0 44 44 45 44 47 0.1 48 80 0.0 44 44 45 44 0.1 41 81 0.0 44 44 45 44 0.1 41 81 0.0 44 44 45 44 0.1 40 80 0.0 44 44 45 44 0.1 40 80 0.0 45 44 45 44 0.1 40 80 0.0 46 46 45 44 0.1 44 0.1 3.9 7.7	80	4.4	4.4				4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
44 44 44 44 44 43 85 00 44 44 44 44 44 44 44 60 42 85 00 48 48 44 44 44 44 60 42 84 00 48 48 44 44 44 44 60 47 94 00 44 44 44 44 44 60 47 94 00 44 44 44 45 44 01 41 82 00 44 44 44 45 44 01 41 41 82 00 44 44 44 45 44 01 41 41 82 00 45 45 44 45 44 01 41 41 80 00 45 45 44 01 44 44 01 39 7.7 00 46 46 46 01 47 <td>6</td> <td>4.4</td> <td>4.4</td> <td></td> <td></td> <td></td> <td>4.2</td> <td>8.4</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>5,000.0</td>	6	4.4	4.4				4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 6.0 4.7 8.4 0.0 4.8 4.8 4.4 4.4 0.0 4.7 9.4 0.0 4.4 4.4 4.5 4.4 0.1 4.8 9.6 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.5 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.4 4.4 4.5 4.4 0.1 4.0 8.0<	10	4.4	4.4				4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.4 4.4 4.4 4.4 4.4 6.0 4.2 8.4 0.0 4.8 4.8 4.4 4.4 4.4 4.4 4.4 4.6 0.0 4.7 9.4 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.5 4.4 4.7 0.1 4.0 8.0 0.0 4.5 4.4 0.1 3.9 7.7 0.0 4.5 4.4 4.4 0.1 3.9 7.7 0.0 4.5 4.4 4.4 0.1 3.9 7.8 0	11	4.4	4.4	4.4	4.4	0.0	4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.8 4.8 4.4 4.4 0.0 4.7 94 0.0 4.4 4.5 4.4 0.1 4.8 9.6 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.0 0.0 4.5 4.4 4.5 4.4 0.1 4.1 4.0 8.0 0.0 4.5 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.5 4.4 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.6 4.6 4.4 0.1 3.9 7.7 0.0 4.6 4.6 4.4 4.4 4.4 0.1 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.	12	4.4	4.4	4.4	4.4	0.0	4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
5.1 5.1 4.5 4.4 0.1 4.8 9.6 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.1 8.2 0.0 4.4 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.4 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.5 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.5 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.5 4.5 4.4 0.1 4.0 8.0 0.0 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.4 4.4 4.4 4.4 4.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	13	4.8	4.8	4.4	4.4	0.0	4.7	9.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4,4 4,4 4,5 4,4 0.1 4,1 8.2 0.0 4,4 4,4 4,5 4,4 0.1 4,1 8.2 0.0 4,4 4,4 4,5 4,4 0.1 4,1 8.1 0.0 4,4 4,4 4,5 4,4 0.1 4,0 8.0 0.0 4,5 4,4 4,5 4,4 0.1 3,9 7,7 0.0 4,6 4,6 4,5 4,4 0.1 3,9 7,7 0.0 4,6 4,6 4,4 0.1 3,9 7,7 0.0 4,6 4,6 4,4 0.1 3,9 7,7 0.0 4,6 4,4 4,4 0.1 3,9 7,7 0.0 4,4 4,4 4,4 0.0 3,9 7,8 0.0 4,3 4,4 4,4 4,4 0.0 3,9 7,8 0.0 4,3 4,4 4,4 4,4 0,0 3,9 7,7 0.0 4,3 4,3 4	14	5.1	5.1	4.5	4.4	0.1	4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
44 4.4 4.5 4.4 0.1 4.1 8.2 0.0 44 4.4 4.5 4.4 0.1 4.1 8.1 0.0 4.4 4.4 4.5 4.4 0.1 4.0 8.0 0.0 4.5 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.7 4.4 4.4 0.1 3.9 7.7 0.0 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.4 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.4 4.4	15	4.4	4.4	4.5	4.4	0.1	4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
44 44 4.5 4.4 0.1 4.1 8.1 0.0 44 44 4.5 4.4 0.1 4.0 8.0 0.0 44 4.4 4.5 4.4 0.1 3.9 7.7 0.0 4.5 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.6 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.4 4.4 4.4 0.1 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.4 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.0 0.0 4.0 7.9 0.0 4.3 4.3 4.4 4.4 4.4 4.4 4.4 0.0 4.0 4.0 7.9 0	16	4.4	4.4	4.5	4.4	0.1	4.1		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
44 4.4 4.5 4.4 0.1 4.0 8.0 0.0 44 4.5 4.4 0.1 4.0 8.0 0.0 45 4.5 4.4 0.1 3.9 7.7 0.0 46 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.3 4.4 4.5 4.4 0.1 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.4 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 0.0 4.0 4.0 0.0 4.4 4.4 4.	17	4.4	4.4	4.5	4.4	0.1	4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
44 4.5 4.4 0.1 4.0 8.0 0.0 45 4.5 4.4 0.1 3.9 7.7 0.0 44 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.4 4.4 4.4 0.1 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 4.4 4.0 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 0.0 4.0 4	18	4.4	4.4	4.5	4.4	0.1	4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.5 4.5 4.4 0.1 3.9 7.7 0.0 4.4 4.4 4.5 4.4 0.1 3.9 7.7 0.0 4.6 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 4.4 4.4 0.0 4.0 4.0 0.0 4.3 4.4 4.4 4.4 4.4 4.4 4.4 <t< td=""><td>19</td><td>4.4</td><td>4.4</td><td>4.5</td><td>4.4</td><td>0.1</td><td>4.0</td><td>8.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>5,000.0</td></t<>	19	4.4	4.4	4.5	4.4	0.1	4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4,4 4,4 4,5 4,4 0.1 3.9 7.7 0.0 4,6 4,6 4,5 4,4 0.1 3.9 7.7 0.0 4,4 4,4 4,4 0.0 3.9 7.8 0.0 4,3 4,3 4,4 4,4 0.0 3.9 7.8 0.0 4,3 4,3 4,4 4,4 0.0 3.9 7.7 0.0 4,3 4,4 4,4 4,4 0.0 3.9 7.7 0.0 4,3 4,4 4,4 4,4 0.0 3.9 7.7 0.0 4,3 4,4 4,4 4,4 0.0 4,0 7.9 0.0 4,3 4,4 4,4 4,4 0.0 4,0 7.9 0.0 4,4 4,4 4,4 4,4 0.0 4,0 7.9 0.0 4,4 4,4 4,4 4,4 4,4 4,4 0.0 4,0 7.9 <td>20</td> <td>4.5</td> <td>4.5</td> <td>4.5</td> <td>4.4</td> <td>0.1</td> <td>3.9</td> <td>7.7</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>5,000.0</td>	20	4.5	4.5	4.5	4.4	0.1	3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.6 4.6 4.5 4.4 0.1 3.9 7.7 0.0 4.4 4.4 4.5 4.4 0.1 3.7 7.3 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.3 4.4 4.4 4.4 0.0 4.0 7.9 <td>21</td> <td>4.4</td> <td>4.4</td> <td>4.5</td> <td>4.4</td> <td>0.1</td> <td>3.9</td> <td>7.7</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>5,000.0</td>	21	4.4	4.4	4.5	4.4	0.1	3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.4 4.4 4.5 4.4 0.1 3.7 7.3 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 0.0 4.1 8.2 0.0 4.4 4.4 4.4 0.0 4.0 8.0 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 137.2 137.2 93.4 92.4 1.0 127.0 252.3 272.1 272.1 185.3 183.3 2.0 252.3	22	4.6	4.6	4.5	4.4	0.1	3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.3 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 4.4 4.4 0.0 4.0 0.0 0.0 4.3 4.3 4.4 4.4 4.4 4.4 0.0 4.0 7.9 0.0 137.2 137.2 93.4 92.4 1.0 127.0 252.3 272.1 272.1 185.3 183.3 2.0 252.3	23	4.4	4.4	4.5	4.4	0.1	3.7	7.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.3 4.3 4.4 4.4 4.4 0.0 3.9 7.8 0.0 4.3 4.3 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 0.0 4.1 8.2 0.0 4.3 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 137.2 137.2 93.4 92.4 1.0 127.0 252.3 272.1 272.1 185.3 183.3 2.0 252.3	24	4.3	4.3	4.4	4.4	0.0	3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.3 4.3 4.4 4.4 4.4 0.0 3.9 7.7 0.0 4.3 4.3 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 0.0 4.1 8.2 0.0 4.3 4.3 4.4 4.4 0.0 4.0 7.9 0.0 137.2 137.2 93.4 92.4 1.0 127.0 252.3 272.1 272.1 185.3 183.3 2.0 252.3	25	4.3	4.3	4.4	4.4	0.0	3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.3 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 0.0 4.0 7.9 0.0 4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 137.2 137.2 93.4 92.4 1.0 127.0 252.3 272.1 272.1 185.3 183.3 2.0 252.3	56	4.3	4.3	4.4	4.4	0.0	3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.3 4.3 4.4 4.4 4.4 4.4 4.4 6.0 4.0 7.9 0.0 4.4 4.4 4.4 4.4 4.4 6.0 4.1 8.2 0.0 4.3 4.4 4.4 4.4 4.4 6.0 4.0 7.9 0.0 137.2 137.2 93.4 92.4 1.0 127.0 252.3 272.1 272.1 185.3 183.3 2.0 252.3	27	4.3	4.3	4.4	4.4	0.0	4.0	7.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4,4 4,4 4,4 4,4 4,4 4,4 6.0 4,1 8.2 0.0 4,4 4,4 4,4 4,4 0.0 4,0 4,0 8.0 0.0 4,3 4,4 4,4 4,4 0.0 4,0 7.9 0.0 137,2 137,2 93,4 92,4 1,0 127,0 252,3 272,1 272,1 185,3 183,3 2.0 252,3	28	4.3	4.3	4.4	4.4	0.0	4.0	7.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.4 4.4 4.4 4.4 4.4 6.0 4.0 8.0 0.0 4.3 4.3 4.4 4.4 0.0 4.0 7.9 0.0 137.2 137.2 93.4 92.4 1.0 127.0 252.3 272.1 272.1 185.3 183.3 2.0 252.3	29	4.4	4.4	4.4	4.4	0.0	4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.3 4.4 4.4 4.4 0.0 4.0 7.9 0.0 137.2 137.2 93.4 92.4 1.0 127.0 252.3 272.1 272.1 185.3 183.3 2.0 252.3	30	4.4	4.4	4.4	4.4	0.0	4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
137.2 137.2 93.4 92.4 1.0 127.0 0.0 272.1 185.3 183.3 2.0 252.3	31	4.3	4.3	4.4	4.4	0.0	4.0	7.9	0.0	0.0	0.0	0.0	0.0	0.0	2,00
272.1 272.1 185.3 183.3 2.0 252.3	TOTAL SFD	137.2	137.2	93.4	92.4	1.0	127.0		0.0		0.0		0.0		
	TOTAL AF	272.1	272.1	185.3	183.3	2.0		252.3		0.0		0.0		0.0	5,000.0

Minimum Flow Maintenance Requirement equals the Section 5 flow for a Below Normal year.
 Climatic Credits not applicable in May through December.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

SEPTEMBER 2014 - BELOW NORMAL YEAR

201	- 0	1800	D. C.	Minimizer M							CAMP	CAMP PENDLETON GROUNDWATER BANK	BANK	
USGS Daily 10-Day Running Minin ficial Website Average of Main ige Discharge Website Discharge Requi	USGS Daily 10-Day Running Website Average of Discharge Website Discharge		Minimum Flor Maintenance Requirement	3 , =	Running Average Less Required Flow	WR-34 Make-Up Discharge	ake-Up ırge	Climatic Credit Earned	dit Earned	Input	Input	Output	Output	
cfs cfs cfs cfs	cfs		cfs		cfs	cfs	ΑF	cfs	AF	cfs	AF	cfs	AF	AF
	4.1					3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1					3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1					3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1					3.8	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1					3.8	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1					3.8	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1					3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1					3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	7.					3.0 0.0	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1 4.1		7	7		C	ა ა ა. თ	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
. 4	. 4		. 4		0.0	. e	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1	. + . +		4.1		0.0	3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1 4.1	4.1		4.1		0.0	3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1	4.1		4.1		0.0	3.8	9.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1	4.		4.1		0.0	3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1	4.		4.	- ,	0.0	1 œ	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1 4.1 4.1	4 4		4 <		0.0	3.7	۰ ۲ ۲ ۲	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1	. 4 - 1		. 4		0.0	3.7	5. 7 .	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1	4.1		4	_	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1		4.1		0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
	4.1		4.1		0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1	4.1		4.	_	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1	4.1		4.1		0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1 4.1	4.1		4.1		0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1 4.1 4.1 4.1	4.1		4.1		0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4.1 4.1 4.1 4.1	4.1		4.1		0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
_	4.1		4.1		0.0	3.7	7.3	0.0	0.0	0.0		0.0	0.0	5,000.0
3.9 4.1	4.1		4.1		0.0	3.5	7.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
												,		
122.8 122.8 82.0 82.0 243.6 243.6 162.6 162.6	122.8 82.0 243.6 162.6 1	•	82.0 162.6		0.0	112.9	224.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0

1/ Minimum Flow Maintenance Requirement equals the Section 5 flow for a Below Normal year.
2/ Climatic Credits not applicable in May through December.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

Day

5,000.0 5,0 5,000.0 0.000.0 Cumulative 5,000.0 5,000.0 GROUNDWATER BANK CAMP PENDLETON Output 0.0 Input 0.0 cts Climatic Credit Earned 0.0 7 0.0 OCTOBER 2014 - BELOW NORMAL YEAR $\begin{array}{c} 7.7 \\ 7.0 \\ 9.7 \\ 7.7 \\$ 216.5 WR-34 Make-Up Discharge 108.7 Running Average Less Required Flow cts Minimum Flow Requirement 1/ 81.9 162.4 Maintenance Website Discharge 10-Day Running 81.9 162.4 Average of 120.9 239.8 **USGS Daily** Discharge Website cts 118.5 235.0 **USGS Official** Discharge cfs

Minimum Flow Maintenance Requirement equals the Section 5 flow for a Below Normal year. 5 4

TOTAL SFD TOTAL AF

Climatic Credits not applicable in May through December.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

NOVEMBER 2014 - BELOW NORMAL YEAR

CAMP PENDLETON GROUNDWATER BANK

Day	USGS Official Discharge	USGS Daily Website Discharge	10-Day Running Average of Website Discharge	Minimum Flow Maintenance Requirement 1/	Running Average Less Required Flow	WR-34 Make-Up Discharge	ke-Up	Climatic Credit Earned	it Earned	lnput /3	Input	Output	Output	Cumulative Balance
	cfs	cfs	cfs	cfs	cfs	cfs	AF	cfs	AF	cfs	AF	cfs	AF	AF
1	2.7	2.9				2.2	4.3	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
7	2.8	3.0				2.7	5.3	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
က	2.8	3.0				2.7	5.4	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
4	2.8	3.0				2.8	5.6	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
2	2.8	3.0				2.8	5.6	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
9	2.8	3.0				2.8	5.6	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
7	2.9	2.9				2.9	2.7	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
∞	3.0	3.0				3.0	0.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
6	3.1	3.1				3.1	6.2	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
10	3.1	3.1				3.0	5.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
11	3.0	3.0	3.0	3.0	0.0	2.9	2.7	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
12	3.0	3.0	3.0	3.0	0.0	1.9	3.8	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
13	3.4	3.4	3.1	3.0	0.1	9.0	1.2	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
14	3.1	3.1	3.1	3.0	0.1	2.4	4.7	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
15	3.0	3.0	3.1	3.0	0.1	2.7	5.4	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
16	3.0	3.0	3.1	3.0	0.1	2.9	5.7	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
17	3.0	3.0	3.1	3.0	0.1	2.9	5.8	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
18	3.0	3.0	3.1	3.0	0.1	3.0	0.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
19	3.0	3.0	3.1	3.0	0.1	3.0	0.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
20	2.8	2.8	3.0	3.0	0.0	2.8	5.5	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
21	3.0	3.0	3.0	3.0	0.0	3.0	5.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
22	3.0	3.0	3.0	3.0	0.0	3.0	5.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
23	3.0	3.0	3.0	3.0	0.0	3.0	0.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
24	3.0	3.0	3.0	3.0	0.0	3.0	0.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
25	3.0	3.0	3.0	3.0	0.0	3.0	5.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
76	3.0	3.0	3.0	3.0	0.0	3.0	6.0	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
27	3.0	3.0	3.0	3.0	0.0	3.0	0.9		0.0	1.5	3.0	0.0	0.0	5,000.0
28	3.0	3.0	3.0	3.0	0.0	3.0	0.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
29	3.0	3.0	3.0	3.0	0.0	3.0	0.9	0.0	0.0	1.5	3.0	0.0	0.0	5,000.0
30	2.7	2.7	3.0	3.0	0.0	2.7	5.3		0.0	1.5	3.0	0.0	0.0	5,000.0
013 14101	0	Ċ	7 03	000	7.0	8 68		c		0.27		0		
TOTAL AF	176.1	178.5	120.4	119.0	. 1 .	5.5	164.4	9	0.0	5	0.06	5	0.0	5,000.0

Camp Pendleton's request to forego Make-Up Water implemented on November 1, 2014; Minimum Flow Requirement equals the Section 5 flow requirement for a Critically Dry year.
 Climatic Credits not applicable in May through December.
 Foregone Make-Up Water credited to Groundwater Bank but cumulative balance did not increase due to account balance maximum of 5,000 AF.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

DECEMBER 2014 - BELOW NORMAL YEAR

CAMP PENDLETON GROUNDWATER BANK

Dav	USGS Official Discharte	USGS Daily Website	10-Day Running Average of Website Discharge	Minimum Flow Maintenance	Running Average Less Required	WR-34 Make-Up Discharge	ske-Up	Climatic Credit Earned	it Earned	in and	<u> </u>	‡ 2	ti E	Cumulative Ralance
for	cfs	cfs	cfs	cfs	cfs	cfs	AF	cfs	AF	cfs	AF	cfs	AF	AF
1	3.4	3,4				3.2	6.4	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
7	5.5	5.5				2.9	5.8	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
က	111.0	111.0				0.5	1.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
4	818.0	818.0				0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
S	93.0	93.0				0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
9	16.0	16.0				0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
7	3.4	3.4				0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
80	3.2	3.2				2.4	4.8	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
6	3.3	3.3				3.0	0.9	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
10	3.3	3.3				3.1	6.1	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
11	3.3	3.3	106.0	3.3	102.7	3.1	6.1	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
12	251.0	251.0	130.6	3.3	127.3	0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
13	108.0	108.0	130.3	3.3	127.0	0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
14	18.0	18.0	50.3	3.3	47.0	0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
15	4.0	4.0	41.4	3.3	38.1	0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
16	3.1	3.1	40.1	3.3	36.8	2.0	4.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
17	22.0	22.0	41.9	3.3	38.6	1.2	2.4	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
18	6.9	6.9	42.3	3.3	39.0	0.0	0.0	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
19	3.2	3.2	42.3	3.3	39.0	6.0	1.7	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
20	3.3	3.3	42.3	3.3	39.0	2.4	4.8	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
21	3.3	3.3	42.3	3.3	39.0	2.8	5.6	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
22	3.3	3.3	17.5	3.3	14.2	2.9	5.8	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
23	3.3	3.3	7.0	3.3	3.7	2.9	5.8	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
24	3.3	3.3	5.6	3.3	2.3	3.0	5.9	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
25	3.2	3.2	5.5	3.3	2.2	2.9	5.8	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
26	3.3	3.3	5.5	3.3	2.2	3.0	0.9	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
27	3.4	3.4	3.7	3.3	0.4	3.1		0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
28	3.3	3.3	3.3	3.3	0.0	3.0	5.9	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
29	3.3	3.3	3.3	3.3	0.0	3.0		0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
30	3.3	3.3	3.3	3.3	0.0		5.9	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
31	253.0	253.0	28.3	3.3	25.0	6.0	1.7	0.0	0.0	2.0	4.0	0.0	0.0	5,000.0
4	7	7000	200	603	702 6	55.0		0		62.0		0		
TOTAL AF	3,508.6	3,508.6	1,572.5	137.5	1,435.0	3.50	109.5	9	0.0	0.50	124.0	9	0.0	5,000.0
	-													

Camp Pendleton's request to forego Make-Up Water implemented on November 1, 2014; Minimum Flow Requirement equals the Section 5 flow requirement for a Critically Dry year.
 Climatic Credits not applicable in May through December.
 Foregone Make-Up Water credited to Groundwater Bank but cumulative balance did not increase due to account balance maximum of 5,000 AF.

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2013-14

APPENDIX F

ANNUAL REPORT ISSUES SUBORDINATED DURING EFFECTIVE PERIOD OF THE COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT

APPENDIX F

SANTA MARGARITA RIVER WATERSHED

ANNUAL REPORT ISSUES SUBORDINATED DURING EFFECTIVE PERIOD OF THE COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT

Introduction

Prior to implementation of the Cooperative Water Resource Management Agreement (CWRMA) entered into by Rancho California Water District (RCWD) and the United States on behalf of Camp Pendleton, there were contentions raised by Camp Pendleton each year, with respect to various aspects of the Annual Watermaster Report. These contentions are settled so long as CWRMA is in effect. Accordingly, there is no need to raise those particular issues or publish them in the main text of the annual report or in related correspondence.

However, the respective positions on these issues need to be preserved and protected from any finding of waiver, and there is a need to continue to collect related data in the event of need in the future.

Therefore, the applicable textual material in the previous annual reports and related comments and responses have been gathered here for preservation and maintenance of rights, with the understanding that the previous annual exchange of applicable contentions in the process of preparing the annual report is no longer necessary.

Issues Reserved

Section 3, Surface Water Availability and Use: In the absence of CWRMA implementation, Camp Pendleton disputes the method of calculation used in the annual report in Subsection 3.2 (Surface Water Diversions) and Table 3.3 (Surface Water Diversions to Storage for Vail Lake) for presentation of the information regarding Vail Lake and further asserts its belief that the Vail Dam impoundment fails to comply with the 1940 Stipulated Judgment.

Section 4, Subsurface Water Availability and Use: In the absence of CWRMA implementation, and with respect to Figure 4.1 (Water Level Elevations – Windmill Well) and to Subsections 4.3 (Water Levels) and 4.4 (Groundwater Storage), Camp Pendleton is concerned about the apparent excessive pumping in the Upper Basin, and further asserts its belief that the lengthy and significant drawdown and concomitant loss in storage adversely affect the water supply for adjacent and downstream users holding senior water rights.

Section 7, Water Production and Use: First, in the absence of CWRMA implementation, and with regard to the local production figures shown in Table 7.1 (Water Production and Use), Camp Pendleton is concerned about the high level of groundwater production from the Upper Basin, a level that Camp Pendleton believes to be substantially greater than the safe yield.

Second, in the absence of CWRMA implementation, and with regard to Footnote 4 of Table 7.1 (distinction between RCWD pumping of older alluvium water and of Vail recovery water), Camp Pendleton has serious reservations as to the accounting system that is being used as well as the legal and technical bases upon which such system has been formulated.

Third, in the absence of CWRMA implementation, and as to the RCWD part of Subsection 7.2.8 (Water Purveyors – Rancho California Water District), Camp Pendleton has serious reservations as to the accounting system that is being used as well as the legal and technical bases upon which such system has been formulated. These reservations include the following:

- 1. As to the "Vail Appropriation" part: Representatives of the United States contend that under the 1940 Stipulated Judgment storage of water in Vail Lake is limited to Rancho California Water District's share of the flood waters of the Santa Margarita River system. However, to date, the parties have not agreed on a definition of "flood waters."
- 2. As to the "Division of Local Water" part: In 1995 well logs and geophysical logs of all Rancho California WD wells were reviewed by representatives of the United States and Rancho California WD to determine the depths of the younger alluvium. There was general agreement between the parties about the depth of the younger alluvium in production wells, except for ten wells shown on Table 7.7 of the 1994-95 report. The remaining disagreements relate to differences about the magnitude of the clay layer needed to define the base of the younger alluvium, the importance of neighboring well logs, and general concepts about overall geologic setting.

<u>Section 8, Unauthorized Water Use</u>: In the absence of CWRMA implementation, and with respect to water use by RCWD, Camp Pendleton asserts the following:

- 1. Such use is in violation of the 1940 Stipulated Judgment by reason of, among other things, Vail Lake operations in excess of entitlement and pumping from both younger and older alluvium in excess of entitlement, which contentions RCWD disputes;
- 2. Rediversion and use of water impounded by Vail Dam are not in accord with terms of Permit 7032;
- 3. Unauthorized pumping is being done, including pumping from the younger alluvium outside of Pauba Valley without a permit and pumping from the older alluvium in violation of Court adjudications.

<u>Section 9, Threats to Water Supply</u>: In the absence of CWRMA implementation, and with respect to Subsection 9.3 (Potential Overdraft Conditions) and as noted in the foregoing comments to Sections 4 and 7, Camp Pendleton is seriously concerned regarding the apparent excessive pumping in the Upper Basin.

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2013-14

APPENDIX G INDEPENDENT AUDITOR'S REPORT WATER YEAR 2013-14

James A. Rotherham, CPA CEO & Managing Partner

.....

Roy T. Hosaka, CPA Retired

James C. Nagel, CPA Retired

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED

INDEPENDENT AUDITORS' REPORT

FOR THE FISCAL YEAR ENDED SEPTEMBER 30, 2014

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED

INTRODUCTORY SECTION

SEPTEMBER 30, 2014

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED

FINANCIAL SECTION

SEPTEMBER 30, 2014

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED TABLE OF CONTENTS SEPTEMBER 30, 2014

	Page <u>Number</u>
INTRODUCTORY SECTION	
Table of Contents	i
FINANCIAL SECTION	1
Independent Auditors' Report	2 - 3
Statement of Net Assets	4
Statement of Activities	5
Statement of Cash Flows	6
Notes to Financial Statements	7 - 11
SUPPLEMENTARY INFORMATION SECTION	12
Statement of Activities - Budget and Actual	13
OTHER INDEPENDENT AUDITORS' REPORTS SECTION	14
Independent Auditors' Report on Internal Control Over Financial Reporting and on Compliance and Other Matters Based on an Audit of Financial Statements	
Performed in Accordance with Government Auditing Standards	15 - 16
FINDINGS AND RECOMMENDATIONS SECTION	17
Schedule of Audit Findings and Questioned Costs	18 - 19
Summary Schedule of Prior Audit Findings	20

James A. Rotherham, CPA CEO & Managing Partner

Roy T. Hosaka, CPA Retired

James C. Nagel, CPA Retired

INDEPENDENT AUDITORS' REPORT

Steering Committee Watermaster of the Santa Margarita River Watershed Fallbrook, California

Report on the Financial Statements

We have audited the accompanying financial statements of Watermaster of the Santa Margarita River Watershed, which comprise the statement of financial position as of September 30, 2014, and the related statements of activities and cash flows for the fiscal year then ended, and the related notes to the financial statements.

Management's Responsibility for the Financial Statements

Management is responsible for the preparation and fair presentation of these financial statements in accordance with accounting principles generally accepted in the United States of America; this includes the design, implementation, and maintenance of internal control relevant to the preparation and fair presentation of financial statements that are free from material misstatement, whether due to fraud or error.

Auditor's Responsibility

Our responsibility is to express an opinion on these financial statements based on our audit. We conducted our audit in accordance with auditing standards generally accepted in the United States of America and the standards applicable to financial audits contained in *Government Auditing Standards*, issued by the Comptroller General of the United States and the State Controller's minimum audit requirements for California Special Districts. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are free from material misstatement.

An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the financial statements. The procedures selected depend on the auditor's judgment, including the assessment of the risks of material misstatement of the financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity's preparation and fair presentation of the financial statements in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the entity's internal control. Accordingly, we express no such opinion. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of significant accounting estimates made by management, as well as evaluating the overall presentation of the financial statements.

The notes to the financial statements are an integral part of this statement.

We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.

INDEPENDENT AUDITORS' REPORT Page 2

Opinion

In our opinion, the financial statements referred to above present fairly, in all material respects, the financial position of Watermaster of the Santa Margarita River Watershed as of September 30, 2014, and the changes in its net assets and its cash flows for the fiscal year then ended in accordance with accounting principles generally accepted in the United States of America.

Other Matters

Other Information

Our audit was conducted for the purpose of forming an opinion on the financial statements as a whole. The supplementary information as listed in the table of contents is presented for purposes of additional analysis and is not a required part of the financial statements. Such information is the responsibility of management and was derived from and relates directly to the underlying accounting and other records used to prepare the financial statements. The information has been subjected to the auditing procedures applied in the audit of the financial statements and certain additional procedures, including comparing and reconciling such information directly to the underlying accounting and other records used to prepare the financial statements or to the financial statements themselves, and other additional procedures in accordance with auditing standards generally accepted in the United States of America. In our opinion, the information is fairly stated in all material respects in relation to the financial statements as a whole.

Other Reporting Required by Government Auditing Standards

In accordance with *Government Auditing Standards*, we have also issued our report dated January 21, 2015, on our consideration of Watermaster of the Santa Margarita River Watershed's internal control over financial reporting and on our tests of its compliance with certain provisions of laws, regulations, contracts, and grant agreements and other matters. The purpose of that report is to describe the scope of our testing of internal control over financial reporting and compliance and the results of that testing, and not to provide an opinion on internal control over financial reporting or on compliance. That report is an integral part of an audit performed in accordance with *Government Auditing Standards* in considering Watermaster of the Santa Margarita River Watershed's internal control over financial reporting and compliance.

Hosaka, Rotherham & Company
San Diego, California

January 21, 2015

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED STATEMENT OF NET ASSETS SEPTEMBER 30, 2014

ASSETS

Current assets:		
Cash and cash equivalents (Note 3)	\$	314,370
Short-term investments (Note 4) Prepaid Expenses		201,017
		200
Total current assets		515,587
Fixed assets, net of depreciation (Note 5)		5,119
Total assets	\$	520,706
LIABILITIES AND NET ASSETS		
Current liabilities:		
Advanced assessments	_\$	145,650
Total current liabilities		145,650
Net assets:		
Unrestricted	***************************************	375,056
Total net assets		375,056
Total liabilities and net assets	\$	520,706

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED STATEMENT OF ACTIVITIES FOR THE FISCAL YEAR ENDED SEPTEMBER 30, 2014

Revenues

Assessments Interest	\$ 658,840 562
Total revenues	659,402
Expenses	
Watermaster fees: Consulting services Travel reimbursements	221,328 27,906
Other expenses: Gauging station operation Rent Accounting services Supplies Insurance Printing Audit Legal services Publications Clerical / Analyst Telephone / Internet Travel Postage Conference/Training IT System / Computer Depreciation expense Miscellaneous Total expenses	237,400 18,000 6,073 2,215 575 11,207 6,339 11,955 3,009 96,781 2,503 956 1,527 662 4,248 607 317
Change in net assets	5,794
Net assets - beginning	 369,262
Net assets - ending	\$ 375,056

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED STATEMENT OF CASH FLOWS FOR THE FISCAL YEAR ENDED SEPTEMBER 30, 2014

Cash flows used by operating activities:

Depreciation Receipts from customers Receipts from interest Payment to suppliers and vendors	\$	607 663,110 562 (653,608)
Net cash provided by operating activities		10,671
Cash flows from financing activities:		
Increase in short-term investments		(29)
Net cash used in financing activities		(29)
Cash flows used by investing activities:		
Acquisition of fixed assets		(2,601)
Net cash used by operating activities		(2,601)
Change in cash and cash equivalents		8,041
Cash and cash equivalents - beginning		306,329
Cash and cash equivalents - ending	\$	314,370
Reconciliation of operating revenues to net cash used by operating activities		
Change in net assets	\$	5,794
Adjustment to reconcile net income to net cash provided by operating activities		
Depreciation		607
(Increase) Decrease in: Prepaid Expenses Increase (Decrease) in:		(200)
Advanced assessments	· · · · · · · · · · · · · · · · · · ·	4,470
Net cash provided by operating activities	\$	10,671

The notes to the financial statements are an integral part of this statement.

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED NOTES TO FINANCIAL STATEMENTS SEPTEMBER 30, 2014

NOTE 1 - ORGANIZATION

Nature of operations

Watermaster of the Santa Margarita River Watershed (Watermaster) was created by order of the United States District Court, Southern District of California (Court). The Court, as part of its continuing jurisdiction in the case of United States vs. Fallbrook Public Utility District et al., has authority to make judicial determination of all water rights within the Santa Margarita River Watershed. Watermaster is empowered by the Court to administer and enforce the provisions of a Modified Final Judgment and Decree entered April 6, 1966, and subsequent instructions and orders of the Court. On November 15, 2005, the Court issued an Order authorizing the Steering Committee to execute an Employment Agreement with Charles W. Binder, DBA Binder & Associates Consulting, Inc., to serve as Watermaster.

A Steering Committee was appointed by the Court to assist Watermaster and the Court. The Steering Committee is comprised of representatives from the United States (Camp Pendleton Marine Corps Base), Rancho California Water District, Fallbrook Public Utility District (FPUD), Eastern Municipal Water District, Metropolitan Water District of Southern California, the Pechanga Band of Luiseño Mission Indians, and Western Municipal Water District.

The fees and expenses of Watermaster during the water year ended September 30, 2014, were, per court order, paid from equal assessments against the Steering Committee members. The Court retains the right to assess other parties in the watershed in future years. Pursuant to an agreement between Watermaster and the United States Geological Survey (USGS), the USGS provides operations and maintenance services for stream gauging stations and groundwater monitoring wells in the watershed.

NOTE 2 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES

A. Basis of accounting

The accounting policies of the Watermaster substantially conform to generally accepted accounting principles. The accounting records are maintained on an accrual basis. Revenue is recognized when earned and expenses are recorded upon incurrence of a liability. Accounts receivable represent amounts due from Steering Committee members.

B. Cash and cash equivalents

Cash and cash equivalents are from time to time variously composed of cash in banks and liquid investments with original maturities of three months or less.

C. Investments

The Watermaster presents its investments in accordance with Accounting Standards. Investments in marketable securities with readily determinable fair values and all investments in debt securities are reported at their fair values in the Statement of Net Assets. The fair values of these investments are subject to change based on the fluctuations of market values. Unrealized gains and losses are included in the change in net assets. Investment income and gains restricted by a donor or by the Watermaster are reported as increases in unrestricted net assets if the restrictions are met (either by the passage of time or by use) in the reporting period in which the income and gains are recognized.

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED NOTES TO FINANCIAL STATEMENTS SEPTEMBER 30, 2014

NOTE 2 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES (CONTINUED)

D. Accounts receivable

Watermaster considers accounts receivable to be fully collectible; accordingly, no allowance for doubtful accounts is required.

E. Fixed assets

Fixed assets are recorded at cost and depreciated under the straight-line method over their estimated useful lives of 3 to 10 years. Repair and maintenance costs, which do not extend the useful lives of the asset, are charged to expense. The cost of assets, sold or retired, and related amounts of accumulated depreciation are eliminated from the accounts in the year of disposal, and any resulting gain or loss is included in the earnings. Management has elected to capitalize and depreciate all assets costing \$2,000 or more; all other assets are charged to expense in the year incurred.

F. Advanced assessments

Advanced assessments represent amounts levied or collected in the current year that apply to the next fiscal year.

G. Use of estimates

The preparation of financial statements in conformity with generally accepted accounting principles requires management to make estimates and assumptions that affect certain reported amounts and disclosures. Accordingly, actual results could differ from those estimates.

H. Classification of items

Certain items may have been classified different from one year to another.

I. Income taxes

Watermaster was created by order of the Court and is exempt from taxation.

J. Excess of expenses over budgets

Excess of actual expenses over budgeted amounts in individual accounts were as follows:

Watermaster fees - consulting	\$ (2,328)
Watermaster travel reimbursements	\$ (406)
Supplies	\$ (415)
Printing	\$ (407)
Audit	\$ (39)
Legal services	\$ (11,955)
Travel	\$ (56)
Depreciation expense	\$ (607)
Postage	\$ (1,527)
Conference/Training	\$ (662)

There was one major item where the actual expenses exceeded the budget amount.

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED NOTES TO FINANCIAL STATEMENTS SEPTEMBER 30, 2014

NOTE 2 - SUMMARY OF SIGNIFICANT ACCOUNTING POLICIES (CONTINUED)

J. Excess of expenses over budgets (continued)

Legal services - These services were not anticipated and were not listed as a separate line item in the 2014 budget. The specific services relate to retention of legal counsel to assist the Watermaster in responding to objections filed with the Court concerning the 2012 Annual Watermaster Report. Retention of legal counsel was approved by the Steering Committee with expenses to be paid from reserves. The Court and the Watermaster Steering Committee have approved legal services to be a budgeted expense item beginning in the fiscal year 2015.

K. New GASB Pronouncements

The Watermaster implemented the following Governmental Accounting Standards Board pronouncements:

Governmental Accounting Standards Board Statement No. 60

In November 2010, the GASB issued Statement No. 60, Accounting and Financial Reporting for Service Concession Arrangements. This Statement address how to account for and report service concession arrangements, a type of public-private or public-public partnership that state and local governments are increasingly entering into. No service concession arrangements were noted in the fiscal years transactions.

Governmental Accounting Standards Board Statement No. 61

In November 2010, the GASB issued Statement No. 61, *The Financial Reporting Entity, Omnibus*. This Statement is designed to improve financial reporting for governmental entities by amending the requirements of GASB Statement No. 14, The *Financial Reporting Entity*, and GASB Statement No. 34, *Basic Financial Statement and Management's Discussion and Analysis for State and local Governments*.

Governmental Accounting Standards Board Statement No. 62

In December 2010, The GASB issued Statement No. 62 – Codification of Accounting and Financial Reporting Guidance Contained in Pre-November 30, 1989 FASB and AICPA Pronouncements. The objective of this Statement is to incorporate into the GASB's authoritative literature certain accounting and financial reporting guidance that is included in the following pronouncements issued on or before November 30, 1989, which does not conflict with or contradict GASB pronouncements:

- Financial Accounting Standards Board (FASB) Statements and Interpretations
- Accounting Principles Board Opinions
- Accounting Research Bulletins of the American Institute of Certified Public Accountants' (AICPA) Committee on Accounting Procedure

Hereinafter, these pronouncements collectively are referred to as the "FASB and AICPA pronouncements." This Statement also supersedes Statement No. 20, Accounting and Financial Reporting for Proprietary Funds and Other Governmental Entities That Use Proprietary Fund Accounting, thereby eliminating the election provided in paragraph 7 of that Statement for enterprise funds and business-type activities to apply post-November 30, 1989 FASB Statements

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED NOTES TO FINANCIAL STATEMENTS SEPTEMBER 30, 2014

K. New GASB Pronouncements (continued)

Governmental Accounting Standards Board Statement No. 62 (Continued)

and Interpretations that do not conflict with or contradict GASB pronouncements. However, those entities can continue to apply, as other accounting literature, post November 30, 1989 FASB pronouncements that do not conflict with or contradict GASB pronouncements, including this Statement.

Governmental Accounting Standards Board Statement No. 63

In June 2011, the GASB issued Statement No. 63, *Financial Reporting of Deferred Outflows of Resources, Deferred Inflows of Resources, and Net Position.* This Statement is designed to improve financial reporting by standardizing the presentation of deferred outflows of resources and deferred inflows of resources into the definitions of the required components of the residual measure and by renaming that measure as net position, rather than net assets.

NOTE 3 - CASH AND CASH EQUIVALENTS

Cash and cash equivalents at September 30, 2014, consisted of the following:

Cash in banks	\$ 4,765
Money market	309,605
Total cash and cash equivalents	\$ 314,370

Cash balances held in banks are insured up to \$250,000 by the Federal Deposit Insurance Corporation (FDIC). In addition, the Watermaster has entered into a contract with Pacific Western Bank to collateralize deposits in the amount of 110 percent up to \$1,000,000 of any deposits in excess of \$250,000. At September 30, 2014, the Watermaster had \$16,835 deposited with Pacific Western Bank in excess of \$250,000 secured under the contract with Pacific Western Bank. The remaining cash balances at September 30, 2014 held at Wells Fargo and Union Bank of California were less than the \$250,000 and thus insured by FDIC.

NOTE 4 - SHORT-TERM INVESTMENTS

Short-term investments at September 30, 2014, are stated at Fair Market Value and consist of the following:

	Fair Cost Value		(Carrying Value	
Unrestricted:					
Pacific Western Bank					
certificate of deposit	\$ 50,823	\$	51,017	\$	51,017
Union Bank					
certificate of deposit	 150,000		150,000		150,000
Total unrestricted	\$ 200,823	\$	201,017	\$	201,017

Short-term investment activity for the fiscal year ended September 30, 2014, consisted of the following:

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED NOTES TO FINANCIAL STATEMENTS SEPTEMBER 30, 2014

NOTE 4 - SHORT-TERM INVESTMENTS (CONTINUED)

	Unres	Unrestricted		
Interest and dividends	\$	300		
Net investment return	\$	300_		

Watermaster realized a gain or loss on the Union Bank certificate of deposit when it earned its interest. During the fiscal year, Watermaster recognized the entire interest income related to the Union Bank certificate of deposit in the amount of \$300.

NOTE 5 - FIXED ASSETS

Fixed assets at September 30, 2014, consisted of the following:

Computer equipment	\$ 10,862
Office furniture and equipment	19,461
Less: accumulated depreciation	 (25,204)
Total fixed assets, net of depreciation	\$ 5,119

During the fiscal year ended September 30, 2014, \$607 was charged to depreciation expense.

NOTE 6 - RELATED PARTY TRANSACTIONS

The Watermaster has entered into an agreement with Fallbrook Public Utility District (FPUD), which is a member of the Watermaster Steering Committee, whereby FPUD provides office space and accounting services. Rent of office space and accounting services for the fiscal year ended September 30, 2014, were \$18,000 and \$6,073, respectively.

Data management and clerical support services are performed at the Watermaster office by an FPUD employee under contract. Watermaster reimburses FPUD for the actual cost of wages and fringe benefits. For the fiscal year ended September 30, 2014, these reimbursements totaled \$96,781.

NOTE 7 - OPERATING LEASES

The Watermaster leases a copier and electronic storage under operating lease arrangements. Future minimum lease payments under the signed lease arrangements are as follows:

Year Ending			Lease		
September 30,	_	Pa	Payments		
2015	•	\$	4,903		
2016			4,903		
2017			3,253		
2018			3,103		
	Total	\$	16,162		

The Watermaster will receive no sublease rental revenue, nor pay any contingent rentals for these leases. At September 30, 2014, Watermaster's lease expense was \$5,574.

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED

SUPPLEMENTARY INFORMATION SECTION

SEPTEMBER 30, 2014

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED STATEMENT OF ACTIVITIES - BUDGET AND ACTUAL FOR THE FISCAL YEAR ENDED SEPTEMBER 30, 2014

		Original/ al Budget	Actual		Variance Favorable (Unfavorable)	
Revenues						
Assessments Interest	\$	658,840 	\$	658,840 562	\$	- 562
Total revenues		658,840		659,402		562
Expenses						
Watermaster fees:						
Consulting services		219,000		221,328		(2,328)
Travel reimbursements		27,500		27,906		(406)
Other expenses:						
Gauging station operation		239,125		237,400		1,725
Rent		18,000		18,000		-
Accounting services		8,800		6,073		2,727
Supplies		1,800		2,215		(415)
Insurance		600		575		25
Printing		10,800		11,207		(407)
Audit		6,300		6,339		(39)
Legal services		-		11,955		(11,955)
Publications		4,200		3,009		1,191
Clerical / Analyst		99,700		96,781		2,919
Telephone / Internet		4,200		2,503		1,697
Travel		900		956		(56)
Postage		-		1,527		(1,527)
Conference/Training		-		662		(662)
Office equipment and furniture		2,000		-		2,000
IT System/Computer		10,000		4,248		5,752
Depreciation expense				607		(607)
Miscellaneous		5,915		317		5,598
Total expenses		658,840		653,608		5,232
Change in net assets		-		5,794		5,794
Net assets - beginning		369,262		369,262		_
Net assets - ending		369,262	\$	375,056	\$	5,794

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED

OTHER INDEPENDENT AUDITORS' REPORTS SECTION

SEPTEMBER 30, 2014

L

- 14 -

James A. Rotherham, CPA CEO & Managing Partner

.......

Roy T. Hosaka, CPA Retired

James C. Nagel, CPA Retired

INDEPENDENT AUDITORS' REPORT ON INTERNAL CONTROL OVER FINANCIAL REPORTING AND ON COMPLIANCE AND OTHER MATTERS BASED ON AN AUDIT OF FINANCIAL STATEMENTS PERFORMED IN ACCORDANCE WITH GOVERNMENT AUDITING STANDARDS

Steering Committee Watermaster of the Santa Margarita River Watershed Fallbrook, California

We have audited, in accordance with the auditing standards generally accepted in the United States of America and the standards applicable to financial audits contained in *Government Auditing Standards* issued by the Comptroller General of the United States, the financial statements of Watermaster of the Santa Margarita River Watershed, which comprise the statement of financial position as of September 30, 2014, and the related statements of activities and cash flows for the fiscal year then ended, and the related notes to the financial statements, and have issued our report thereon dated January 21, 2015.

Internal Control Over Financial Reporting

In planning and performing our audit of the financial statements, we considered Watermaster of the Santa Margarita River Watershed's internal control over financial reporting (internal control) to determine the audit procedures that are appropriate in the circumstances for the purpose of expressing our opinion on the financial statements, but not for the purpose of expressing an opinion on the effectiveness of Watermaster of the Santa Margarita River Watershed's internal control. Accordingly, we do not express an opinion on the effectiveness of Watermaster of the Santa Margarita River Watershed's internal control.

A deficiency in internal control exists when the design or operation of a control does not allow management or employees, in the normal course of performing their assigned functions, to prevent, or detect and correct, misstatements on a timely basis. A material weakness is a deficiency, or a combination of deficiencies, in internal control, such that there is a reasonable possibility that a material misstatement of the entity's financial statements will not be prevented, or detected and corrected on a timely basis. A significant deficiency is a deficiency, or a combination of deficiencies, in internal control that is less severe than a material weakness, yet important enough to merit attention by those charged with governance.

Our consideration of internal control was for the limited purpose described in the first paragraph of this section and was not designed to identify all deficiencies in internal control that might be material weaknesses or significant deficiencies. Given these limitations, during our audit we did not identify any deficiencies in internal control that we consider to be material weaknesses. However, material weaknesses may exist that have not been identified.

INDEPENDENT AUDITORS' REPORT ON INTERNAL CONTROL OVER FINANCIAL REPORTING AND ON COMPLIANCE AND OTHER MATTERS BASED ON AN AUDIT OF FINANCIAL STATEMENTS PERFORMED IN ACCORDANCE WITH GOVERNMENT AUDITING STANDARDS
Page 2

Compliance and Other Matters

As part of obtaining reasonable assurance about whether Watermaster of the Santa Margarita River Watershed's financial statements are free from material misstatement, we performed tests of its compliance with certain provisions of laws, regulations, contracts, and grant agreements, noncompliance with which could have a direct and material effect on the determination of financial statement amounts. However, providing an opinion on compliance with those provisions was not an objective of our audit, and accordingly, we do not express such an opinion. The results of our tests disclosed no instances of noncompliance or other matters that are required to be reported under *Government Auditing Standards*.

Purpose of this Report

The purpose of this report is solely to describe the scope of our testing of internal control and compliance and the results of that testing, and not to provide an opinion on the effectiveness of the organization's internal control or on compliance. This report is an integral part of an audit performed in accordance with *Government Auditing Standards* in considering the organization's internal control and compliance. Accordingly, this communication is not suitable for any other purpose.

Hosaka, Rotherham & Company

San Diego, California January 21, 2015

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED FINDINGS AND RECOMMENDATIONS SECTION SEPTEMBER 30, 2014

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED SCHEDULE OF AUDIT FINDINGS AND QUESTIONED COSTS FOR THE FISCAL YEAR ENDED SEPTEMBER 30, 2014

A. Summary of Auditors' Results

1.	Financial Statements			
	Type of auditors' report issued:	Unqualif	ied	
	Internal control over financial reporting:			
	One or more material weaknesses identified?	Yes	_X_No	
	One or more significant deficiencies identified that are not considered to be material weaknesses?	Yes	_X_None Re	ported
	Noncompliance material to financial statements noted?	Yes	_X_No	
2.	Federal Awards			
	Internal control over major programs:			
	One or more material weaknesses identified?	Yes	N/A No	
	One or more significant deficiencies identified that are not considered to be material weaknesses?	Yes	N/A None Re	ported
	Type of auditors' report issued on compliance for major programs:	N/A	·····	
	Any audit findings disclosed that are required to be reported in accordance with section .510(a) or Circular A-133?	Yes	N/A No	
	Identification of major programs:			
	CFDA Number(s) Name of Federal Progr	am or Clust	<u>er</u>	
	The Organization did not have over \$500,000 in Federal	l Expenditur	es.	
	Dollar threshold used to distinguish between type A and type B programs:	N/A	with more about the same	
	Auditee qualified as low-risk auditee?	Yes	N/A No	

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED SCHEDULE OF AUDIT FINDINGS AND QUESTIONED COSTS (CONTINUED) FOR THE FISCAL YEAR ENDED SEPTEMBER 30, 2014

A.	Sı	ummary of Auditors' Results (continued)		
	3.	State Awards		
		Internal control over state programs:		
		One or more material weaknesses identified?	 Yes	N/A No
		One or more significant deficiencies identified that are not considered to be material weaknesses?	 Yes	N/A None Reported
		Type of auditors' report issued on compliance		
		for state programs:	 N/A	
В.	Fi	nancial Statement Findings		
	No	one		
C.	Fe	ederal Award Findings and Questioned Costs		
	No	one		
D.	St	ate Award Findings and Questioned Costs		
	No	one		

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED SUMMARY SCHEDULE OF PRIOR AUDIT FINDINGS SEPTEMBER 30, 2014

Findings/Recommendations	Current Status	Explanation If Not Implemented		
None	N/A	N/A		

James A. Rotherham, CP CEO & Managing Partne
Roy T. Hosaka, CPA Retired
James C. Nagel, CPA Retired

WATERMASTER OF THE SANTA MARGARITA RIVER WATERSHED

REPORT TO THE STEERING COMMITTEE

SEPTEMBER 30, 2014

James A. Rotherham, CPA CEO & Managing Partner

Roy T. Hosaka, CPA Retired

James C. Nagel, CPA Retired

To the Steering Committee Watermaster of the Santa Margarita River Watershed Fallbrook, California

We have audited the financial statements of Watermaster of the Santa Margarita River Watershed (Watermaster), for the year ended September 30, 2014, and have issued our report thereon dated January 21, 2015. Professional standards require that we provide you with the following information related to our audit.

Our Responsibility Under U.S. Generally Accepted Auditing Standards and Government Auditing Standards

As stated in our engagement letter, our responsibility, as described by professional standards, is to plan and perform our audit to obtain reasonable, but not absolute, assurance about whether the financial statements are free of material misstatement and are fairly presented in accordance with U.S. generally accepted accounting principles. Because an audit is designed to provide reasonable, but not absolute, assurance and because we did not perform a detailed examination of all transactions, there is a risk that material misstatements may exist and not be detected by us.

As part of our audit, we considered the internal control of Watermaster. Such considerations were solely for the purpose of determining our audit procedures and not to provide any assurance concerning such internal control.

As part of obtaining reasonable assurance about whether the financial statements are free of material misstatement, we performed tests of Watermaster's compliance with certain provisions of laws, regulations, contracts, and grants. However, the objective of our tests was not to provide an opinion on compliance with such provision.

Significant Accounting Policies

Management is responsible for the selection and use of appropriate accounting policies. In accordance with the terms of our engagement letter, we will advise management about the appropriateness of accounting policies and their application. The significant accounting policies used by Watermaster are described in Note 2 to the financial statements. New accounting policies were adopted and the applications of existing policies were changed during the year ended September 30, 2014. We noted no transactions entered into by Watermaster during the year that were both significant and unusual, and of which, under professional standards, we are required to inform you, or transactions for which there is a lack of authoritative guidance or consensus.

Accounting Estimates

Accounting estimates are an integral part of the financial statements prepared by management and are based on management's knowledge and experience about past and current events and assumptions about future events.

Watermaster of the Santa Margarita River Watershed Steering Committee Report Page 2 of 2

Audit Adjustments

For purposes of this letter, professional standards define an audit adjustment as a proposed correction of the financial statements that, in our judgment, may not have been detected except through our auditing procedures. An audit adjustment may or may not indicate matters that could have a significant effect on Watermaster's financial reporting process (that is, cause future financial statements to be materially misstated).

Disagreements With Management

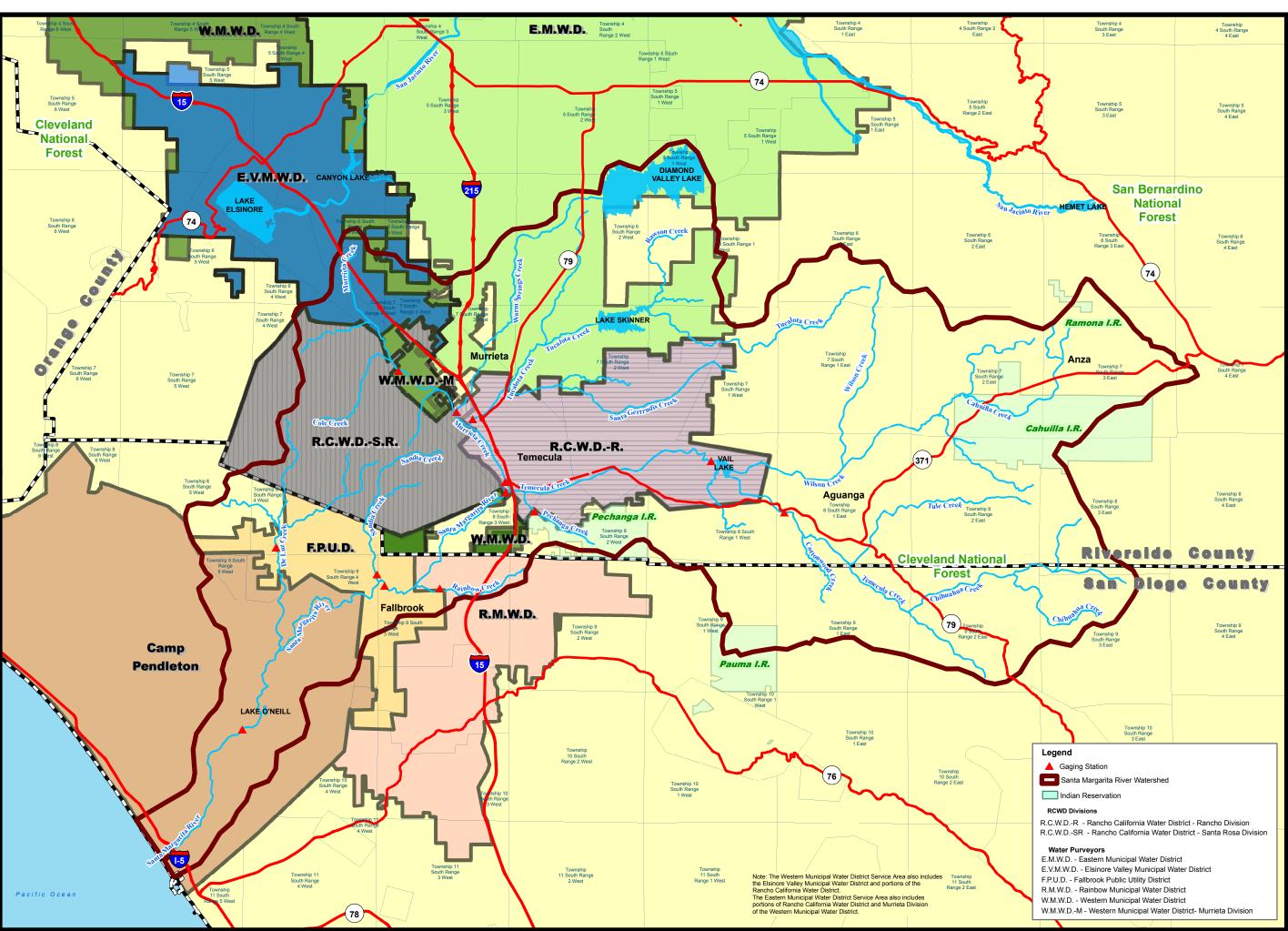
For purposes of this letter, professional standards define a disagreement with management as a matter, whether or not resolved to our satisfaction, concerning a financial accounting, reporting, or auditing matter that could be significant to the financial statements or the auditors' report. We are pleased to report that no such disagreements arose during the course of our audit.

Consultations With Other Independent Accountants

In some cases, management may decide to consult with other accountants about auditing and accounting matters, similar to obtaining a "second opinion" on certain situations. If a consultation involves application of an accounting principle Watermaster's financial statements or a determination of the type of auditor's opinion that may be expressed on those statements, our professional standards require the consulting accountant to check with us to determine that the consultant has all the relevant facts. To our knowledge, there were no such consultations with other accountants.

Issues Discussed Prior to Retention of Independent Auditors

We generally discuss a variety of matters, including the application of accounting principles and auditing standards, with management each year prior to retention as Watermaster's auditors. However, these discussions occurred in the normal course of our professional relationship and our responses were not a condition to our retention.


Difficulties Encountered in Performing the Audit

Hosaka, Rotherham & Company

We encountered no difficulties in dealing with management in performing and completing our audit.

This report is intended solely for the information and use of management and Steering Committee, and is not intended to be and should not be used by anyone other than these specified parties.

San Diego, California January 21, 2015

Map Produced by: Rancho California Water District Geographic Information Systems March 2009

1 inch = 4 miles

Watershed Watermaster River Margarita