SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2005-06

UNITED STATES OF AMERICA
V.
FALLBROOK PUBLIC UTILITY DISTRICT, ET AL
CIVIL NO. 1247 - SD-T

CHARLES W. BINDER
WATERMASTER
P. O. BOX 631
FALLBROOK, CA. 92088
(760) 728-1028
FAX (760) 728-1990

August 2007

:		

TABLE OF CONTENTS

		Page No.
1.	Summary	1
2.	Introduction	
	2.1 Background	5
	2.2 Authority	5
	2.3 Scope	5
3.	Surface Water Availability and Use	
	3.1 Surface Flow	7
	3.2 Surface Water Diversions	13
	3.3 Water Storage	13
4.	Subsurface Water Availability	
	4.1 General	17
	4.2 Extractions	1/
	4.3 Water Levels	19
	4.4 Groundwater Storage	24
5.	Imports/Exports	
	5.1 General	31
	5.2 Water Year 2005-06	35
	5.3 Water Years 1966-2006	35
	5.4 Lake Skinner	39
	5.5 Diamond Valley Lake	39
6.	Water Rights	4.4
	6.1 General	
	6.2 Appropriative Surface Water Rights	43 47
	6.3 Fallbrook PUD Changes Point of Diversion and Place of Use	4/
7.	Water Production and Use	40
	7.1 General	49
	7.2 Water Purveyors	50
	7.3 Indian Reservations	
	7.4 Small Water Systems	
	/ : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1/

WATERMASTER SANTA MARGARITA RIVER WATERSHED

		Page No.
8.	Unauthorized Water Use	70
	8.1 General	73
	8.2 Unauthorized Small Storage Ponds	73
	8.3 Rancho California Water District Water Use	73 74
	8.5 Exportation of Treated Wastewater Derived from Native Waters_	75
9.	Threats to Water Supply	
	9.1 General	77
	9.2 High Nitrate Concentrations	
	9.3 Potential Overdraft Conditions	
	9.4 Salt Balance	79
10.	Water Quality	
	10.1 Surface Water Quality	81
	10.2 Groundwater Quality	81
11.	Cooperative Water Resource Management Agreement	
	11.1 General	87
	11.2 Required Flows	87
	11.3 Water Quality	89
	11.4 Monitoring Programs	90
	11.5 CWRMA Accounting Agreement	90
12.	Five Year Projection of Watermaster Office Tasks, Expenditures and Re	
	12.1 General	91
	12.2 Normal Tasks	91 91
	12.3 Additional Fasks	
	12.4 Projected Expenditures	92
13.	Watermaster Office Budget 2007-08	93

LIST OF TABLES

<u>Pa</u>	ge No.
3.1 - Stream Gaging Stations	8
3.2 - Measured Surface Water Flow 2005-06	9
3.3 - Surface Water Diversions to Storage	
3.4 - Surface Water Diversions to Use	
3.5 - Water in Storage	16
4.1 - Water Production by Substantial Users	18
4.2 - Groundwater Storage at Camp Pendleton	25
4.3 - Changes in Groundwater Storage Murrieta-Temecula Groundwater Area	27
4.4 - Changes in Useable Groundwater Storage Murrieta-Temecula Groundwater Area	28
5.1 - Storage in State Water Project and Colorado River Reservoirs	32
5.2 - Imports/Exports 2005-06	36
5.3 - Total Dissolved Solids Concentration of Imported Water 2005-06	37
5.4 - Imports/Exports 1966-2006	38
6.1 - Appropriative Water Rights Permits & Licenses	44
6.2 - Pre-1914 Appropriative Water Rights	46
7.1 - Water Production and Use	51
7.2 - Definitions of Water Use by Municipal Water Purveyors	52
7.3 - Water Deliveries to Temecula Valley Regional Water Reclamation Service Area	55
7.4 - Rancho California Water District, Permit 7032 Area Water Use	60
7.5 - Rancho California Water District, Rancho Division Return Flow Credit 2005-06	61
7.6 - Rancho California Water District, Santa Rosa Division Return Flow Credit 2005-06	62

WATERMASTER SANTA MARGARITA RIVER WATERSHED

7.7 – Percent Production from Younger Alluvium in Rancho California Water District Wells	_64
7.8 – Rancho California Water District Well Production From Younger and Older Alluvium	_65
10.1 – Ranges in Average Daily Concentration of Dissolved Oxygen, pH, Specific Conductance and Temperature at Santa Margarita River Near Temecula	_82
11.1 – Monthly Summary of Required Flows, Discharges, Credits and Accounts, Cooperative Water Resource Management Agreement 2006 Calendar Year	88

LIST OF FIGURES

1.2 - Imports 1997 - 200621.3 - Total Production 1997 - 200633.1 - Annual Streamflow for Santa Margarita River near Temecula13.2 - Annual Precipitation for Wildomar Gage12
3.1 - Annual Streamflow for Santa Margarita River near Temecula1
9
3.2 - Annual Precipitation for Wildomar Gage 12
4.1 - Water Level Elevations Well No. 8S/2W-12H119
4.2 - Water Level Elevations Well No. 10S/4W-7J420
4.3 - Water Level Elevations Well No. 7S/3W-20C92
4.4 - Water Level Elevations Well No. 7S/3E-21G122
4.5 - Water Level Elevations Pechanga Indian Reservation Wells 23
5.1 - Storage in State Water Project 1997 - 200633
5.2 - Storage in Colorado River Reservoirs 1997 - 200633
10.1 - Total Dissolved Solids Concentration RCWD Well 8S/2W-12K83
10.2 - Total Dissolved Solids Concentration Camp Pendleton Well 10S/4W-7A284
10.3 - Nitrate Concentration Camp Pendleton Well 10S/4W-7A285

APPENDICES

Appendix A - Production and Use Water Year 2005-06

Table A-1	Eastern Municipal Water District
Table A-2	Elsinore Valley Municipal Water District
Table A-3	Fallbrook Public Utility District
Table A-4	Metropolitan Water District
Table A-5	Western Municipal Water District - Murrieta Division
Table A-6	Rainbow Municipal Water District
Table A-7	Rancho California Water District
Table A-8	U.S.M.C Camp Pendleton
Table A-9	U. S. Naval Weapons Station, Fallbrook Annex
Table A-10	Miscellaneous Water Production and Import

Appendix B - Production and Use Water Years 1965-66 To 2005-06

Table B-1	Eastern Municipal Water District
Table B-2	Elsinore Valley Municipal Water District
Table B-3	Fallbrook Public Utility District
Table B-4	Fallbrook Public Utility District (Wastewater)
Table B-5	Metropolitan Water District
Table B-6	Western Municipal Water District – Murrieta Division
Table B-7	Rainbow Municipal Water District
Table B-8	Rancho California Water District
Table B-9	U.S.M.C Camp Pendleton
Table B-10	U. S. Naval Weapons Station, Fallbrook Annex
Table B-11	Miscellaneous Water Production and Import

Appendix C - Substantial Water Users 2005-06

Appendix D - Water Quality Data

		Last Published
Table D-1	Surface Streams Sampled by Camp Pendleton	1992-93
Table D-2	Surface Streams Sampled by Rancho California Water District	1998-99
Table D-2.1	Nutrient Sampling by Rancho California Water District	2002-03
Table D-3	Wells in Western Municipal Water District – Murrieta Division	2005-06
Table D-4	Wells in Rancho California Water District	2005-06
Table D-5 Table D-6	Wells on Indian Reservations Wells on Camp Pendleton	2005-06 2005-06
Table D-7	Eastern Municipal Water District	1992-93
Table D-8 Table D-9	Eastern Municipal Water District Eastern Municipal Water District	1992-93 1992-93
Table D-10 Table D-11	Eastern Municipal Water District Wells in Domenigoni Valley	1993-94 1994-95
Table D-11 Table D-12	Surface Water Sampled by USGS on	
	Cahuilla Creek	2005-06

Appendix E – Cooperative Water Resource Management Agreement Required Flows and Accounts – Calendar Year 2006

Appendix F – Annual Report Issues Subordinated During Effective Period of the Cooperative Water Resource Management Agreement

MAP

Major Water Purveyors

Bound at back of report

WATERMASTER SANTA MARGARITA RIVER WATERSHED

SECTION 1 - SUMMARY

Section 1 - A summary of the Santa Margarita River Watershed Annual Watermaster Report for the 2005-06 Water Year.

Section 2 - This Annual Watermaster Report is prepared pursuant to Section II of the U. S. District Court Order dated March 13, 1989. The Court has retained jurisdiction over all surface flows of the Santa Margarita River Watershed and all underground waters determined by the Court to be subsurface flow of streams or creeks or which is determined by the Court to add to, support or contribute to the Santa Margarita River stream system. Local vagrant groundwaters that do not support the Santa Margarita River stream system are outside Court jurisdiction.

Section 3 - Surface water flows were well below normal in 2005-06. Flows for long-term stations on Murrieta Creek at Temecula, the Santa Margarita River near Temecula, and the Santa Margarita River at Ysidora were 54%, 74% and 68% of their long-term averages respectively. Direct surface diversions to use totaled 901 acre feet compared with 509 acre feet in 2004-05. The total quantity of water in storage in the Watershed on September 30, 2006, was 847,962 acre feet, of which 30,796 acre feet were Santa Margarita River water and 817,166 acre feet were imported water.

Section 4 - Groundwater extractions were 43,252 acre feet compared to 41,303 acre feet in 2004-05. Water purveyors pumped 37,764 acre feet and 5,488 acre feet were pumped by other substantial users. Total annual local production including surface diversions for use for the period 1997-2006 is shown on Figure 1.1.

Section 5 - During 2005-06, 113,441 acre feet of water were imported and distributed in the Santa Margarita River Watershed. This compares with 90,085 acre feet in 2004-05 and represents a 26 percent increase. Net exports, including wastewater, were 19,542 acre feet, compared to 20,282 acre feet in 2005. Annual imports for the period 1997-2006 are shown on Figure 1.2.

Section 6 - Water rights during the 1950's and 1960's consisted primarily of riparian and overlying rights. Other rights included appropriative rights and federal reserved rights. More recently, water purveyors in the Watershed have begun exercising groundwater appropriative rights. Except for appropriative rights, water rights generally have not been quantified in the watershed. Perfected appropriative surface water rights on file with the State Water Resources Control Board (SWRCB) amount to 906,892 gallons per day which corresponds to 1.4 cfs or 2.78 acre feet per day of direct diversion rights and 44,313.5 acre feet of active storage rights.

Figure 1.1

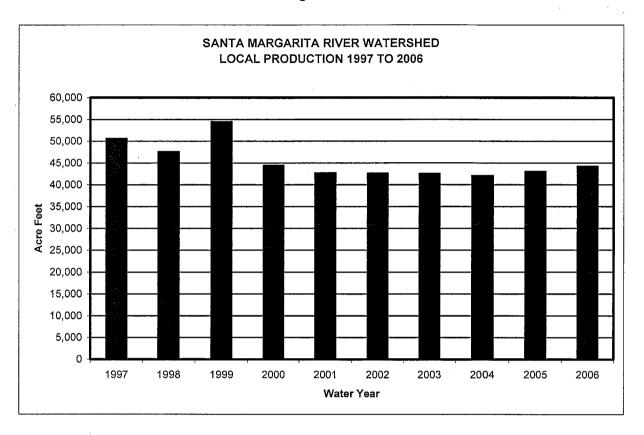
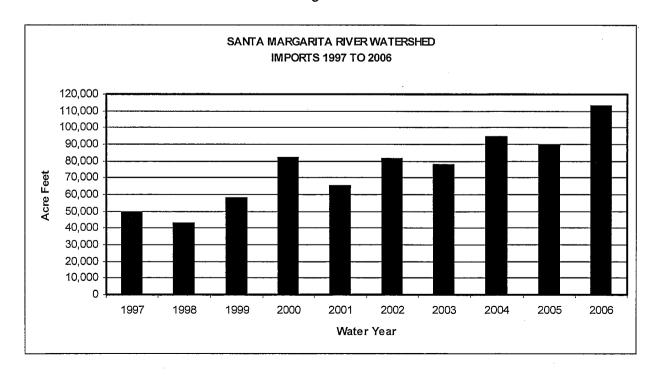



Figure 1.2

Section 7 - Total imported supplies plus local production totaled 157,700 acre feet compared to 132,662 reported in 2004-05. Of that quantity, 52,989 acre feet were used for agriculture; 11,011 acre feet were used for commercial purposes; and 71,693 acre feet were used for domestic purposes; 153 acre feet were discharged to Murrieta Creek; 4 acre feet were discharged to Temecula Creek; 4,766 acre feet were discharged by Rancho California WD during 2005-06 pursuant to the Cooperative Water Resources Management Agreement (CWRMA) (4,714 acre feet to the Santa Margarita River from MWD WR-34 and 52 acre feet to Murrieta Creek from the System River Meter); 3,943 acre feet of fresh water were exported by Camp Pendleton; and 6,163 acre feet were recharged by Rancho California WD to storage. The overall system loss was 6,978 acre feet. System gain or loss is the result of many factors including errors in measurement, differences between periods of use and periods of production, leakage and unmeasured uses.

Total annual production for the period 1997-2006 is shown on Figure 1.3

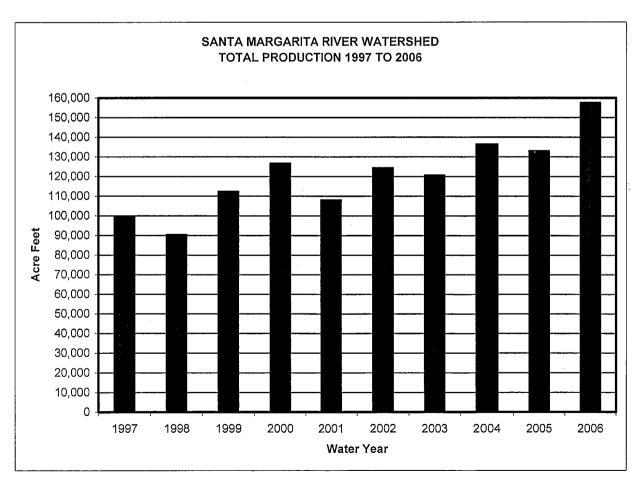


Figure 1.3

Section 8 – Use of water from small storage ponds may be unauthorized. During 2004-05 the Cahuilla Band of Indians requested a moratorium on increased water use in the Anza/Cahuilla/Terwilliger Valley area. Camp Pendleton has taken the position that exportation of treated wastewater, the source of which is the native waters of the Santa Margarita River system, without an appropriative right for such exportation, is unauthorized use of water.

Section 9 - Threats to water supply include high nitrate levels in Rainbow Creek and Anza Valley in past years, potential overdraft conditions in the Murrieta-Temecula and Anza groundwater basins, and salt balance issues in the upper Watershed.

Section 10 – The U. S. Geological Survey (USGS) monitored surface water quality at the Temecula gaging station on the Santa Margarita River. Total dissolved solids concentrations ranged from about 310 mg/l to about 1,000 mg/l.

Groundwater samples from wells were analyzed for water quality by Camp Pendleton, Western MWD - Murrieta Division, Rancho California WD, and the USGS (on Indian Reservations) during 2005-06. The two primary constituents of interest are nitrates and total dissolved solids. Two samples showed concentrations exceeding the drinking water standard for nitrates of 45 mg/l as nitrate for one well at Western MWD – Murrieta Division. The Basin Plan Objective for total dissolved solids of 750 mg/l was exceeded in seven of nine wells at Camp Pendleton; and in two of five wells at Western MWD – Murrieta Division.

Section 11 - The Cooperative Water Resource Management Agreement between Camp Pendleton and Rancho California Water District was approved by the District Court on August 20, 2002. During the 2006 calendar year, Rancho California WD discharged 3,997 acre feet to the Santa Margarita River to meet flow requirements under the Agreement. There were no contributions to Camp Pendleton's groundwater account which remained full at 5,000 acre feet.

Section 12 - Projected Watermaster tasks for the next five years are listed.

Section 13 - A total Watermaster budget of \$518,000 is proposed for the 2007-08 Water Year. This budget includes \$310,225 for the Watermaster Office and \$207,775 for operation of gaging stations and groundwater monitoring by the USGS.

SECTION 2 - INTRODUCTION

2.1 Background

On January 25, 1951, the United States of America filed Complaint No. 1247 in the United States District Court for the Southern District of California to seek a judicial determination of all respective water rights within the Santa Margarita River Watershed. The Final Judgment and Decree was entered on May 8, 1963, and appealed to the U. S. Court of Appeals. A Modified Final Judgment and Decree was entered on April 6, 1966. Among other things, the Decree provided that the Court:

retains continuing jurisdiction of this cause as to the use of all surface waters within the watershed of the Santa Margarita River and all underground or sub-surface waters within the watershed of the Santa Margarita River, which are determined in any of the constituent parts of this Modified Final Judgment to be a part of the sub-surface flow of any specific river or creek, or which are determined in any of the constituent parts of this Modified Final Judgment to add to, contribute to, or support the Santa Margarita River stream system.

In March 1989, the Court issued an Order appointing the Watermaster to administer and enforce the provisions of the Modified Final Judgment and Decree and subsequent orders of the Court. The appointing Order described the Watermaster's powers and duties as well as procedures for funding and operating the Watermaster's office. Also in 1989, the Court appointed a Steering Committee that at the conclusion of 2005-06 was comprised of representatives from the United States, Eastern Municipal Water District, Fallbrook Public Utility District, Metropolitan Water District of Southern California, Pechanga Tribe, and Rancho California Water District. The purposes of the Steering Committee are to assist the Court, to facilitate litigation, and to assist the Watermaster.

2.2 Authority

Section II of the appointing Order requires that the Watermaster submit a written report containing his findings and conclusions to the Court promptly after the end of each water year.

2.3 Scope

The subjects addressed in this report are responsive to Section II of the appointing Order. Information and data contained in this report are based on information reported to the Watermaster by others. Therefore, the Watermaster does not guarantee the completeness and accuracy of the information presented in this report, although most of the data presented are based on measurements. Estimates by the Watermaster are so noted.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

SECTION 3 - SURFACE WATER AVAILABILITY AND USE

3.1 Surface Flow

Over the years, flows in the Santa Margarita River Watershed have been measured at the stations listed on Table 3.1. A number of these stations have been discontinued. During Water Year 2005-06 the USGS operated 13 stations under an agreement with the Watermaster. These include three stations where Riverside County Flood Control and Water Conservation District shares the local costs with the Watermaster. In addition to stream flows, the USGS also measures water elevation at Vail Lake.

The USGS also operates several stations in the watershed under contract with Camp Pendleton. These include stream gaging stations on Fallbrook Creek and on the outlet channel and spillway for Lake O'Neill. The USGS also operates a tidal water level recorder on the Santa Margarita River at its mouth.

Monthly flows for stations in Water Year 2005-06 are shown on Table 3.2. Those flows consist of USGS discharge determinations available at the time this report is published. Official USGS discharges for 2005-06 are published by the USGS at the following website: http://waterdata.usgs.gov/ca/nwis/sw

In considering the historical record of flow at these stations, it should be recognized that the long term averages include variations in watershed conditions such as level of development, groundwater production, return flows, impoundments and vegetative use as well as hydrologic conditions, changes in gaging station locations and other factors. Descriptions of the various historical locations of gaging stations may be found in the publication, *Water Resources Data - California*, which was published annually by the USGS in hard copy form through Water Year 2003-04. For subsequent years the gaging station descriptions can be found at the website provided above.

TABLE 3.1

SANTA MARGARITA RIVER WATERSHED

STREAM GAGING STATIONS

2005-06

STATION NAME	STATION NO.	AREARE SQ MI	CORDED BY	1920	1930	1940	PERI 1950	OD OF RECO	ORD 1970	1980	1990	2000
Temecula Creek Near Aguanga	11042400	131	usgs				8/57	•••••	•••••	•••••	•••••	•••••
Wilson Creek	11042490	122	usgs							10/89	10/94	
Above Vail Lake				2/23					10/77			
Temecula Creek At Vail Dam	11042520	320	USGS	******	•••••	10/48	••••••	••••••	•••••			
Vail Lake at Temecula (Reservoir Storage)	11042510	320	usgs			•	•••••	•••••	•••••	10/87	•••••	•••••
Pechanga Creek Near Temecula	11042631	13.8	usgs							••	•••••	•••••
Warm Springs Creek Near Murrieta	11042800	55.4	USGS							10/87	•••••	•••••
Santa Gertrudis Creek Near Temecula	11042900	90.1	USGS							10/87	• ••••••	•••••
Murrieta Creek At Tenaja Road	11042700	30	USGS								10/97	•••••
Murrieta Creek At Temecula	11043000	222	USGS	10/25	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
Santa Margarita River Near Temecula	11044000	588	USGS	2/23	•••••	•••••	•••••	•••••	•••••	•••••		•••••
Rainbow Creek Near Fallbrook	11044250	10.3	usgs								9/89	•••••
Sandia Creek Near Fallbrook	11044350	21.1	usgs								9/89	•••••
Santa Margarita River At FPUD Sump 1/	11044300	620	USGS	10/24	•••••		•••••		•••••	9/80	9/89	•••••
Santa Margarita River Tributary Near Fallbro		0.52	USGS					10/61 9/65				
DeLuz Creek Near DeLuz	11044800	33	USGS								10/92	•••••
DeLuz Creek Near Fallbrook 2/	11044900		USGS/ USMC				2/51	•••••	77		9/89-9/90	4/02-2/0
Santa Margarita River Near DeLuz Station	11045000		USGS	10/24 - 9/26 ••								-
Fallbrook Creek 3/ Near Fallbrook	11045300		USGS/ USMC					10/64	9/76	12/88	•••••	•••••
:				3/23								
Santa Margarita River At Ysidora 4/	11046000		USGS	******	********	*******	•••••			********	********	
		WATER YEA	AR ENDING	1920	1930	1940	1950	1960	1970	1980	1990	2000

WATER YEAR ENDING 1920 1930 1940 1950 1960 1970 1

1/ Period of record includes measurements for Santa Margarita near Fallbrook (#11044500) for period October 1924 to September 1980 2/ Recorded by USMC, Camp Pendleton October 1986 to 1977 3/ Recorded by USMC, Camp Pendleton prior to October 1993

^{4/} Station temporarily operated as SMR at USMC Diversion Dam near Ysidora #11045050 from February 26, 1999 to September 27, 2001

TABLE 3.2

SANTA MARGARITA RIVER WATERSHED

MEASURED SURFACE WATER FLOW

2005-06

Quantities in Acre Feet

	DRAINAGE						MONTH							WATER	ANNUAL	YEARS OF
GAGING STATION	AREA SQ MI	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	YEAR TOTAL	AVERAGE THRU 2005	RECORD THRU 2005
Temecula Creek																
Near Aguanga	131	61	80	111	156	180	390	716	143	58	49	58	51	2,053	5,850	48
Pechanga Creek Near Temecula "	13.8	0	1	0	1	0	0	1	0	. 0	0	0	1	4	562	18
Warm Springs Creek Near Murrieta	55.4	25	0	9	131	219	210	359	15	0	0	0	0	968	3,420	18
Santa Gertrudis Cree Near Temecula	k 90.2	28	0	0	73	222	270	298	10	27	0	0	0	928	3,270	18
Murrieta Creek Near Murrieta ^{2/}	30													0 ^{3/}	4,430	8
Murrieta Creek At Temecula	222	130	2	3	857	1,390	1,320	1,770	23	6	11	3	2	5,517	10,180	81
Santa Margarita Rive Near Temecula	r 588	719	521	335	1,400	2,170	2,020	2,650	365	295	277	271	248	11,271	15,210 20,390	57 (1949-200 26 (1923-48)
Rainbow Creek Near Fallbrook	10.3	72	46	51	163	164	157	234	52	35	18	14	. 10	1,016	2,950	16
Sandia Creek Near Fallbrook	21.1	320	284	303	553	413	689	698	378	283	174	173	148	4,416	7,600	16
Santa Margarita Rive At FPUD Sump	r 620	1,090	819	596	1,940	2,220	2,780	3,020	567	447	270	259	214	14,222	33,560	16
DeLuz Creek Near DeLuz	33	133	95	95	207	239	876	670	217	64	5	. 0	0	2,602	10,950	13 (1993-200
Santa Margarita Rive	r															
At Ysidora	723	376	625	1,480	3,360	2,800	3,540	4,760	1,040	557	75	5	125	18,743	27,595 ^{4/} 31,390	57 (1949-200 26 (1923-48)
Fallbrook Creek Near Fallbrook	6.97	25	22	22	63	63	97	95	29	13	2	2	0	433	1,426 1,462 ^{5/}	17 (1989-200 12 (1965-76)

^{1/} In summer 2006 gaging location was moved upstream 0.4 miles from prior location to current location 100 feet upstream of Metropolitan Water District pipe crossing, 0.4 miles upstream of the Rainbow Canyon Road/Old Highway 395 Bridge.

^{2/} Previously published as Murrieta Creek at Tenaja Road

^{3/} Continuous record stopped in lieu of bridge installation to be completed in 2007. Only miscellaneous measurements were taken from February 22, 2005.

^{4/} Includes record of two years at Santa Margarita River at USMC Diversion Dam near Ysidora station

^{5/} Includes wastewater flows

Total flows at four long-term stations for Water Years 2004-05 and 2005-06 are compared with their averages in the tabulation below. Average flows for the Santa Margarita River stations near Temecula and near Ysidora are shown for two periods: before and after Vail Dam was constructed (1923 to 1948, and 1949 to 2005).

	TOTAL F 2004-05 2 Acre Feet A	005-06	AVERAGE FLOW Through 2005 Acre Feet
Temecula Creek Near Aguanga	18,611	2,053	5,850 (1957-2005)
Murrieta Creek At Temecula	73,678	5,517	10,180 (1925-2005)
Santa Margarita River Near Temecula	86,330	11,271	15,210 (1949-2005) 20,390 (1923-1948)
Santa Margarita River At Ysidora (various loca	181,543 tions)	18,743	27,595 (1949-2005) 31,390 (1923-1948)

The foregoing tabulation indicates the flows for Water Year 2005-06 were well below normal. Flows for long-term stations on Murrieta Creek at Temecula, the Santa Margarita River near Temecula and the Santa Margarita River at Ysidora were 54%, 74% and 68% of their long-term averages respectively. Flows at Temecula Creek near Aguanga were 35% of the long-term average.

The Santa Margarita River near Temecula station is of particular interest relative to discharge requirements specified in the Cooperative Water Resources Management Agreement (CWRMA) between Camp Pendleton and Rancho California WD, as described in Section 11. The long-term time series for annual streamflow for Santa Margarita River near Temecula is provided on Figure 3.1 showing the 2005-06 flows were in the third quartile but dramatically less than the prior year flows for Water Year 2004-05. The flows in 2004-05 were the third highest for the period of record.

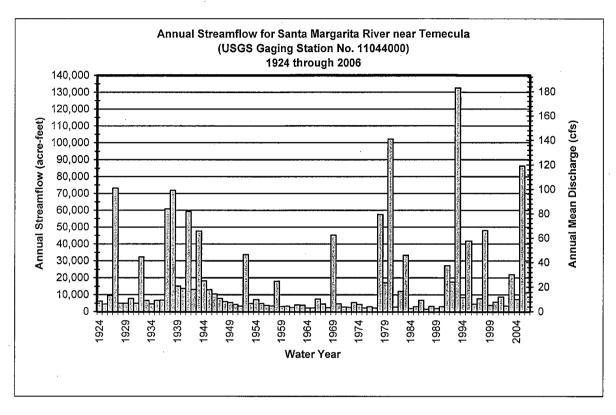


Figure 3.1

It is also interesting to review long-term precipitation records relative to long-term streamflow. Figure 3.2 shows the long-term time series for annual precipitation for the Wildomar gage maintained by the Riverside County Flood Control and Water Conservation District. The Wildomar gage is specified in the CWRMA for determining water year types in establishing Rancho California WD discharge requirements to meet flows for the Santa Margarita River near Temecula. The long-term average precipitation for the Wildomar Gage for the period 1914 through 2006 is 14.06 inches. The reported precipitation for water year 2005-06 is 7.39 inches.

Monthly flows shown in Table 3.2 consist primarily of naturally occurring surface runoff, including return flows, except for Rancho California WD discharges into the Santa Margarita River and Murrieta Creek. Most of Rancho California WD discharges are pursuant to the CWRMA. During water year 2005-06 the total CWRMA discharges into the Santa Margarita River and Murrieta Creek equaled 4,766 acre feet.

The discharges into Santa Margarita River totaled 4,714 acre feet from outlet WR-34, located just upstream from the Santa Margarita River near Temecula gaging station. Additional discharges into Murrieta Creek occurred during the period January 9-18, 2006, when the pipeline serving WR-34 was shut down. The discharges to Murrieta Creek totaled 52 acre feet from the potable system at the System River Meter.

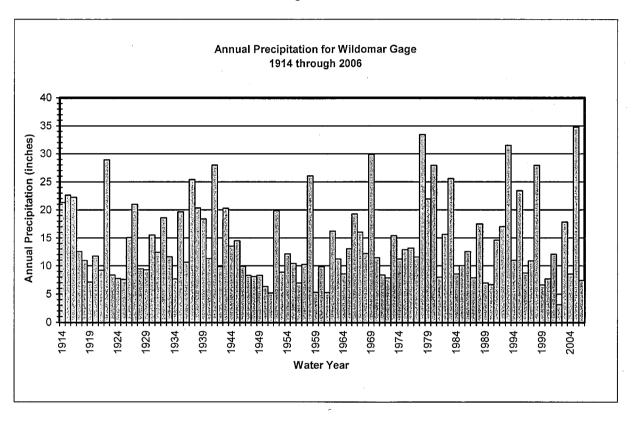


Figure 3.2

During 2005-06, Rancho California WD also released: 4 acre feet from wells into Temecula Creek and 153 acre feet from wells into Murrieta Creek.

3.2 Surface Water Diversions

Surface diversions to surface water storage and groundwater storage during 2004-05 and 2005-06 are shown in Table 3.3. In general, diversions to surface storage at Vail Lake and Lake O'Neill are computed as being equal to inflow less spill, however, diversion to surface storage at Vail Lake excludes inflow during the period from May 1 through October 31 when Permit 7032 does not allow such diversions. Inflow to Vail is calculated as the sum of evaporation, spill, releases and change of storage. Inflow into Vail Lake during the period when diversions are not permitted is released and not credited to groundwater storage.

Direct surface diversions for 2005-06 are shown in Table 3.4. The use is primarily irrigation. Estimated consumptive uses, losses and returns are also shown.

3.3 Water Storage

Major water storage facilities in the Santa Margarita River Watershed are listed on Table 3.5, together with the water in storage on September 30, 2005, and September 30, 2006. Total Santa Margarita River stream system water in storage at the end of Water Year 2005-06 totaled 30,796 acre feet, compared to 33,967 acre feet at the end of the previous year. Imported water in storage in Lake Skinner and Diamond Valley Lake, both operated by Metropolitan Water District of Southern California (MWD), is also shown on Table 3.5.

TABLE 3.3

SANTA MARGARITA RIVER WATERSHED SURFACE WATER DIVERSIONS TO STORAGE 2005-06

Quantities in Acre Feet

Surface Water Storage

·	<u>Vail</u> 2004-05	<u>Lake</u> 2005-06	<u>Lake </u> 2004-05	<u>O'Neill</u> 2005-06
Storage end of prior year	15,860	33,280	822	.687
Inflow - Total	21,737	3,361	7,715 ¹	3,138 ²
Inflow to be Bypassed	1,340	539	0	0
Spill	0	0	2,559	0
Diversions to Surface Storage	20,397 ³	2,822 ³	5,156 ⁴	3,138 ⁴
Annual Evaporation	4,246	4,403	342	380
Releases - Total	71	1,938	2,761	1,110
Release to GW Storage	0 5	1,399 ⁵	2,761	1,110
Apparent Seepage to GW	0	0	2,189 ⁶	1,839 ⁶
Change of Storage	17,420	(2,980)	(135)	(191)
Storage End of Year	33,280	30,300	687	496
	Groundw	/ater Storag	<u>e</u>	÷
Recharge Release from Storage Facility	0	1,399 ⁻	0	0
Direct Recharge	0	0	7,727 ⁷	6,610 ⁸

^{1,913} AF diverted from the Santa Margarita River and 5,802 AF estimated inflow from Fallbrook Creek

^{2,615} AF diverted from the Santa Margarita River and 523 estimated inflow from Fallbrook Creek

Inflow less Spill less Inflow (Oct 1 to Oct 31 and May 1 to Sept 30)

⁴ Inflow less Spill

⁵ Total Release less Inflow to be bypassed

Includes seepage losses, leakage through flashboards and unaccounted for water

⁷ Includes 6,973 AF of direct recharge and 754 AF of indirect recharge

Includes 5,535 AF of direct recharge and 1,075 AF of indirect recharge

TABLE 3.4 SANTA MARGARITA RIVER WATERSHED SURFACE WATER DIVERSIONS TO USE 2005-06

Quantities in Acre Feet

	Surface <u>Diversions</u>	Consu <u>Use¹</u>	Consumptive _Use ¹ Losses ²	
Blue Bird Ranch	31.0	21.0	3.0	7.0
James Carter	52.0	35.0	5.0	12.0
Chambers	5.0	3.5	0.5	1.0
Cal June, Inc.	132.0	89.0	13.0	30.0
Agri-Empire, Inc. Kohler Canyon	96.0	65.0	10.0	21.0
Papac	38.0	25.0	4.0	9.0
Sage Ranch Nursery	100.0	68.0	10.0	22.0
Daily Family Trust	7.0	5.0	1.0	1.0
Owen Strange	250.0	169.0	25.0	56.0
Wilson Creek Dev. LLC	140.0	94.5	14.0	31.5
San Diego State University Foundation	n <u>50.0</u>	34.0	5.0	11.0
TOTAL	901.0	609.0	90.5	201.5

Consumptive use equals 75% of Diversions less Losses Losses equal 10% of Diversions

²

Returns equal 25% of Diversions less Losses

TABLE 3.5

SANTA MARGARITA RIVER WATERSHED

WATER IN STORAGE

2005-06 Quantities in Acre Feet

Santa Margarita River Storage	Total <u>Capacity</u>	Water in St 9/30/2005	orage 9/30/2006
Dunn Ranch Dam	90	0	0
Upper Chihuahua Creek Reservoir	± 47	0	0
Vail Lake	49,370	33,280	30,300
Lake O'Neill	1,200	687	496
Subtotal	50,707	33,967	30,796
Imported Water Storage			
Lake Skinner	44,000	41,422	37,465
Diamond Valley Lake	810,000	<u>774,182</u>	<u>779,701</u>
Subtotal	854,000	815,604	817,166
TOTAL STORAGE	904,707	849,571	847,962

SECTION 4 - SUBSURFACE WATER AVAILABILITY

4.1 General

Much of the water from the Santa Margarita River stream system is obtained by pumping subsurface water. The Court has identified two basic types of subsurface water in its interlocutory judgments. One type is vagrant, local, percolating waters that do not add to, support or contribute to the Santa Margarita River or its tributaries. Such waters have been determined to be outside the continuing jurisdiction of the Court. These waters are typically found in the basement complex and/or residuum deposits in the Watershed. Wells tapping these deposits typically have low yields.

Other subsurface waters were found by the Court to add to, contribute to and support the Santa Margarita River and/or its tributaries. Aquifers containing such waters have been designated by the Court as younger alluvium and older alluvium. Younger alluvial deposits are commonly exposed along streams and in valleys. Older alluvium may be found underneath younger alluvium and is not limited to areas along stream channels. Older alluvium may or may not be exposed at ground surface. The use of subsurface water found in younger and older alluvium is generally under the continuing jurisdiction of the Court and is reported upon in this report.

4.2 Extractions

Production of Santa Margarita River water by substantial water users in the Watershed from all sources is listed on Table 4.1 by hydrologic area along with estimated consumptive use and return flows. Recovery of imported water that has been directly recharged is not included in Table 4.1. Substantial water users include water purveyors as well as private irrigators who irrigate eight acres or more or use an equivalent quantity of water.

In 2005-06, production by purveyors totaled 37,764 acre feet, compared to 37,138 acre feet in 2004-05. Monthly quantities are shown in Appendix A and annual production for water years between 1966 and 2006 is shown in Appendix B.

The quantities of subsurface extractions by private irrigators are based on the irrigated acreage and the crop type. These quantities are reported in Appendix C to total 5,488 acre feet in 2005-06. Of the subsurface extractions, 75 percent is estimated to have been consumptively used and 25 percent to have been return flow. Return flow is that portion of the total deliveries that is not consumed. Although return flows average about 25 percent, such flows are affected with the type of use (domestic, commercial and irrigation), the type of irrigation application (drip, micro-sprinkler, furrow), and exports from watersheds.

TABLE 4.1

SANTA MARGARITA RIVER WATERSHED

SANTA MARGARITA RIVER WATER PRODUCTION BY SUBSTANTIAL USERS
2005-06

HYDROLOGIC AREA	WATER PURVEYOR PRODUCTION ACRE FEET	OTHER IRRIGATED ACRES	OTHER IRRIGATION PRODUCTION ACRE FEET	TOTAL GROUNDWATER PRODUCTION ACRE FEET	SURFACE WATER DIVERSIONS ACRE FEET	TOTAL PRODUCTION ACRE FEET	ESTIMATED CONSUMPTIVE USE ACRE FEET ^{1/}	ESTIMATED RETURN FLOW ACRE FEET
Wilson Creek Above Aguanga GWA Includes Anza Valley	363 (Lake Riverside, (Anza MWC, Cahuilla)	621 ^{2/}	1,792	2,155	0 -	2,155	1,616	539
Temecula Creek Above Aguanga GWA	27 (Butterfield Oaks MHP)	· 170	270	297	134	431	313	118
Aguanga GWA	264 (Outdoor Resorts) (Jojoba Hills)	552	1,523	1,787	390	· 2,177	1,604	573
Upper Murrieta Creek (Warm Springs Creek abov	0	0	0	0	0	0	0	0
Lower Murrieta Creek (Santa Gertrudis/Tucalota (0 Creek above 7S/2W-18		43 Diversion from	43 Lake Skinner)	206	249	171	78
Murrieta-Temecula GWA	30,269 (RCWD*, WMWD (Murriet EMWD, Pechanga and Hat	• •	1,254	31,523	52	31,575	23,677	7,898
Santa Margarita River Be	-							
Deluz Creek	0	,	590	590	43	633	. 472	161
Sandia Creek	. 0	65	, 0 , .	. 0	132	132	89	43
Rainbow Creek	0	. 0	. 0	0	0	. 0	0	0
Santa Margarita River	6,841 (USMC)	20	16	6,857	50	6,907	2,219	745
TOTAL	37,764	2,945	5,488	43,252	1,007 ³	44,259	30,161	10,154

^{1/} Estimated consumptive use is equal to 75% of groundwater production plus 75% of surface diversions less 10% except for Camp Pendleton where export of 3,943 acre feet is excluded and return flows include any measured wastewater returns.

^{2/} Includes lands overlying deep aquifer in Anza Valley.

^{3/} Includes surface diversion for irrigation, commercial and domestic use.

^{* -} RCWD pumped an additional 317 AF that was exported to the San Mateo Watershed

Total production of Santa Margarita River water, surface diversions and groundwater production by water purveyors and private irrigators is listed on Table 4.1.

4.3 Water Levels

Water levels in selected wells in the Watershed are measured periodically by various entities. Historical water levels in five wells at various locations in the Watershed are shown in this report on Figures 4.1, 4.2, 4.3, 4.4 and 4.5.

Figure 4.1 shows water levels in Well No. 8S/2W-12H1 (Windmill Well) located in the Rancho California WD service area downstream from Vail Lake. Note the extended drawdown from 1945 to 1978, the major recoveries during the wet years in 1980 and 1993, and the effect of relatively dry years after 1980 and after 1993. Water levels rose 5 feet in 2005-06. It should be noted that the Windmill Well is located in Pauba Valley about 1.5 miles downslope from the Valle de los Caballos (VDC) recharge area, where releases from Vail Lake as well as imported water are recharged. In water year 2005-06, 18,820 acre feet of imported water were recharged in the VDC of which 67 percent was recovered in the same year.

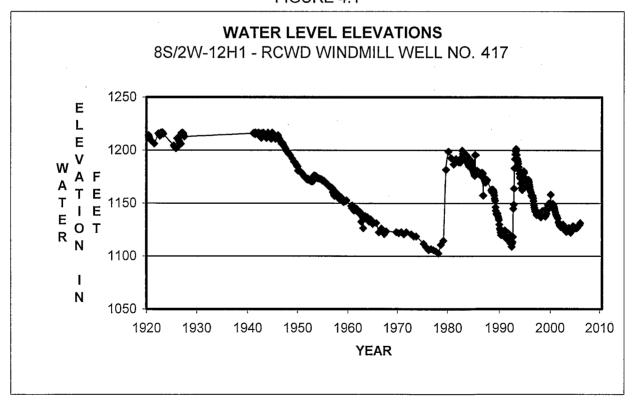


FIGURE 4.1

Collar El. 1216.7 Feet; Depth 515 Feet; Drilled in Alluvium Ref: RCWD reports (1920-2006)

Figure 4.2 shows water levels at Camp Pendleton in Well No. 10S/4W-7J4, a monitoring well located in the Upper Sub-basin. Fluctuations in recent years illustrate recharge during the winter months and drawdown each summer, with the water levels generally between 82 and 90 feet in elevation. Water levels in Well 7J4 remained relatively the same between July of 2005 and the end of September 2006.

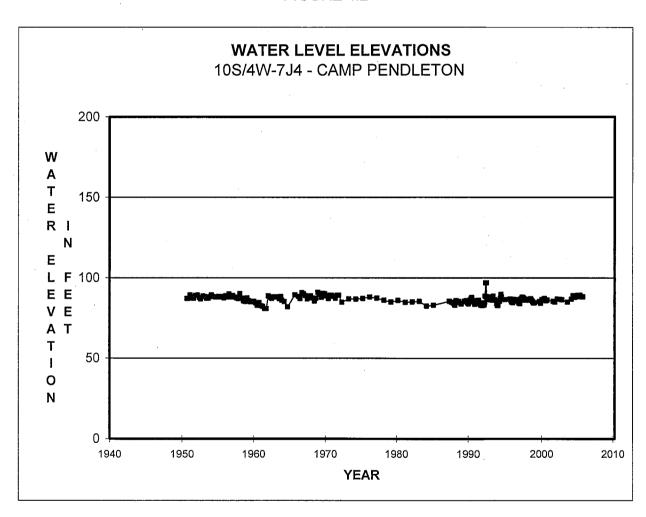
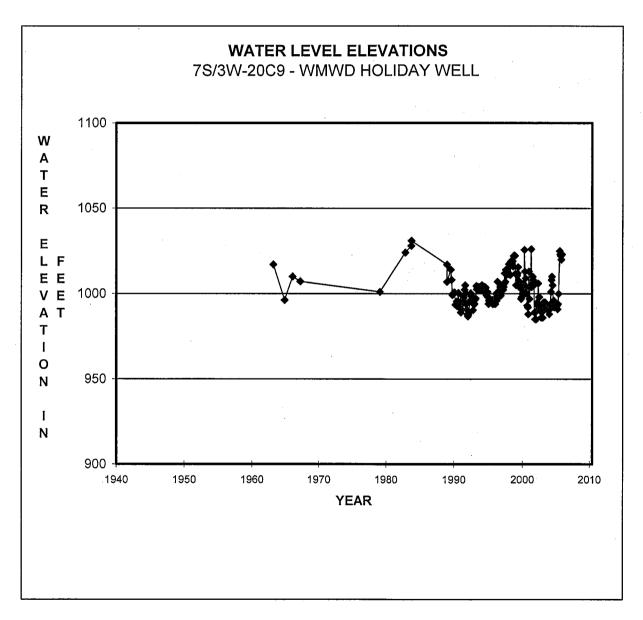
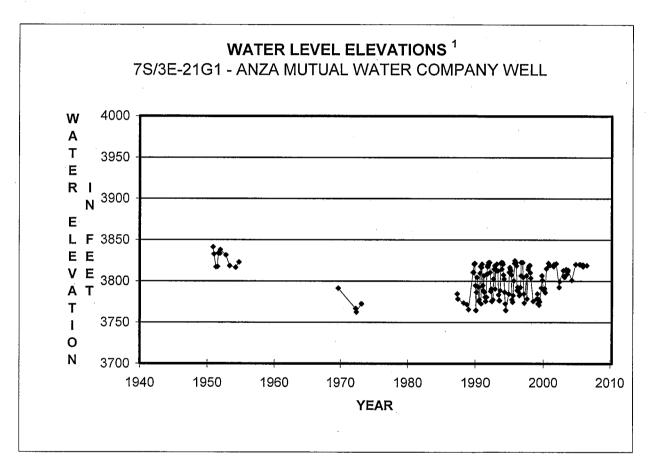



FIGURE 4.2

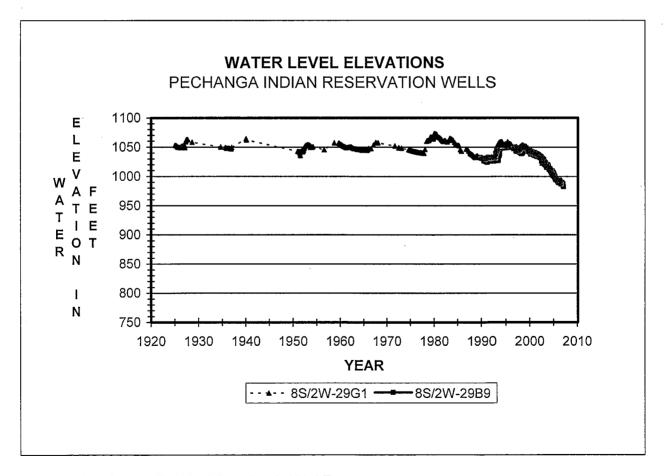
Ground El. 93 Feet; Depth 138.8 Feet; Perf. Unknown; Drilled in Alluvium Camp Pendleton Records (1950-72) (1988-2006); Leeds Hill Study (1973-85) Dates Estimated

Figure 4.3 shows water levels from production Well No. 7S/3W-20C9 (Holiday Well) in the Murrieta Division service area of Western Municipal Water District. Water levels in this well rose 30 feet at the end of 2005-06. Water levels in the Lynch Well, 7S/3W-17R2, which serves as a monitoring well and had no production in 2005-06, increased by 13 feet.


FIGURE 4.3

Ground El. 1090 Feet; Depth 307 Feet; Perf. 60 - 307 Feet Western Municipal Water District

Figure 4.4 shows water levels for Well No. 7S/3E-21G1, Anza Mutual Water Company's Well No. 1, a production well located in the Anza Valley. Water levels in this well declined one foot this year. As may be noted from Figure 4.4, recent measurements show annual 50 foot fluctuations in groundwater levels at this well, partly in response to the operation of nearby irrigation wells. Current levels are within the historical range.



¹ Static water levels plotted after April 1999 Ground El. 3862.6 Feet; Depth 260 Feet; Perf. 20 - 260 Feet; Drilled in Alluvium Anza Mutual Water Co. Well No. 1 (1987-2006); DWR Bulletin 91-22 (1950-73)

Figure 4.5 shows water levels at Well No. 8S/2W-29G1, located in Wolf Valley on the Kelsey Tract of the Pechanga Indian Reservation. The well is not used for water production and its depth as measured in 1972 was 159 feet. Water levels collected since 1925 reflect unconfined groundwater levels. As shown on Figure 4.5 the groundwater levels have fluctuated within a 44 foot range above and below elevation 1050 feet in response to wet years and dry periods until recently. In the past few dry years, levels have declined below their usual range. In November 2004, this well went dry due to the preceding relatively dry hydrological conditions and pumping of the nearby New Kelsey Well on the Pechanga Reservation. In order to continue to monitor water levels on the Pechanga Indian Reservation, water levels for Well No. 8S/2W-29B9 are also shown on Figure 4.5. Well No. 8S/2W-29B9 is completed in the younger alluvium. As shown on Figure 4.5 water levels for Well No. 8S/2W-29B9 coincide with water levels for the common period of record for Well No. 8S/2W-29G1. Water levels in Well 8S/2W-29B9 declined by 7.1 feet in 2005-06.

FIGURE 4.5

8S/2W-29G1: Ground El. 1091.1 Feet; Depth 159.1 Feet 8S/2W-29B9: Ground El. 1075.93 Feet; Depth 113.0 Feet

U.S. Geological Survey Records

Changes in water levels in the above noted wells between the end of the previous water year and the end of the 2006 water year are shown below:

<u>Well</u>	Water Elevation 2005 <u>Feet</u>	Water Elevation 2006 <u>Feet</u>	Change in Water Level Feet
RCWD 8S/2W-12H1	1126.5	1131.5	Up 5.0
USMC 10S/4W-7J4	87.9 *	88.3	Up 0.4
MCWD 7S/3W-20C9	993.0 **	1023.0	Up 30.0
Anza MWC 7S/3E-210	G1 3820.1	3819.1	Down 1.0
Pechanga IR 8S/2W-2	29B9 994.1	987.0	Down 7.1
Pechanga IR 8S/2W-2	29G1 N/A	N/A	Well Dry

^{* 7/30//05}

4.4. Groundwater Storage

Bulletin 118 Update 2003 prepared by the State of California Department of Water Resources describes three groundwater basins in the Santa Margarita River Watershed: Santa Margarita Valley, Temecula Valley, and Coahuila (Cahuilla) Valley. These basins are also known as the Santa Margarita Groundwater Basin, the Murrieta-Temecula Groundwater Basin, and the Anza Groundwater Basin. Groundwater storage in each of these basins is described in this section.

Santa Margarita Groundwater Basin – The Santa Margarita Groundwater Basin is located along the Santa Margarita River at Camp Pendleton and includes three subbasins: Upper, Chappo, and Ysidora. Useable groundwater storage is summarized in Table 4.2. Table 4.2 shows that the total combined storage for all the sub-basins between the depths of 5 and 100 feet is 48,100 acre feet. However, much of that storage is below sea level. Thus, the useable capacity is considered to be 28,700 acre feet as shown in Table 4.2. In 2005-06 useable groundwater storage in place was computed for all three sub-basins to be 28,462 acre feet. The useable storage in place for the three sub-basins amounted to 28,634 acre feet in 2004-05. Thus there was a decrease in groundwater storage in place of 172 acre feet for the water year. It may be noted that classification of storage as useable is made without allowances for maintenance of riparian habitat.

^{** 11/30/05}

TABLE 4.2

SANTA MARGARITA RIVER WATERSHED GROUNDWATER STORAGE AT CAMP PENDLETON 2005-06

Quantities in Acre Feet

<u> </u>	Sub-basin			
I. Available Storage	<u>Upper</u>	<u>Chappo</u>	<u>Ysidora</u>	<u>Total</u>
A. Total Storage ¹ AF	12,500	27,000	8,600	48,100
B. Useable Storage AF	12,500	15,000 ²	1,200 ³	28,700
II. Unused Storage A. Wells used for Depth B. Depth to Water – Feet 4	10S/4W-7J4 4.7	10S/4W-18L1 4.3	11S/5W-11D4 7.0	
C. Depth below 5 Feet	0	0	2.5	
D. Average Area - Acres ⁵	840	2,520	1,060	
E. Specific Yield ⁶	0.216	0.130	0.090	
F. Unused Storage below 5 Feet	0	0	238	
III. Useable Storage in Place – AF ⁷	12,500	15,000	962	28,462
IV. Useable Storage in Place 2004-05 V. Change in Storage	12,482	15,000	1,152	28,634
2005-06	18	0	(190)	(172)

¹ Computed by USGS (Worts, C. F., Jr. and Boss, R. F., *Geology and Ground-Water Resources of Camp Pendleton, CA, July 1954*) as the storage between depths of 5 and 100 feet.

² Storage between 5 foot depth and sea level.

⁴ Reported by Camp Pendleton.

⁶ From Worts and Boss for depth interval of 5 to 50 feet.

³ Storage between 5 foot depth and 10 feet above sea level.

⁵ Average area estimated over depth interval for unused storage.

⁷ Useable storage includes stored water reserved for riparian habitat; however specific amount stored for such purposes not delineated.

Murrieta-Temecula Groundwater Basin – The Murrieta-Temecula Groundwater Basin is located along Murrieta and Temecula Creeks in the Upper Santa Margarita River Watershed. Total groundwater storage at the end of water year 2001 was computed for each of 22 hydrologic subareas that make up the Groundwater Basin. These computations were based on the areal extent of each subarea, the thickness of each of three aquifers, (younger alluvium, Pauba aquifer and Temecula aquifer), a specific yield for each aquifer, and the depth to water in each aquifer at the end of the water year. Specific yields were based on unconfined conditions for all aquifers. The total groundwater storage in the uppermost 500 feet as of September 30, 2001, was estimated at 1,340,556 acre feet.

Annual changes in groundwater storage have been computed for the years since 2001 using two methodologies – a water budget method and a groundwater level method. The water budget method determines the change in storage as the difference between the major elements of inflow and outflow to the groundwater area. Table 4.3 shows the changes for water years 2002 through 2006. The change in groundwater storage for water year 2006 determined using the water budget method is minus 4,161 acre feet.

The groundwater level method is based on the changes in water levels in key wells in the hydrologic sub-areas as shown on Table 4.4. Unfortunately water levels were not available in 2006 for key wells in Subareas 5, 13, 16 and 17. Well 402, the key well in sub-area 5, has not been measured in many years, thus sub-area 5 has been excluded from the computation in recent years. Apparently, roots have prevented measurement of water levels in Well 414, the key well in sub-area 13 in 2004 and 2006. Sub-areas 16 and 17 overlie the Temecula aquifer that has a storativity of 0.0036 so water level changes in those subareas produce relatively minor storage changes compared to a similar change in the younger alluvium or Pauba aquifers. Changes in storage under the groundwater level method for water years 2002 through 2006 are shown in Table 4.4. The change in groundwater storage for water year 2006 is calculated as minus 838 acre feet.

The foregoing two methods are based on independent measurements and estimates, although the resulting approximations of the change of storage are generally comparable except in 2005, a very wet year. It will take testing over a number of years under varying hydrologic conditions to refine these approaches. At present it may be concluded that the general order of magnitude of the annual change in storage in water years 2002 through 2004 and 2006 may be in the approximate range of minus 2,000 to minus 6,000 acre feet per year, and that there was a decrease in storage in 2006. The positive change in useable groundwater storage in 2005 was related to the wet hydrologic conditions.

These values will be compared with those computed with the groundwater model when the model is updated.

TABLE 4.3

SANTA MARGARITA RIVER WATERSHED CHANGES IN GROUNDWATER STORAGE

MURRIETA-TEMECULA GROUNDWATER AREA

Water Budget Method Quantities in Acre Feet

Elements of Inflow		Wat	er Year E	nding	
	2002	2003	2004	2005	2006
Releases from Vail ¹	(314)	(658)	(109)	(1,269)	1,422
Releases from Lake Skinner ²	146	67	153	2,710	292
Freshwater Releases to Stream ³	715	4,896	3,146	3,384	4,923
Reclaimed Water Released to Stream 4	2,180	104	0	0	0
Recharged Imported Water ⁵	16,265	15,694	16,088	16,504	19,785
Return Flow from RCWD Groundwater Production ⁶	9,132	8,782	8,360	8,958	9,250
Return Flow from Import Direct Use ⁷	3,607	3,745	5,149	3,422	4,397
Return Flow from Applied Wastewater 8	2,153	1,684	1,490	1,598	1,818
Underflow and Tributary Inflow ⁹	4,932	24,874	5,727	123,020 R	9,212
Subtotal	38,816	59,188	40,004	158,327	51,099
Elements of Outflow					
Riparian Evapotranspiration and Underflow ¹⁰	508	508	508	508	508
Total RCWD Groundwater Production 11	39,706	38,184	36,347	38,948	40,216
Net Pumping by Others 12	2,948	3,160	3,139	3,119	3,265
Surface Outflow ¹³	3,350	21,931	7,215	86,330	11,271
Subtotal	46,512	63,783	47,209	128,905	55,260
Change in Groundwater Storage	(7,696)	(4,595)	(7,205)	29,422	(4,161)

R - Revision

- 1 Table A-7, Vail Release and Recharge
- 2 Section 5.4
- 3 Table A-7, SMR Release
- 4 Table A-7, Reclaimed Wastewater, Murrieta Creek Discharge (ceased October 18, 2002)
- 5 Table A-7, Footnote 3
- 6 Table 7.8, Total Production times 0.23
- 7 Rancho Division Imports, Section 7.2 RCWD, Imported Return Flows, times 0.23
- 8 Reclaimed Wastewater Table A-7, Reuse in SMRW plus Table A-1, Reuse in SMRW, times 0.23
- 9 Murrieta Creek Flow times 1.6697 which is based on a correlation between Murrieta Creek flow and Tributary Inflow, Areal Recharge and Subsurface Inflow for the period 1977-1998 as shown in Table II-10, Vol. II, Geology and Hydrology, Surface and Ground Water Model of the Murrieta-Temecula Ground Water Basin, California, dated January 31, 2003.
- 10 Table II-10, Vol. II, Geology and Hydrology, Surface and Ground Water Model of the Murrieta-Temecula Ground Water Basin, California, dated January 31, 2003.
- 11 Table 7.8 Total Production
- 12 The sum of Groundwater Production from Table A-1, A-5, Appendix C Murrieta-Temecula Groundwater Area, times .77
- 13 Table 3.2 Santa Margarita near Temecula

TABLE 4.4

CHANGES IN USEABLE GROUNDWATER STORAGE MURRIETA-TEMECULA GROUNDWATER AREA SANTA MARGARITA RIVER WATERSHED Groundwater Level Method

	90	31 (117) (117) (117) (117) (125) (125) (125) (137) (14) (14) (14) (14) (14) (14) (14) (14	,
ear	2006	6 5 4	2
Nater Y	2005	262 233 191 245 245 245 24 120 (309) 716 246 (308) (117) 1,521 136 136 136 146 136 147 1,521 136 147 1,521 136 147 147 147 147 147 147 147 147 147 147)
Change in Storage in Water Yea Acre Feet	2004	270 (39) (85) 417 1 (1,047) 1 (132) (86) 51 86) 51 (103) (478) (478) (478) (50) (12) (12) (208) (7) (7) (7) (7) (7)	(4,401)
ange in S	2003	(252) 96 135 (482) 17 17 17 1,004 303 (1,211) (1,211) (1,22) 379 379 379 (1,22) (1,359) (1,77) (1,359) (1,77) (1,77) (2,091) (2,091) (2,091) (3,091)	10111
Ch	2002	48 (92) (122) (882) (220) (220) (728) (728) (728) (728) (728) (729) (729) (729) (729) (720) (720) (720) (721) (721) (721) (722) (723) (723) (723) (724) (724) (724) (727) (727) (727) (727) (728) (729) (729) (729) (720	(T,04,T)
	2005 - 2006	(5.43) (99.87) (99.87) (0.78) (0.78) (0.37) (1.84) (1.84) (1.84) (1.84) (1.91) (4.95) (0.22) (0.22) (0.22) (0.22) (0.22) (0.22) (0.50) (0.50) (0.50) (0.12) (0.12)	
pth	2004 - 2005	5.26 12.24 7.69 10.10 2.71 2.71 2.74 2.49 (1.31) 4.30 4.30 1.31 4.30 1.32 1.31 4.30 1.32 1.33 1.	
Change in Depth Feet	2003 - 2004	54.74 (2.06) (3.41) 17.18 (3.60) 1.51 (1.95) (6.89 (0.01) (1.15)	
Cha	2002 - 2003	(51.14) 5.05 5.04 (19.86) (3.93) 2.16 2.16 2.16 (2.61) 3.49 3.49 (4.31) (3.84)	
	2001 - 2002	9.68 (4.85) (4.93) (36.74) (7.60) (2.14) (2.14) (2.53) (2.	
<u>.</u>	2006	116.54 31.17 28.96 169.80 	
Vater Yea	2005	122.82 25.74 24.23 69.93 69.93 69.93 27.56 38.96 60.32 90.22	
Water Depth at End of Water Year Feet	2004	128.08 37.98 31.92 80.03 86.60 144.38 30.27 30.27 30.27 41.45 59.01 59.01 94.52 94.5	
er Depth	2003	182.82 35.92 28.51 97.21 77.00 145.89 28.32 28.32 28.32 28.34 41.46 57.86 57.86 57.86 93.17 93.17 93.17 58.60 58.6	
Wat	2002	131.68 40.97 33.95 77.35 73.07 166.12 30.48 30.48 30.48 30.48 60.71 60.71 60.71 60.71 60.71 60.71 60.71 44.95 53.55 89.33 89.3	
	Aquifer Area Acres	1371 479 802 694 1322 1562 719 339 496 2066 1413 1769 752 898 398 2084 1347 1967 2008 1562 3231 2303	
		301 6 439 146 401 402 7 495 211 4 492 5 410 422 422 417 414 2 414 2 414 2 414 2 414 2 414 2 414 2 417 417 418 419 209 139 3 129 4 66 493 493	
	Specific Yield/ Storativity Key Well	0.0036 0.0398 0.0350 0.0350 0.0319 0.0012 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036	
	Key Aquifer	Temecula Pauba Pauba Pauba Pauba Pauba Pauba Qyal Pauba Qyal Pauba Qyal Pauba Qyal Pauba Temecula Temecula Temecula Pauba Pauba Pauba Pauba Pauba Pauba Pauba Pauba Pauba	
	Sub-area	28 8 4 3 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- C - A -

^{1 -} Well 402 not measured -sub-area excluded
2 - For 2002 used reading on June 30, 2002; for 2003 used January 2003; excluded for 2004, 2005 and 2006
3 - For 1999 used reading of Suptember 1999; for 2002 used reading on April 7, 2002; sub area excluded in 2003, 2005 and 2006
4 - For 2003 used reading of July 27, 2003; for 2004 used reading on August 29, 2004
5 - For 2005 used reading of August 28, 2005
6 - For 2006 used reading of July 30, 2006

<u>Anza Groundwater Basin</u> – The Anza Groundwater Basin is located along Cahuilla Creek in the upper portion of the Santa Margarita River Watershed.

The most recent study that determined storage volumes was conducted by Riverside County in 1990. That study concluded that the groundwater storage of about 182,200 acre feet in 1950 had decreased to about 165,000 acre feet in 1986. The study also concluded that "... basin hydrogeologic features, production facilities conditions, and locations/depths of storage . . ." limited the useable portion to 40% of the groundwater storage or about 56,200 acre feet in 1986.

During 2004-05 and 2005-06 a series of water level measurements were made by the USGS in Anza Valley under contract with the Bureau of Indian Affairs. The data are available at the USGS website: http://nwis.waterdata.usgs.gov/ca/nwis/gwlevels.

The wells included in the program can be located by selecting the latitude-longitude box selection criteria and specifying the following bounds:

North Latitude - 33° 37' 00" South Latitude - 33° 30' 00" West Longitude - 116° 48' 00" East Longitude - 116° 38' 00" WATERMASTER SANTA MARGARITA RIVER WATERSHED

SECTION 5 - IMPORTS/EXPORTS

5.1 General

Court Orders require the Watermaster to determine the quantities of imported water used in the Watershed. Most of the water imported into the Santa Margarita River Watershed is delivered by Metropolitan Water District of Southern California (MWD) to local districts. MWD obtains its water from the State Water Project (SWP) and the Colorado River. Both the SWP and the Colorado River system have major storage reservoirs to provide long-term carryover storage. The quantities of water in storage at the end of the water year in the major reservoirs in each system are indicated on Table 5.1. Total storage in the SWP for the last ten years is shown graphically on Figure 5.1. Similarly, total storage for the Colorado River Reservoirs for the last ten years is shown on Figure 5.2. It may be seen from Table 5.1 that during Water Year 2005-06 water in storage in the SWP decreased from 4.42 million acre feet on September 30, 2005 to 4.32 million acre feet on September 30, 2006. Storage on September 30, 2006 corresponds to about 81 percent of the total SWP storage capacity.

Water in storage in the Colorado River system decreased 1.4 million acre feet from 34.6 million acre feet in the prior year to 33.2 million acre feet on September 30, 2006. On September 30, 2006 those reservoirs contained 51 percent of their total combined capacity.

The State Department of Water Resources prepares projections of water availability in the SWP for the coming year (2007) on a monthly basis from February through May. The report dated May 1, 2007, indicates that statewide precipitation October 1 through April 30 was 75 percent of average. As of November 29, 2006, the SWP allocation for 2007 will meet 60 percent of contractors' requests.

The following entities imported water directly or indirectly from MWD into the Santa Margarita River Watershed:

Eastern Municipal Water District
Elsinore Valley Municipal Water District
Fallbrook Public Utility District
Rainbow Municipal Water District
Rancho California Water District
U. S. Naval Weapons Station – Fallbrook Annex
Western Municipal Water District

TABLE 5.1

SANTA MARGARITA RIVER WATERSHED

STORAGE IN STATE WATER PROJECT AND COLORADO RIVER RESERVOIRS

Thousands of Acre Feet /1

		S	TATE W	ATER P	ROJECT	RESER	VOIRS				
Reservoir	Total Capacity	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Oroville	3,540	2,140	2,832	2,427	1,920	1,488	1,400	•	1,753	2,877	2,833
San Luis (State Share)	1,060	462	900	592	388	516	394	653	514	925	911
Pyramid	171	163	161	155	164	162	165	165	161	160	163
Castaic	324	237	306	. 288	285	287	310	314	298	306	266
Silverwood	73	73	71	72	70	72	72	70	72	72	72
Perris	132	105	124	125	110	122	115	114	116	82	72
Total	5,300	3,180	4,394	3,659	2,937	2,647	2,456	3,600	2,914	4,422	4,317
Percent of Cap	acity	60%	83%	69%	55%	50%	46%	68%	55%	83%	81%
· .		M	VIOB CO	OL ORAD	O RIVE	R RESE	RVOIRS	:			٠
		1412	10011 01		·	· · · · ·	- Conte				
	Total										
Reservoir	Capacity	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Flaming Gorge	3,789	3,599	3,580	3,425	3,010	2,982	2,675	2,635	2,679	3,177	3,130
Blue Mesa	941	761	624	740	560	597	275	387	507	588	667
Navajo	1,709	1,543	1,380	1,558	1,357	1,409	872	729	935	1,516	1,420
Powell	27,000	22,802	22,404	22,997	20,939			12,109	9,170	11,939	11,917

28,537 23,769 25,126 24,592 22,444 19,873 17,093 15,618 13,937 15,219 13,887

64,442 54,728 55,408 55,411 50,399 46,173 37,525 33,683 29,422 34,566 33,160

567

72%

1,610 1,577

565

58%

1,605

589

46%

1,573

554

54%

1,584

555

51%

1,643

562

52%

1,674

580

85%

1,729

565

86%

1,818

648

Mead

Mohave

Havasu

Total

Percent of Capacity

1,515 1,523

566

78%

584

86%

^{1/} Storage reported for end of water year on September 30

FIGURE 5.1

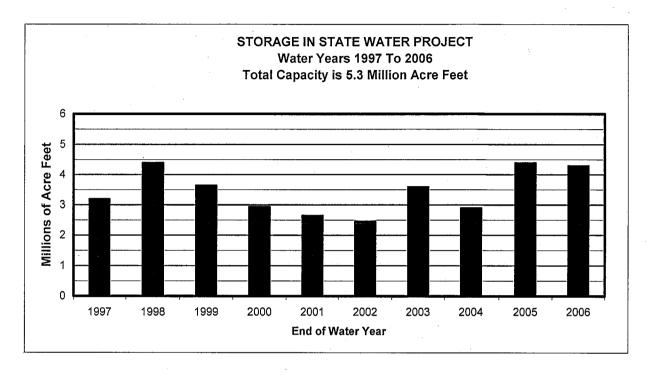
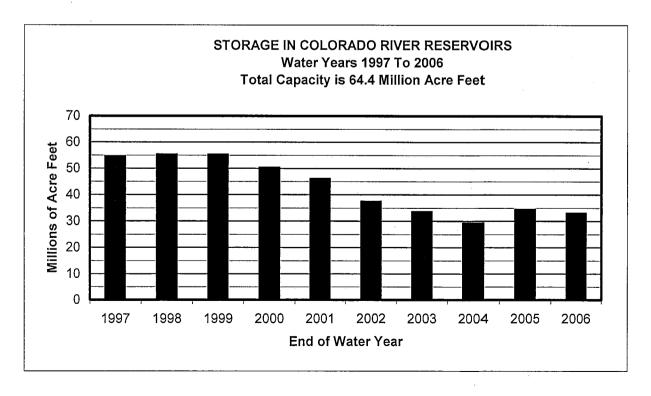



FIGURE 5.2

In addition to net deliveries through member agencies, MWD, pursuant to a Court Order, delivered 506 acre feet of water for irrigation of lands in Domenigoni Valley within the Santa Margarita Watershed during 2005-06.

Water is also imported into the Santa Margarita River Watershed from adjacent watersheds. Such importation occurs from the Santa Ana Watershed where Elsinore Valley MWD delivers water to a portion of its service area that is inside the Santa Margarita River Watershed. Elsinore Valley MWD obtains its supply from imports or from wells outside the Santa Margarita River Watershed.

At Camp Pendleton there is a pipeline connection to wells located in the Las Flores Creek Watershed to the north of the Santa Margarita River Watershed. Water can be either imported or exported through that line, depending on relative water demands and pumping capacities.

Exportations from the Santa Margarita River Watershed include water pumped at Camp Pendleton that is used in the San Luis Rey River Watershed to the south or in the Las Flores Creek Watershed to the north. The wastewater that is derived from the exported fresh water is returned to the watershed with the exception of the water used to irrigate the golf course outside the watershed. In prior year the returned wastewater was reclaimed for use within the watershed. However, as a result of the Regional Board's Cease and Desist Order (CDO) No. 94-52 and the Consent Decree in Case No. 02-CV-0499 IEG (AJB) in the Federal District Court for the Southern District of California, Camp Pendleton temporarily exports its wastewater effluent to the Oceanside Outfall under NPDES Permit No. CA0109347. Wastewater from the Fallbrook area and the Naval Weapons Station is exported by the Fallbrook Public Utility District and wastewater in the Elsinore Valley MWD is exported by that district. Rancho California WD exports water into the San Mateo Creek Watershed.

Eastern MWD uses a 24-inch pipeline along Winchester Road to transport wastewater from the Temecula Valley Regional Water Reclamation Facility to areas within the Watershed for reuse as well as for export of up to 10 MGD from the Watershed. Eastern MWD uses a second, 48-inch pipeline along Palomar Valley for delivery of reclaimed wastewater for reuse and export from the Watershed. Rancho California WD also uses the Palomar Valley pipeline for exporting wastewater from the Watershed. The exported wastewater can be reused outside the watershed, delivered to storage facilities or discharged to Temescal Creek. In 2005-06, Eastern MWD and Rancho California WD exports of wastewater that were discharged to Temescal Creek were 6,058 and 1,062 acre feet, respectively.

The following paragraphs of this report describe imports and exports during Water Year 2005-06 and during the period 1966-2006. There is also discussion of MWD's Lake Skinner and Diamond Valley Lake operations.

5.2 Water Year 2005-06

During 2005-06 a total of 113,441 acre feet of water were imported and distributed in the Santa Margarita River Watershed. This compares with 90,085 acre feet in 2004-05 and represents an increase of approximately 26 percent. Water quantities imported into and exported from the Santa Margarita River Watershed for months during Water Year 2005-06 are listed on Table 5.2.

The quality of the water supplies imported through the MWD system in 2005-06 is indicated by the average monthly total dissolved solids at the Skinner Treatment Plant effluent line as shown on Table 5.3. The table also shows the percent of imported water obtained from the SWP. Water imported by Elsinore Valley MWD has the same quality as the MWD system.

5.3 Water Years 1966-2006

Water quantities imported by districts into the Santa Margarita River Watershed during Water Years 1966-2006 are shown on Table 5.4. Total imports to these districts are measured; however some districts serve lands outside the Watershed. For these districts, which include Eastern MWD, Elsinore Valley MWD, Fallbrook PUD and Rainbow MWD, the portion delivered in the Santa Margarita River Watershed must be estimated.

Review of the historical trend of total imports shown on Table 5.4 indicates significant year-to-year variations with relatively low imports in wet years and higher imports in dry years, combined with an underlying growth rate to serve increasing municipal water demands in the Murrieta-Temecula area.

Exports over the 1966-2006 period are also shown on Table 5.4. These include estimated water exports on Camp Pendleton less estimated wastewater returns, as well as an estimate of exports by the Fallbrook Public Utility District and the Naval Weapons Station after 1983, and Elsinore Valley MWD after 1986. Exports by Eastern MWD were initiated in 1992-1993 and Rancho California WD began exporting water in 2002-03. Exports do not include water that naturally flows from the Santa Margarita River into the Pacific Ocean.

TABLE 5.2

SANTA MARGARITA RIVER WATERSHED

IMPORTS/EXPORTS

Quantities in Acre Feet 2005-06

NET IMPORTS

WASTEWATER EXPORTS

TOTAL	1,609	1,566	1,438		1,567	1,447	2,264	2,024	1,357	1,493	1,666	1,655	1,460	19,542
RANCHO CAL WD E	0	0	0		0	0	614	423	25	0	0	0	0	1,062 19,542
R FALLBROOK PUD	136	127	134		142	123	148	144	162	144	180	159	117	1,716
ELSINORE VALLEY MWD	105	107	70		98	77	. 93	82	99	62	63	64	63	938
EASTERN	904	984	903		1,047	996	1,147	1,100	752	818	779	804	702	10,906
U.S. NAVAL WS	6.0	0.5	0.5		0.5	0.7	0.7	0.7	0.7	0.5	9.0	9.0	9.0	æ
ET	463	347	330		291	280	261	274	351	468	643	627	277	4,912
- CAMP PENDLETON RECLAIMED WASTEWATER TS IMPORT N RECHARGED EXE	0	0	0		0	0	0	0	0	0	0	0	0	0
EXPORTS 3/	463	347	330		291	280	261	274	351	468	643	627	277	4,912
TOTAL	8,159	8,674	6,828		5,933	6,625	3,618	4,538	9,887	13,240	17,156	14,724	14,059	113,441
WESTERN MWD 2/	7	5	5		4	4	4	4	4	7	9	9	9	99
U.S. NAVAL WS	က	Ψ-	9		2	2	ო	2	9	7	10	ω	2	94
RANCHO CAL WD	3,958	4,642	3,399		2,929	3,392	2,053	2,230	5,040	7,262	9,863	8,165	7,730	1,851 60,663
RAINBOW	159	136	143		112	108	109	21	87	179	249	258	260	1,851
MURRIETA DIVISION WESTERN I	4	0	-		0	0	_	0	0	43	77	92	86	316
MWD 1/	67	29	26		12	25	9	7	∞	45	83	74	86	506
FALLBROOK PUD	878	885	828		661	582	231	420	858	1,139	1,422	1,435	1,283	10,622
(3)	956	570	663		720	609	475	453	882	923	1,468	1,002	1,098	9,819
ELSINORI EASTERN VALLEY MWD MWD	2,127	2,368	1,757		1,490	1,900	736	1,368	3,002	3,631	3,978	3,684	3,493	TOTAL 29,534
YEAR	2005 OCT	NOV	DEC	2006	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL

^{1/} Metropolitan Water District direct deliveries in Domenigoni Valley

^{2/} Improvement District A - Rainbow Canyon Only (WR-13)
3/ Includes total export of first time use of 3,943 acre feet plus 969 acre feet of wastewater from in-basin use that was exported to Oceanside Outfall as shown on Table A-9

SANTA MARGARITA RIVER WATERSHED
TOTAL DISSOLVED SOLIDS
CONCENTRATION OF IMPORTED WATER

TABLE 5.3

YEAR MONTH	TOTAL DI SOLIDS			T STATE T WATER
	2004-05	2005-06	2004-05	2005-06
OCT	477	532	38	35
NOV	487	553	38	27
DEC	531	554	32	30
JAN FEB MAR APR MAY JUNE JULY	490 386 406 448 511 539 539	518 482 462 416 420 415 461	42 69 60 48 38 31 29	44 49 51 59 52 48 41
AUG	539	453	33	44
SEPT	511	441	42	47

^{1/} As measured in the Skinner Treatment Plant Effluent line.

^{* -} Skinner Plant treated a blend of California State Project Water and Colorado River water

TABLE 5.4

SANTA MARGARITA RIVER WATERSHED IMPORTS/EXPORTS

Quantities in Acre Feet

IMPORTS

EXPORTS

1966 1,604 1 1967 1,630 1 1968 1,464 1 1969 1,741 1 1970 1,417 1 1971 1,383 1 1971 1,383 1 1971 1,417 1	MWD MWD PUD 1/	ξ.	7 N Z	WESTERN MWD	MWD	WD /3	ws	MWD 4/	IMPORTS	EXPORTS	RETURNS	EXPORT	WS	MWD	MWD	PUD	WD	EXPORTS
1,630 1,464 1,741 1,417 1,383 1,470	V/R 3,	3,351	0	0	1,308	0	0	24	6,287	3,251	974	2,277	0	0	0	0		2,277
1,464 1,741 1,417 1,383 1,470		2,852	0	0	1,095	0	0	20	5,597	3,180	1,243	1,937	0	0	0	0		1,937
1,741 1,417 1,383 1,470		3,423	0	0	1,377	0			6,291	3,368	1,214	2,154	0	0	0	0		2,154
1,417 1,383 1,470		2,837	0	0	1,253	0			5,856	3,276	1,170	2,106	0	0	0	0		2,106
1,383		3,538	0	0	1,689	0	0 E	31	6,675	3,809	1,113	2,696	0	0	0	0		2,696
1,470		3,405	0	0	1,650	0	76 E	•	6,548	3,527	1,090	2,437	0	0	0	0		2,437
1 533		3,916	0	0	2,037	0		34	7,572	3,543	1,168	2,375	0	0	0	0		2,375
3	N/R 3,	3,210	0	0	1,616	0	115 E	30	6,504	3,544	1,187	2,357	0	0	0	0		2,357
		3,967	0	0	2,049	0		36	7,768	3,532	1,140	2,392	0	0	0	0		2,392
		3,597	0	0	1,247	0	115 E	34	6,962	3,098	1,530	1,568	0	0	0	0		1,568
2,493		4,627	0	0	2,239	119		35	9,628	3,619	1,497	2,122	0	0	0	0		2,122
		5,212	0	0	2,343	1,845	115 E	24	12,486	3,194	1,416	1,778	0	0	0	0		1,778
	569 5,	5,202	0	0	2,188	5,774	115 E	56	16,425	3,071	1,283	1,788	0	0	0	0		1,788
		5,723	0	0	2,348	600'2	115 E	24	17,824	4,756	1,427	3,329	0	0	0	0		3,329
	969	6,404	0	0	2,489	10,126	115 E	25	21,047	3,651	1,405	2,246	0	0	0	0		2,246
	798 8,	8,543	0	0	3,153	15,282	115 E	34	28,642	3,892	1,249	2,643	0	0	0	0		2,643
982 1,112 (678 7,	7,079	0	0		13,378	115 E	34	24,856	3,761	1,273	2,488	0	0	0	0		2,488
	658 6,	6,720	0	0	2,190	5,752	115 E	56	16,672	3,000	1,242	1,758	26 E	0	0	1,003		2,787
1984 699 8	816 8,	8,506	0	0	3,068	6,716	115 E	<u> </u>	19,946	3,243	1,120	2,123	26 E	0	0	1,032		3,181
985 679 8	808 7,	7,831	0	0	3,410	7,158	102	27	20,015	3,377	1,200	2,177	26 E	0	0	1,060		3,263
	882 8,	8,585	0	0	2,945	_	94	34	24,474	3,326	981	2,345	16 P	0	0	1,096		3,457
1987 1,155 8	938 8,	8,656	0	0	3,390	7,564	116	36	21,855	3,444	1,799	1,645	26	0	4	1,129		2,805
		8,033	0	0	2,985	~	120	36	32,108	3,457	1,872	1,585	26	0	22	1,154		2,820
3,746		990'6	0	0	3,003	22,895	128	23	40,202	3,418	1,446	1,972	23	0	74	1,181		3,250
5,601	_	10,103	0	0		22,030	145	22	43,974	2,971	1,451	1,520	27	0	114	1,271		2,932
1991 9,479 2,4		7,962	0	0		21,238	109	21	44,134	2,168	1,219	949	13	0	134	096		2,056
8,593		,893	0	0	2,277	16,931	66	25	38,008	2,426	1,548	878	7	0	140	1,083		2,108
	1,914 6,	6,925	0	0	1,965	11,411	117	31	27,756	2,329	1,926	403	16	705	150	1,255		2,529
	3,221 7,	7,250	0	0	1,651	16,386	73	37	35,768	2,702	1,501	1,201	2	3,159	170	1,068		5,603
	3,117 6,		547	0	1,661	15,108	125	59	31,750	2,781	1,611	1,170	12	3,908	185	1,153		6,428
996 4,960 4,	4,181 7,		1,005	0	1,815	23,600	100	35	43,689	3,577	1,493	2,084	5	2,993	213	1,035		6,330
	4,283 7,	7,894 3	3,521	0	1,429	26,992	109	30	47,542	3,643	1,932	1,711	9	3,201	226	1,021		6,165
1998 5,117 5,			5,023	0	1,601	19,584	26	31	42,935	3,742	2,073	1,669	œ	4,513	247	1,482		7,919
1999 4,327 6,		7,430 3	3,781	0	1,727	34,490	11	4	58,041	3,558	2,130	1,428	5	4,133	254	1,377		7,197
7,256		9,365	712	0		55,409	104	42	82,277	4,072	2,115	1,957	7	3,649	279	1,634		7,526
		8,398	689	0	1,804	41,823	73	29	65,386	3,653	2,075	1,578	œ	4,457	310	1,643		2,996
2002 8,117 7,5	7,596 9,	9,580	595	0		54,148	26	64	81,873	3,701	1,950	1,751	6	5,325	412	1,495		8,992
2003 9,062 7,0		9,130	495	102	1,510	50,744 R	88	42	78,264	3,767	1,688	2,079	9	7,636	483	1,706		11,914
2004 9,138 8,4	8,438 11,	11,749	992	330	1,888	62,408 R	73	20	94,840	4,951 5/	0	4,951	œ	9,115	009	1,620		16,294
2005 22,158 8,2	8,215 9,	9,702	556	75	1,610	47,667	40	62	90,085	4,625 5/	0	4,625	16	11,676	927	1,782	1,256	20,282
2006 29,534 9,8	9,819 10,	10,622	506	316	1,851	60,663	64	99	113,441	4,912	0	4,912	œ	10,906	938	1,716	1,062	19,542

³⁸

5.4 Lake Skinner

Lake Skinner is a 44,000 acre foot reservoir constructed by MWD on Tucalota Creek, within the Santa Margarita River Watershed. The purpose of Lake Skinner is to provide regulatory and emergency storage capacity for water imported to southern California. MWD does not have a water right to store or divert water in Lake Skinner. Accordingly, a Memorandum of Understanding and Agreement on Operation of Lake Skinner (MOU), dated November 12, 1974, approved by the Court on January 16, 1975, contains provisions to protect Santa Margarita River Watershed water users from potential effects of Lake Skinner on either subsurface or surface flows.

Protection against a decrease in subsurface flows caused by the dam is afforded by a provision in the MOU that requires that MWD release water from Lake Skinner into Tucalota Creek if groundwater levels in Well AV-28B fall below an elevation of 1356.64 feet. At the end of September 30, 2006, the well level was 1357.65 feet.

The MOU also provides that all local surface inflow that enters Lake Skinner will be released into Tucalota Creek. In its 1980 modification the MOU provides that local surface inflow is to be determined by using the hydrologic equation for Lake Skinner that is specified in the MOU. That equation is used to determine inflow and the related release for large flood events. However, in many years the local inflow is small compared to the large quantities of imported water inflow and outflow at Lake Skinner. The error of measurement for these large inflows and outflows is larger than the local inflow in many instances. Accordingly, MWD also monitors the flow in Tucalota Creek, Rawson Creek and Middle Creek during storms and uses those observations to supplement the hydrologic equation.

On February 16, 2005, the Court approved an Order Amending the MOU to provide for diversions from Lake Skinner after specified releases are made. In 2005-06 a total of 106.13 acre feet accumulated in Lake Skinner and diverted to Fallbrook PUD.

Also a total of 291.95 acre feet were released into Tucalota Creek.

5.5 <u>Diamond Valley Lake</u>

Diamond Valley Lake is located in Diamond and Domenigoni Valleys within the Santa Margarita River Watershed. The Lake was created by three dams, one each at the east and west ends of Domenigoni/Diamond Valley and a saddle dam at the low point on the north rim. The East Dam diverts surface and groundwater flows from a 4.2 square mile drainage area in the Santa Margarita River Watershed, known as Goodhart Canyon, into the Santa Ana River Watershed. The West Dam intercepts existing westward surface and subsurface flows from an additional 13.19 square mile area.

MWD does not have a water right to store local waters in the reservoir, so a Memorandum of Understanding and Agreement on Operation of Domenigoni Valley Reservoir (now known as Diamond Valley Lake) (MOU) was developed and approved by the Court on January 19, 1995. Among other things, the MOU provides:

The quantity and quality of surface runoff that would flow past the West Dam in the absence of the Reservoir will be determined and a like quantity of water of similar quality will be released from the Reservoir or San Diego Canal (SDC) into Warm Springs Creek.

The MOU indicates that the required releases would be determined by measuring the surface inflows into Goodhart Canyon Detention Basin. A quantity equal to 4.1 times the measured flow will be released into Warm Springs Creek.

Total required releases into Warm Springs Creek during 2005-06 were 0.87 acre feet.

Although all surface waters within the Santa Margarita River Watershed in Domenigoni Valley and Diamond Valley are subject to the continuing jurisdiction of the Court, groundwater contained within the younger alluvium, north of the south line of Section 9, Township 6 South, Range 2 West, SBM is not considered by the Court to be a part of the Santa Margarita River system as long as groundwater levels are below an elevation of 1400 feet. During 2005-06 groundwater elevations in Well MO-6, which is located along the south line of Section 9, decreased 2.17 feet from 1361.23 feet at the beginning of the water year to 1359.06 feet at the end of the water year.

During 2005-06, there were no injections into the Domenigoni Valley groundwater basin pursuant to Agreements for Mitigation of Groundwater. However, pursuant to a Court Order, MWD delivered 506 acre feet of imported water for irrigation of lands in Domenigoni Valley. As previously noted the groundwater in the Domenigoni Valley groundwater basin is outside this Court's jurisdiction when groundwater levels are below 1400 feet.

SECTION 6 - WATER RIGHTS

6.1 General

Water is used in the Santa Margarita River Watershed under a variety of water rights. In the early 1960's, the U. S. District Court in its Interlocutory Judgments described water rights in the Watershed as primarily riparian rights and overlying rights. Riparian rights belong to owners of land parcels located adjacent to streams in the Watershed or overlying younger alluvium deposits generally along the stream channels. Overlying rights were divided by the Court into two categories based on the location where the water is obtained and used. Water extracted from lands where subsurface waters add to contribute to and support the Santa Margarita River stream system was found to be subject to the continuing jurisdiction of the Court. Lands in this category were identified by the Court and listed in Interlocutory Judgments. In general, these parcels of land overlie younger or older alluvium deposits. The Court has stated that the issue of apportionment of water rights has not been presented to the Court, but the Court would litigate the apportionment if and when in the future it becomes necessary to do so.

The other category of overlying use applies to parcels of land where subsurface flows do not add to, contribute to or support the Santa Margarita River stream system. These parcels were also identified by the Court and found to be outside the continuing jurisdiction of the Court. In general, these lands overlie basement complex or residuum deposits.

The Court also described a number of other rights in the Watershed. These included surface water appropriative water rights that have been administered by the State of California since 1914. These rights are discussed in the following subsection of this report.

In Interlocutory Judgment No. 41, the Court found that the United States reserved rights to the use of the waters of the Santa Margarita River stream system which under natural conditions would be physically available on the Cahuilla, Pechanga and Ramona Indian Reservations, including rights to the use of groundwater, sufficient for the present and future needs of the Indians residing thereon. In Interlocutory Judgment No. 44, the Court recognized and reserved water rights for lands within the Cleveland and San Bernardino National Forests and for lands being administered pursuant to the Taylor Grazing Act.

Since the early 1960's there have been substantial changes in water use in the Watershed, especially in the Murrieta-Temecula Groundwater Area. During the 1950's and early 1960's when this case was under active litigation, most of the water use in the Murrieta-Temecula area consisted of individual property owners pumping water for use on their own properties. In 1965, the Rancho California WD was formed. The District developed Agency Agreements with most of the landowners within the District. In these Agency Agreements, the landowners "...without transferring any water rights and

privileges pertaining to said land...." designated the District as their exclusive agent for the development and management of their water supply.

Thus, many landowners within the Rancho California WD are not exercising their overlying rights. Instead, Rancho California WD pumps groundwater and uses it throughout the District area as agent on behalf of the landowners.

Rancho California WD also pumps water as a groundwater appropriator along with Western Municipal Water District within its Murrieta Division.

Another change from the early 1960's is the large scale importation of water into the Santa Margarita River Watershed by Rancho California WD. A portion of such importation finds its way into the groundwater aquifers. The legal status of return flows from imported supplies as well as direct recharge of imported water was clarified by the final judgment in *City of Los Angeles v. City of San Fernando, et al.*, 1975 14 Cal. 3rd 199. This decision in the Supreme Court of the State of California made two major findings with respect to imported water.

The first was that agencies have the right to recharge and store imported water in a groundwater basin and to extract the imported water for use, subject to applicable state and federal laws. In addition, agencies that import and deliver water to lands overlying a groundwater basin have a continuing right to extract the return flow from such water. The return flow is that portion of the imported supply that percolates into the groundwater basin. In the San Fernando case this portion was found to range from 20 percent to 35.7 percent of the imported supplies.

The Rancho Division of the Rancho California WD overlies the Murrieta-Temecula Groundwater Area. Thus a portion of the import supply delivered to the Rancho Division of Rancho California WD percolates into the underlying aquifers.

Imported water is also supplied to the Santa Rosa Division within Rancho California WD, however only a relatively small part of this division overlies the Murrieta-Temecula Groundwater Area. Thus there is less imported water return flow from the Santa Rosa Division.

Classification of Rancho California WD supplies into various water right categories is discussed in Section 7 of this Report.

Camp Pendleton representatives contend that the Court has jurisdiction over imported water to the full extent that imported water, as well as its use, its returns and its products, affects in any significant manner the water rights within the Watershed over which the Court has traditionally asserted its jurisdiction. Other parties dispute the Court's jurisdiction over imported water.

6.2 Appropriative Surface Water Rights

Another broad category of water rights used in the Watershed is surface water appropriative rights. Since 1914, these rights have been administered by the SWRCB.

A list of current permits, licenses and other active rights obtained from the SWRCB is shown on Table 6.1. A permit by the SWRCB authorizes construction of a project, sets terms for the project's completion and development of water use and may impose other conditions. After the permittee demonstrates that construction is complete, water is being put to use and the permit conditions have been met, the SWRCB can issue a license. The license remains in effect as long as the license conditions are met and the water is put to beneficial use.

Perfected direct diversion rights and active storage rights from creeks in the Watershed are summarized below:

	Direct Diversions Gallons Per Day	Storage Acre Feet
	Gallons Fel Day	Acre i eet
Cahuilla Valley	720	5
Cottonwood Creek	485,000	60
Cutea Creek	5,825	
DeLuz Creek	4,700	100
Fern Creek	213,000	100
Kohler Canyon	158,000	40
Long Canyon Spring	89	
Rainbow Creek		0.5
Rattlesnake Canyon	12,000	
Temecula Creek	25,820	40,000
Sandia Canyon		8
Sourdough Spring	55	
Santa Margarita River	133	4,000
Nelson Creek	<u>1,550</u>	
TOTAL	906,892	44,313.5

These direct diversion rights of 906,892 gallons per day correspond to 1.4 cfs or 2.78 acre feet per day.

TABLE 6.1

SANTA MARGARITA RIVER WATERSHED APPROPRIATIVE WATER RIGHTS

PERMITS AND LICENSES

		PERIV	III S AND LICENSE	S			
I.D. NO.	OWNER	FILING DATE	SOURCE OF WATER	POINT OF DIVERSION	AMOUNT	USE	STATUS
6629	William H. & Sandra J. Cyrus	4/9/30	Coahuila Valley	Sec. 4, 7S, 3E	DD-720 gpd	D ,	License
6893	Earl C. & Mamie LaBine	2/13/31	Temecula Creek	Sec. 20, 9S, 2E	DD-820 gpd	D/I	License
7035	Nyla Lawler	8/10/31	Cutca Creek	Sec. 29, 9S, 1E	DD-5725 gpd	D/I	License
7731	Earl C. & Mamie LaBine	11/02/33	Temecula Creek	Sec. 20, 9S, 2E	DD-7200 gpd	D/I	License
9137	Goodarz Irani	10/07/37	Temecula Creek	Sec. 12, 9S, 1E	DD-400 gpd	D	License
9291	Luis Olivos	5/13/38	Nelson Creek	Sec. 23, 8S, 5V	NDD-1550 gpd	D	License
10806	James R., Phyllis & Bruce Gramn	r 4/22/44	Temecula Creek	Sec. 34, 9S, 2E	DD-2880 gpd	D	License
11161	Roy C. Pursche & J. Zink	9/26/45	Rattlesnake Canyon	Sec. 28, 9S, 2E	DD-12,000 gpd	D/I	License
11518	Rancho California Water District	8/16/46	Temecula Creek	Sec. 10, 8S, 1V	ST-40,000 AF	D/I/R	Permit
11587	U. S. Bureau of Reclamation	10/11/46	Santa Margarita River	Sec. 12, 9S, 4V	ST-10,000 AF	D/I/M	Permit
12178	Fallbrook Public Utility District		Santa Margarita River			D/I/M	Permit
12179	U. S. Bureau of Reclamation	11/28/47	Santa Margarita River			D/I/M	Permit
13505	David H. & Kathleen C. Lypps	12/12/49	Cottonwood Creek	Sec. 30, 8S, 4V	NDD-0.75 cfs & ST-42 AF	R/S	License
17239	Ward Family Trust	8/15/56	Temecula Creek	Sec. 20, 9S, 2E	DD-120 gpd	D/E	License
20507	David H. & Kathleen C. Lypps	11/24/61	Cottonwood Creek	Sec. 19, 8S, 4V Sec. 30, 8S, 4V		I/R	License
20608	Pete and Dorothy Prestininzi	2/13/62	DeLuz Creek	Sec. 20, 8S, 4V		D/I/R	License
20742	U. S. Cleveland National Forest	4/24/62	Sourdough Spring	Sec. 25, 9S, 1E		E	License
21074	U. S. Cleveland National Forest	12/07/62	Cutca Spring	Sec. 17, 9S, 1E	•	S/W	License
21471A	U. S. Department of Navy	9/23/63	Santa Margarita River		ST-4,000 AF	D/I/M/Z	License
21471B	U. S. Bureau of Reclamation	9/23/63	Santa Margarita River			D/I/M/Z	Permit
27756	James R. Grammer	5/23/83	Temecula Creek		DD-14,400 gpd		Permit
28133	Charles F. Ruggles	5/14/84	Cahuilla Creek	Sec. 15, 8S, 2E		E/H/I/R/S	Permit
·		С	THER RIGHTS				
05751S/Federal	U. S. Cleveland National Forest	1/01/70	Long Canyon Spring	Sec. 16, 9S, 1E	DD-89 gpd	E/R/S/W	
000024/State	Judge Dial Perkins		Santa Margarita River			D	
000751/State	Lawrence Butler	5/31/67	ͺͺ	Sec. 31, 8S, 4V		I	
011/11/Stata	Agri Empire Inc	5/16/84	Kohler Canyon	Sec 33 05 2F		VS.	

05751S/Federal	U. S. Cleveland National Forest Judge Dial Perkins		Long Canyon Spring Santa Margarita Rive			E/R/S/W D
000751/State	Lawrence Butler		Fern Creek	Sec. 31, 8S, 4W		Ī
011411/State	Agri Empire, Inc.	5/16/84	Kohler Canyon	Sec. 33, 9S, 2E	DD-0.245 cfs ST-40 AF	I/S
012235/State	William A. & Lois D. Cunningham	n 8/27/85	DeLuz Creek	Sec. 4, 9S, 4W	DD-4700 gpd	D/I
001583/Stock	George F. Yackey	12/27/77	Sandia Canyon	Sec. 25, 8S, 4W	ST-8.0 AF	S
002380/Stock	Chris R. & Jeanette L. Duarte	12/16/77	Rainbow Creek	Sec. 12, 9S, 3W	ST-0.5 AF	S
KEY TO USE:		omestic igation d/or Enhar	M - Municipal S -	- Fire Protection Stockwatering	H - Fish Culi Z - Other	ture

Storage rights shown in Table 6.1 include 185,000 acre feet of storage rights on the Santa Margarita River held by the U. S. Bureau of Reclamation (ID Nos. 11587, 12179, and 21471B) that have not been exercised. The time period during which these rights must be exercised has recently been extended by the SWRCB to December 31, 2008.

Table 6.1 also lists other rights recognized by the SWRCB. These rights generally are based on Statements of Water Diversion and Use that have been filed with the SWRCB. Such statements include one by the United States on behalf of the Cleveland National Forest, which states that the diversion and use of water from Long Canyon Spring is made pursuant to a withdrawal and reservation of the land and resources for National Forest System purposes as of February 14, 1907.

Besides the federal filing, there are also Statements of Water Diversion and Use filed by individuals. Three of these statements represent riparian or pre-1914 appropriative diversions from DeLuz Creek, Fern Creek and Santa Margarita River that have been reported to the SWRCB. The other statement represents a pre-1914 appropriative right to divert water from a spring in Kohler Canyon into a 40 acre foot reservoir.

The last two rights noted on Table 6.1 represent filings made in 1977 pursuant to Subchapter 2.5 to Chapter 3 of Title 23 of the California Code of Regulations. That subchapter deals with Water Rights for Stockponds.

In addition to appropriative rights under SWRCB jurisdiction, there are a number of nonstatutory appropriative rights that were established prior to 1914. These rights continue to be used to support diversions of water from the Santa Margarita River stream system. Such rights, which are listed in the various Interlocutory Orders developed in this litigation, are shown on Table 6.2.

In 1990-91, in Order No. 91-07, the SWRCB revised its Order No. 89-25 entitled, "Order Adopting Declaration of Fully Appropriated Stream Systems and Specifying Conditions for Acceptance of Applications and Registrations." These Orders list the Santa Margarita River stream system as fully appropriated "from the confluence of the Santa Margarita River and the Pacific Ocean upstream including all tributaries where hydraulic continuity exists."

The consequences of this Order are as follows:

1. The Board is precluded from accepting any application to appropriate water from the Santa Margarita River System except where the proposed appropriation is consistent with conditions contained in the Declaration.

TABLE 6.2

SANTA MARGARITA RIVER WATERSHED PRE - 1914 APPROPRIATIVE WATER RIGHTS Listed in Interlocutory Decrees

LISTED OWNER	CURRENT OWNER	DATE OF APPROPRIATION	SOURCE OF WATER	POINT OF DIVERSION	AMOUNT	USE
Anderson, Nina B.	Nezami, Mohammed	April 11, 1892	Fern Creek	NW 1/4 Of SE 1/4 Sec 31, T8S, R4W	32 gpm	Irrigation
Butler, Lawrence W and Mary C.	. Vanginkel, Norman Tr and Vanginkel, Deboral San Diego Gas & Electric		Fern Creek	NW 1/4 Of SE 1/4 Sec 31, T8S, R4W	Capacity of 8 inch pipe	Irrigation
Wilson, Samuel M. and Hazel A.	Shirley, Robert G. and Bobbi J.	Aug. 3, 1911	DeLuz Creek	NW 1/4 Of SW 1/4 Sec 32, T8S, R4W	50 miner's inches 65 AF/Yr	Irrigation
United States	United States	1883	Santa Margarita River	Sec 5, T10S, R4W	20 cfs 1200 АF/Yг	Domestic Irrigation Stock Water

- 2. Initiation of a water right pursuant to the Water Rights Permitting Reform Act of 1988 (Water code Section 1228 et seq.) --that is, by registering small use domestic appropriations--is precluded, except where the proposed appropriation is consistent with conditions contained in the Declaration. Small use domestic appropriations refer to uses that do not exceed direct diversions of 4,500 gallons per day or diversion by storage of 10 acre feet per year for incidental aesthetic, recreational, or fish and wildlife purposes.
- 3. Pursuant to Water Code Section 1206(a) the Board is authorized, but not required, to cancel pending applications where inconsistent with conditions contained in the Declaration; previous Orders implement a procedure for disposition of such applications pending on the effective date of the Declaration.

The Order provides for reconsideration of the Order either upon petition of an interested party or upon the Board's own motion.

6.3 Fallbrook PUD Changes Point of Diversion and Place of Use for Permit No. 11356

On November 20, 2001, the Chief of the Division of Water Rights of the State Water Resources Control Board authorized an Order Approving Changes in Source Point of Diversion, Place of Use and Amending the Permit (No. 11356). The permit allows Fallbrook PUD to store and divert up to 10,000 acre feet per year from Lake Skinner. The Court approved an Order Amending the Memorandum of Understanding and Agreement on Operation of Lake Skinner on February 16, 2006. The Amendment provides for diversions from Lake Skinner after specified releases are made. During 2005-06 a total amount of 106 acre feet were delivered to Fallbrook PUD from Lake Skinner.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

SECTION 7 - WATER PRODUCTION AND USE

7.1 General

Water production and use data were obtained from several types of substantial users including water purveyors, Indian Reservations, mobile home parks and private landowners. Private landowners who qualify as substantial water users are those who irrigate eight or more acres or who produce or use an equivalent quantity of water.

Major water purveyors who reported production and use data in 2005-06 Water Year are listed as follows:

Anza Mutual Water Company
Eastern Municipal Water District
Elsinore Valley Municipal Water District
Fallbrook Public Utility District
Lake Riverside Estates
Metropolitan Water District of Southern California
Rainbow Municipal Water District
Rancho California Water District

U. S. Marine Corps, Camp Pendleton including U.S. Naval Weapons Station, Fallbrook Annex

Western Municipal Water District

Lake Riverside Estates is listed with major water purveyors although it does not deliver water to customers. However it does produce make-up water for losses from Lake Riverside.

In addition to the major purveyors, there are a number of smaller water systems in the Watershed. Of these, Butterfield Oaks Mobile Home Park, Jojoba Hills SKP Resort, Outdoor Resorts Rancho California, Inc. and Hawthorn Water System are substantial users.

Three Indian Reservations, the Cahuilla, Pechanga and Ramona, are noted in Interlocutory Judgment No. 41, the Judgment that deals with Water Rights on Indian Reservations in the Watershed. Estimates and/or measurements of water production and use are reported for the Cahuilla, Pechanga and Ramona Indian Reservations.

A portion of a fourth Reservation, the Pauma Mission Reserve Tract of the Pauma Yuima Band of Mission Indians, is also located within the Watershed. However, these lands overlie basement complex, which waters have been found by the Court to not add to, support or contribute to the Santa Margarita River stream system.

The final category of water users is private landowners who use water primarily for irrigation.

The water use data collected for the 2005-06 Water Year are summarized on Table 7.1. Total imported supplies plus local production totaled 157,700 acre feet compared to 132,322 reported in 2004-05. Of that quantity, 52,989 acre feet were used for agriculture; 11,011 acre feet were used for commercial purposes; 71,693 acre feet were used for domestic purposes; 153 acre feet were discharged to Murrieta Creek; 4 acre feet were discharged to Temecula Creek; 4,766 acre feet were discharged by Rancho California WD during 2005-06 pursuant to the Cooperative Water Resources Management Agreement (CWRMA) (4,714 acre feet to the Santa Margarita River from MWD WR-34 and 52 acre feet to Murrieta Creek from the System River Meter); 3,943 acre feet of fresh water were exported by Camp Pendleton; and 6,163 acre feet were recharged by Rancho California WD to storage. The overall system loss was 6,978 acre feet. System gain or loss is the result of many factors including errors in measurement, differences between periods of use and periods of production, leakage and unmeasured uses.

Monthly production and use data for major water purveyors are attached to this report as Appendix A. Uses are listed under agricultural, ag/domestic, commercial and domestic categories. The definition of agricultural, ag/domestic, commercial and domestic uses varies for the different purveyors in the Watershed. Accordingly definitions of these uses for major water purveyors are shown on Table 7.2. It is noted that much of the non-agricultural water use in the Watershed can also be considered municipal use, which includes both the domestic and commercial uses shown in tables in this report. Similar data for Water Years 1966-2006 are summarized in tables presented in Appendix B. Appendix C presents information on substantial users outside purveyor service areas.

7.2 Water Purveyors

Anza Mutual Water Company

Anza Mutual Water Company's service area is in the eastern part of the Watershed in the Anza Valley. Production is from two wells: Well No. 1 drilled in 1951 and perforated from 20 feet to 260 feet; and Well No. 2 drilled later to a depth of 287 feet and perforated in the bottom 130 feet. Production for 2005-06 was 51.37 acre feet from Well No. 1 as shown in Appendix A, Table A-10. Well No. 2 was not in use for 2005-06. Water levels in Well No. 1 declined about one foot from last year.

TABLE 7.1

SANTA MARGARITA RIVER WATERSHED

WATER PRODUCTION AND USE

2005-06

Quantities in Acre Feet

	PR	ODUCTIO	N		USE				
	WELL/ SURFACE	IMPORT	TOTAL	AG	сомм	DOM	LOSS	TOTAL	WATER RIGHT
WATER PURVEYORS						,			
Anza Mutual Water Company	51	0	51	0	0	46	5 ^{1/}	51	Appropriative
Eastern MWD	0	29,534	29,534	0	0	28,057	1,477	29,534	Appropriative
Elsinore Valley MWD	0	9,819	9,819 ^{12/}	127	4,118	5,574	0	9,819	
Fallbrook PUD	106	10,622	10,728	5,958	578	3,441	751	10,728	Appropriative
Lake Riverside Estates	269	0	269	0	269 ^{2/}	0	0 .	269	Appropriative
Metropolitan Water District	0	506	506	481	0 3/	0	25	506	
Murrieta Division of Western MW	2,233	316	2,549	338	396	1,696	119	2,549	Appropriative
Rainbow MWD	0	1,851	1,851	1,529	0	154	168	1,851	then had also been took took and then
Rancho California WD	27,242 ^{4/}	60,663 ^{5/}	87,905	37,336 ^{6/}	5,190	30,209	15,170 ^{7/}	87,905	Various
U.S.M.C Camp Pendleton	6,841	0	6,841	597	8/	2,071	4,173 ^{1/}	6,841	Appropriative/
							9/		Riparian
U.S. Naval Weapons Station	0	64	64	0	8/	58	6 ^{1/}	64	
Western MWD	0	66	66	0	59	0	7 1/	66	
INDIAN RESERVATIONS									
Cahuilla	43	0	43	0		43	0	43	Overlying/Reserved
Pechanga	754	0	754	159	401	194	0	754	Overlying/Reserved
SMALL WATER SYSTEMS									
Butterfield Oaks	27	0	27	. 7	0	17	3 1/	27	Riparian/Overlying
Outdoor Resorts	199	0	199	158	0	38	3 ^{1/}	199	Overlying
Jojoba Hills SKP Resort	65	0	65	0	0	59	6 ^{1/}	65	Overlying
Hawthorn Water System	40	. 0	40	0	0	. 36	. 4 1/	40	Appropriative
OTHER SUBSTANTIAL USERS	6,389 ^{10/}	0	6,389	6,299	0	0	90 ^{11/}	6,389	

- 1/ Assumes 10% system loss
- 2/ Recreation Use

TOTAL

- 3/ Construction use at Diamond Valley Lake
- 4/ 26,297 AF production from Old Alluvium and 1,262 AF of Vail Recovery less 317 AF exported to the San Mateo Watershed

157,700

5/ Includes 37,802 AF direct use; 18,820 AF direct recharge; 4,714 AF from MWD WR-34; 52 AF from System River Meter; and minus 725 AF export

52,989

11,011

71,693 22,007 13/

157,700

- 6/ 30,888 AF Ag, and 6,448 Ag/Domestic
- 7/ 153 AF discharged into Murrieta Creek; 4 AF discharged into Temecula Creek; 4,714 AF discharged into Santa Margarita River from MWD WR-34; 52 AF from System River Meter; and 6,163 AF of import remaining in storage; and a system loss of 4,084 AF
- 8/ Listed with Domestic uses
- 9/ Includes exports of 3,943 acre feet
- 10/ 901 AF for surface diversion plus 6,285 AF from groundwater as shown in Appendix C minus 43 AF on the Cahuilla Reservation and minus 754 AF on the Pechanga Reservation

44,259

- 11/ 10% of surface diversions
- 12/ Sales figures
- 13/ Includes an overall system loss of 6,978 AF

TABLE 7.2

SANTA MARGARITA RIVER WATERSHED

DEFINITIONS OF WATER USE BY MUNICIPAL WATER PURVEYORS

2005-06

DISTRICT	AGRICULTURAL	DOMESTIC	COMMERCIAL
EASTERN MUNICIPAL WATER DISTRICT	A commercial enterprise producing a crop/livestock on at least 5 acres and able to accept a delivery of at least 24 consecutive hours	Single family, multiple units and agricultural uses of less than 5 acres	Not reported
ELSINORE VALLEY MUNICIPAL WATER DISTRICT	Delivery of water for agricultural purposes in growing or raising for commerce, trade or industry or for use by public eduational or correctional institutions	Delivery of water to single family residential customers in single, detached residential units	Delivery of water to multi-family residential units; commercial, industrial establishments; cities, political sub-divisions or quasi-governmental associations
FALLBROOK PUBLIC UTILITY DISTRICT	AG - A commercial enterprise producing a crop/livestock/fowl on at least 1 acre fully used for ag purposes; can include incidental domestic use related to residency AG/DOM - Water used for both ag and domestic purposes	Single family, multi-unit and large domestic residences and the first 20,000 gallons used by an ag/domestic meter	Offices, businesses, schools and hydrants
RAINBOW MUNICIPAL WATER DISTRICT	AG- 1 acre or more of plantable, resalable products DOM/AG - Same as Ag with a house on the parcel	DOMESTIC - Homes	Generally no commercial use in district
RANCHO CALIFORNIA WATER DISTRICT	AG - 1 acre or more of plantable, resalable products GOLF - Outside water use at golf courses VINEYARDS - Outside irrigation for vineyards	DOMESTIC - Homes MULTIPLE - Apartments and Condominiums	COMMERCIAL - Office buildings, industrial users other than agribusinesses FLOATING - Fire hydrants used during construction CONSTRUCTION - Other fire hydrants used for grading
	LANDSCAPE - Landscaping around freeways, parking lots, office buildings, median strips, AG/DOM - First 1600 c.f. for each user alloted to domestic, and the balance to agriculture		LAKE SKINNER - Recreational use at Lake Skinner MISCELLANEOUS - Schools, fire departments, parks, government agencies DETECTOR CK. METERS - Only used when there is a fire
MURRIETA DIVISION OF WESTERN MUNICIPAL WATER DISTRICT	Agricultural uses and irrigation for crops	Homes and multiple units	Businesses, public agencies, schools and construction
USMC, CAMP PENDLETON	Irrigation - Water used for ag purposes, not landscaping, golf courses or parks	Camp Supply - Includes landscaping, golf courses parks and	Reported under Camp Supply

Interlocutory Judgment No. 33 divides aquifers in Anza Valley at this location into two categories: the shallow aquifer and the deep aquifer. Based on information available to the Court the shallow aquifer was determined to include the younger and older alluvial deposits in the Anza Groundwater Basin and extend to a maximum but variable depth of approximately 100 feet. The deep aquifer underlies the shallow aquifer in an area about one-half mile in width and two miles in length, within portions of Sections 16, 17, 21, 22, 27 and 28 of Township 7 South, Range 3 East, SBM. Anza Mutual Water Company's wells are within the area of the deep aquifer. From the perforated intervals in the wells, it may be concluded that most of the production from Well No. 1 and all of the production from Well No. 2 are from the deep aquifer. Interlocutory Judgment No. 33 concluded that waters contained in the deep aquifer did not add to, support or contribute to the Santa Margarita River stream system and were, therefore, declared to be outside the Court's jurisdiction.

Thus, most of the water produced by the Anza Mutual Water Company is outside the Court's jurisdiction. The relatively small portion pumped from the shallow aquifer in Well No. 1 is pumped under a groundwater appropriative right. Data for Water Years 1989 -2006 are shown in Appendix Table B-11.

Eastern Municipal Water District

Eastern MWD is a member agency of MWD and its service area includes a portion of the Rancho California WD and the Murrieta Division of Western MWD. Within the Watershed, the District wholesales water to those districts and also retails water directly to consumers. Water sold to Rancho California WD and the Murrieta Division of Western MWD is not listed in this report as imported water to Eastern MWD.

Eastern MWD's service area outside Rancho California WD and the Murrieta Division of Western MWD is located in the northern part of the Watershed. Water for the Eastern MWD retail service area is all imported with no groundwater production during 2005-06.

Imports, not including water wholesaled to Rancho California WD or the Murrieta Division of Western MWD or delivered to Elsinore Valley MWD, totaled 36,407 acre feet. A portion of that import amounting to 6,873 acre feet was exported from the Santa Margarita River Watershed resulting in net import to the watershed of 29,534 acre feet. These data are shown in Appendix A.

In addition to importing fresh water, Eastern MWD also reclaims wastewater at its Temecula Valley Regional Water Reclamation Facility.

Disposition of wastewater from the Temecula Valley Regional Water Reclamation Facility (Facility) service area for Water Years 2004-05 and 2005-06 is shown below:

	<u>200</u>	<u>4-05</u>	<u>2005-06</u>		
<u>Use</u>	Quantity	<u>Percent</u>	Quantity	<u>Percent</u>	
	AF	%	AF	%	
Reuse in Santa Margarita	2,664	19	3,108	. 22	
Reuse outside Santa Margarita	<u>2,690</u>	<u>19</u>	<u>3,510</u>	<u>25</u>	
Subtotal	5,354	38	6,618	47	
Discharge to Dissipater at					
Temescal Creek	3,988	28	6,058	43	
Other	4,998	<u>34</u>	<u>1,338</u>	<u>10</u>	
TOTAL	14,340	100	14,014	100	

It can be noted that the quantities of reclaimed wastewater used within the Santa Margarita River Watershed increased from 2,664 acre feet in 2004-05 to 3,108 acre feet in 2005-06. During the same period reuse outside the Santa Margarita River Watershed increased from 2,690 acre feet to 3,510 acre feet. From the foregoing it may be concluded that 22 percent of the wastewater is reused in the watershed and 25 percent is used outside the watershed. The quantity of wastewater discharged to the dissipater at Temescal Creek increased from 3,988 acre feet to 6,058 acre feet. The Other use decreased from 4,998 acre feet to 1,338 acre feet. This Other use includes changes of storage in Winchester and Sun City storage ponds, as well as evaporation and percolation losses.

Because of concerns about the potential export of native Santa Margarita water, the sources of water supply to the Facility service area were determined and are shown on Table 7.3. In 2005-06, 16 percent of the supply to the service area was groundwater. Thus, the percent of groundwater supply was less than the percentage of wastewater reused within the Santa Margarita Watershed, and on a proportional basis there was no export of native waters. It is noted that Rancho California WD does not agree with this method for calculating export of native waters. Furthermore, Rancho California WD does not agree with the conclusion regarding native water export as a result of this calculation.

Estimates of water production and use for the period 1966-2006 are shown in Appendix B.

TABLE 7.3

REGIONAL WATER RECLAMATION FACILITY SERVICE AREA SANTA MARGARITA RIVER WATERSHED WATER DELIVERIES TO TEMECULA VALLEY

	2002)2	2003	33	2004	46	2005)5	2006	90
Eastern MWD	ΑF	%	AF	%	ΑF	%	ΑF	%	AF	%
TVRWRF Service Area										
1. Groundwater	13		0		0		0		0	
2. Import 1/	8,117		9,062		9,138		22,158		29,534	
3. Total	8,130	•	9,062	ı	9,138		22,158		29,534	
Rancho California WD							•			
TVRWRF Service										
Area										
1. Groundwater 2/	6,427		6,697		6,879		8,486		8,150	
2. Import 3/	11,791		11,231		13,341		10,696		12,753	
3. Total 4/	18,218	ļ	17,928	ļ	20,220	l	19,182	l	20,903	
Total Deliveries to TVRW	TVRWRF Service Area	e Area								
1. Groundwater	6,440	24.4%	6,697	24.8%	6,879	23.4%	8,486	20.5%	8,150	16.2%
2. Import	19,908	75.6%	20,293	75.2%	22,479	%9.92	32,854	79.5%	42,287	83.8%
3. Total	26,348	26,348 100.0%	26,990	26,990 100.0%	29,358	100.0% 41,340 100.0%	41,340	100.0%	50,437 100.0%	100.0%

EMWD imports are based on discharges from EM-17.
 Based on ratio of groundwater to total production in Rancho Division of RCWD
 Based on ratio of import to total production in Rancho Division of RCWD
 Total RCWD deliveries in TVRWRF Service Area

Elsinore Valley Municipal Water District

Elsinore Valley MWD provides water to its service area around Lake Elsinore, a portion of which is within the Santa Margarita River Watershed. Elsinore Valley MWD obtains its supply from ten wells, all located outside the Santa Margarita River Watershed, and also imports MWD water through Eastern MWD and Western MWD.

As shown in Appendix A, the Elsinore Valley MWD reports that 9,819 acre feet of imported water was delivered in the portion of their service area that is inside the Santa Margarita River Watershed in 2005-06. Also during 2005-06, approximately 938 acre feet of wastewater were exported from that same area.

Production and use during the period 1966 to 2006 are shown in Appendix B.

Fallbrook Public Utility District

In 2005-06, Fallbrook PUD imported 18,403 acre feet through its contract with the San Diego County Water Authority as shown in Appendix A. Of this quantity, 3,994 acre feet were delivered to the former DeLuz Heights Water District service area that is entirely within the Santa Margarita River Watershed. Of the remaining importations it is estimated that 46 percent, or 6,628 acre feet, were delivered to lands inside the Santa Margarita River Watershed. The remainder was delivered to lands in the adjacent San Luis Rey River Watershed. Thus, imports to the Watershed totaled 10,622 acre feet in 2005-06. In addition, Fallbrook PUD received 106 acre feet of water by exchange for water diverted at Lake Skinner for a total production of 10,728 acre feet.

In addition, the District has three wells; however, in 2005-06, there was no pumpage from these wells. In 2005-06 Fallbrook PUD treated 1,750 acre feet of wastewater from areas served within the Watershed, of which 26 acre feet were reused in the Watershed, and the remainder was exported.

Production during the period 1966 to 2006 included direct diversions from the Santa Margarita River for water years before 1972 as well as imported water and well production as shown in Appendix B.

Lake Riverside Estates

Lake Riverside Estates pumps water from Well No. 7S/2E-32C1, into Lake Riverside to replace evaporation losses. Production for 2005-06 was 269 acre feet as shown in Appendix A, Table A-10. The production well was drilled in 1962 and is located in an area of younger alluvium in the Cahuilla Groundwater Basin. The well was drilled to a depth of 338 feet.

Interlocutory Judgment No. 33 indicates that the owners of lands in the Cahuilla Groundwater Basin have correlative overlying rights to the use of the groundwater that is the basis for this production. Data for 1989 – 2006 are shown on Appendix Table B-11.

Metropolitan Water District of Southern California

Pursuant to a Court Order, MWD delivered 506 acre feet of imported water for irrigation of lands in Domenigoni Valley. MWD did not import any water for groundwater recharge and there was no water used for construction purposes. As previously noted, the groundwater in the Domenigoni Valley groundwater basin is outside this Court's jurisdiction when groundwater levels are below 1400 feet. This production is shown in Appendix A and production for the period 1966-2006 is shown in Appendix B.

Rainbow Municipal Water District

Rainbow MWD is located in San Diego County in the south-central part of the Watershed. In recent years about ten percent of the District's imported supply is delivered to the portion of the District's service area inside the Watershed. Most of the District is in the San Luis Rey River Watershed. As shown in Appendix A, total deliveries of imported water in the Watershed in 2005-06 amounted to 1,851 acre feet.

Total imports to the District for years between 1966 and 2006 as well as the estimated portion served inside the Santa Margarita River Watershed, are shown in Appendix B.

Rancho California Water District

Rancho California WD serves water to a 99,600 acre service area in the central portion of the Watershed. The District produced water from 47 wells in 2005-06 and also imported water, as shown in Appendix A. Use is shown in Appendix A under the categories of agriculture, ag/domestic, commercial and domestic. In Water Year 2005-06, well production of native water included 27,559 acre feet from the Murrieta-Temecula Groundwater Area. This quantity included 26,297 acre feet from the older alluvium, and 1,262 acre feet of recovered Vail recharge. A portion of the groundwater amounting to 317 acre feet was exported for use in the San Mateo Watershed, resulting in a net well production of 27,242 acre feet.

Import supplies totaled 61,388 acre feet of which 37,802 acre feet were used for direct use, 18,820 acre feet were recharged, and 4,766 acre feet were discharged by Rancho California WD during 2005-06 pursuant to the CWRMA (4,714 acre feet to the Santa Margarita River from MWD WR-34 and 52 acre feet to Murrieta Creek from the System River Meter). A portion of that import amounting to 725 acre feet were exported from the Santa Margarita River Watershed resulting in net import to the Watershed of 60,663 acre feet.

During 2005-06, use totaled 87,905 acre feet including 30,888 acre feet by agriculture; 6,448 acre feet by ag/domestic; 5,190 acre feet by commercial; 30,209 acre feet by domestic; 4,923 acre feet were released into Murrieta Creek, Temecula Creek, and the Santa Margarita River; 6,163 acre feet of import were recharged to storage; and 4,084 acre feet were system loss.

Rancho California WD also exported from the Watershed an additional 1,062 acre feet of wastewater discharged to the dissipater at Temescal Creek in the Santa Ana Watershed.

Rancho California WD produces groundwater under a variety of rights as follows:

- 1. Recovery of water appropriated at Vail Lake
- 2. Recovery of import return flows and recharged imported water
- 3. Groundwater appropriative rights
- 4. As agent on behalf of overlying landowners

Vail Appropriation

Rancho California WD's Vail Dam appropriative rights are described in Application No. 11518 as amended on June 17, 1947, and in Permit 7032. That right provides that the District may store up to 40,000 acre feet in Vail Reservoir each year between November 1 and April 30, subject to applicable limitations, and that the water so stored may be used for irrigation and domestic uses incidental to farming operations on 3,797 acres of land between May 1 and October 31. Such use may be by direct diversion from Vail Lake or by recovery with wells of water released from Vail and spread downstream in Pauba Valley.

The place of use for irrigation and domestic use is described as follows:

Sections 5, 6, 7 and 18; T8S, R1W Sections 1, 10 through 21, 28 and 29; T8S, R2W Sections 13 and 24; T8S, R3W.

In 1971, the Permit was amended to add recreational use at Vail Reservoir within Section 10, T8S, R1W.

A total of 1,399 acre feet were was released from Vail during 2005-06 for groundwater recharge. Releases from Vail for groundwater recharge for the period 1980 to 2006 are shown in Appendix B.

Water use in the Permit 7032 service area is shown on Table 7.4. This use will be compared with well production from the younger alluvium in a later section of this report.

Imported Water Return Flows

Return flows for 2005-06 based on imported water use in the Rancho Division and Santa Rosa Division are shown on Table 7.5 and on Table 7.6.

In those tables, imported water is allocated to agricultural, ag/domestic, commercial and domestic uses in each of eight hydrogeologic areas in the Rancho Division service area and three hydrogeologic areas in the Santa Rosa Division service area. This allocation is the proportion of the total deliveries to each use that is made up of imported water. In 2005-06, 60.52 percent of the supply to the Rancho Division was imported and 68.81 percent of the supply to the Santa Rosa Division was imported.

In general the Santa Rosa Division does not overlie the groundwater area. However there are several areas classified as being in the Santa Rosa Division that do overlie the groundwater area and generate return flows from imported supplies. Data from most of these lands have been reported since December 1991.

The percentage of imported water that becomes return flow varies according to the use as follows:

Agricultural Use	25%
Ag/Domestic Use	25%
Commercial Use	10%
Domestic Use	25%

Based on the foregoing factors, the return flow credit for 2005-06 is computed to be 5,635.50 acre feet for the Rancho Division and 413.38 acre feet for the Santa Rosa Division, as shown on Tables 7.5 and 7.6 respectively.

TABLE 7.4

SANTA MARGARITA RIVER WATERSHED

RANCHO CALIFORNIA WATER DISTRICT

PERMIT 7032 AREA WATER USE

2005-06

Quantities in Acre Feet

MONTH YEAR	AG	СОММ	AG/DOM	DOM	TOTAL
2005					
OCT	42	30	109	126	307
NOV	29	20	49	94	192
DEC	23	20	61	84	188
2006		4			
JAN	16	14	43	66	139
FEB	20	19	44	66	149
MAR	9	11	27	57	104
APR	11	12	19	61	103
MAY	21	22	38	79	160
JUNE	31	29	110	127	297
JULY	36	36	139	150	361
AUG	44	35	. 142	157	378
SEPT	47	35	152	147	381
TOTAL	329	283	933	1,214	2,759

TABLE 7.5

SANTA MARGARITA RIVER WATERSHED RANCHO CALIFORNIA WATER DISTRICT

RETURN FLOW CREDIT

2005-06

RANCHO DIVISION

Quantities in Acre Feet

HYDROGEOLOGIC AREAS

			יוטווו	OGLOLOC	JIC ANLAC	,		·	
	0 NO HYDRO- GEO CODE	1 MURRIETA WOLF	2 SANTA GERTRUDIS	3 LOWER MESA	4 PAUBA	5 SOUTH MESA	6 UPPER MESA	7 PALOMAR	TOTAL
		1/2 QYAL 1/2 QTOAL	QYAL	QTOAL	QYAL	QTOAL	QTOAL	QTOAL	
AGRICULTURAL :	*								
Total Use	1,074.09	690.11	648.58	2,689.21	340.06	912.47	861.31	874.41	8,090.25
% Import Import Use	60.52 650.08	60.52 417.68	60.52 392.54	60.52 1,627.61	60.52 205.82	60.52 552.26	60.52 521.30	60.52 529.23	4,896.50
% Credit	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	1 224 42
Credit	162.52	104.42	98.14	406.90	51.45	138.07	130.32	132.31	1,224.13
AG/DOMESTIC Total Use	700.21	45.06	0.00	38.04	729,43	41.49	505.59	196.99	2,256.81
% Import	60.52	60.52	60.52	60.52	60.52	60.52	60.52	60.52	
Import Use % Credit	423.79 25.00	27.27 25.00	0.00 25.00	23.02 25.00	441.47 25.00	25.11 25.00	306.00 25.00	119.23 25.00	1,365.90
Credit	105.95	6.82	0.00	5.76	110.37	6.28	76.50	29.81	341.47
COMMERCIAL									
Total Use	302.66	1,472.61	928.90	957.28	240.35	137.54	162.36	9.81	4,211.52
% Import Import Use	60.52 183.18	60.52 891.28	60.52 562.20	60.52 579.38	60.52 145.47	60.52 83.25	60.52 98.27	60.52 5.94	2,548.96
% Credit	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	054.00
Credit	18.32	89.13	56.22	57.94.	14.55	8.32	9.83	0.59	254.90
DOMESTIC Total Use	1,315.82	2,180.60	2,375.93	12.511.99	688.36	3.841.90	1,763,95	534.82	25,213.37
% Import	60.52	60.52	60.52	60.52	60.52	3,641.90 60.52	60.52	60.52	25,213.37
Import Use	796.38	1,319.78	1,437.99	7,572.69	416.62	2,325.25	1,067.60	323.69	15,260.01
% Credit Credit	25.00 199.09	25.00 329.94	25.00 359.50	25.00 1,893.17	25.00 104.15	25.00 581.31	25.00 266.90	25.00 80.92	3,815.00
								***************************************	·
TOTAL USE	3,392.78	4,388.39	3,953.41 	16,196.52	1,998.19	4,933.41 	3,293.21	1,616.04 	39,771.95
TOTAL Total Import Use	2.052.42	2,656.01	2,392.74	0 000 70	1,209.38	2 005 07	1 002 17	978.09	24.074.39
Total Import Ose	2,053.43 485.88 **		2,392.74 513.85	9,802.70 2,363.77	280.52	2,985.87 733.98	1,993.17 483.55	978.09 243.63	24,071.38 5,635.50
Total Credit Qya		265.16	513.85		280.52		483.55		1,059.53
Total Credit Qtoa	dI.	265.16		2,363.77		733.98	463.55	243.63	4,090.09

^{*} Includes golf course and landscape irrigation ** This credit not applied to either Qyal or Qtoal

TABLE 7.6

SANTA MARGARITA RIVER WATERSHED RANCHO CALIFORNIA WATER DISTRICT RETURN FLOW CREDIT

2005-06

SANTA ROSA DIVISION

Quantities in Acre Feet

HYDROGEOLOGIC AREAS

	HYDR	OGEOLOGIC AREAS		
	1 MURRIETA WOLF	3 LOWER MESA	8 RTS 279, 280 & 285	TOTAL
	1/2 QYAL 1/2 QTOAL	QTOAL	1/4 QYAL 3/4 QTOAL	
AGRICULTURAL *				
Total Use % Import	0.00 67.99	0.00 67,99	613.95 67.99	613.95
Import Use % Credit	0.00 25.00	0.00 25.00	417.45 25.00	417.45
Credit AG/DOMESTIC	0.00	0.00	104.36	104.36
Total Use	0.00	0.00	0.00	0.00
% Import Import Use	67.99 0.00	67.99 0.00	67.99 0.00	0.00
% Credit Credit	25.00 0.00	25.00 0.00	25.00 0.00	0.00
COMMERCIAL Total Use	0.42	0.00	738.79	739.21
% Import Import Use	67.99 0.29	67.99 0.00	67.99 502.33	502.62
% Credit Credit	10.00 0.03	. 10.00 0.00	10.00 50.23	50.26
DOMESTIC				•
Total Use % import	0.00 67.99	0.00 67.99	1,522.19 67.99	1,522.19
Import Use % Credit Credit	0.00 25.00 0.00	0.00 25.00 0.00	1,035.00 25.00 258.75	1,035.00 258.75
			~~~~~~	************
TOTAL USE	0.42	0.00	2,874.93	2,875.35
TOTAL	0.30	0.00	1 054 70	1.055.00
Total Import Use Total Credit Total Credit Qyal	0.29 0.03 0.01	0.00 0.00	1,954.79 413.35 103.34	1,955.08 413.38 103.35
Total Credit Qtoal	0.01	0.00	310.01	310.02

^{*} Includes golf course and landscape irrigation

Some of the hydrogeologic areas overlie older alluvium and some overlie younger alluvium. Comparison of exposures of younger alluvium with maps of the District's hydrogeologic areas indicates that the Santa Gertrudis, Pauba and half of the Murrieta-Wolf areas overlie younger alluvium. The area of the Santa Rosa Division that overlies the groundwater area is one-fourth in the younger alluvium and three-fourths in the older alluvium. Import return flows in these areas can be credited against pumping from the younger alluvium. These credits for 2005-06 are 1,059.53 acre feet for the Rancho Division and 103.35 acre feet for the Santa Rosa Division, as shown on Tables 7.5 and 7.6 respectively.

Rancho California WD imported an additional 18,820 acre feet of water for groundwater recharge in 2005-06, of which 12,657 acre feet were recovered.

# Division of Local Water

During 2005-06, Rancho California WD pumped 40,216 acre feet of groundwater, comprised of 26,297 acre feet of local water and 12,657 acre feet of recovered imported water. Some of this water was pumped from the younger alluvium and some from the older alluvium. The Court determined that water in both the younger alluvium and older alluvium adds to, contributes to and supports the Santa Margarita River stream system. The primary reason for differentiating between younger alluvium and older alluvium production is that, in California, production from the younger alluvium is generally considered to be governed by water rights that apply to the regulation of surface waters. Production from the older alluvium is generally considered to be governed by regulations that apply to groundwater.

During joint development of a groundwater model of the area it was necessary to develop estimates of the transmissivity for each aquifer. These estimates were based on pumping tests. The resulting transmissivity values were then used to estimate the relative groundwater production from each aquifer. For Rancho California WD wells, the percent production estimated to originate in the younger alluvium is shown in Table 7.7.

Production from the younger alluvium and older alluvium for 2005-06 using the percentages noted in Table 7.7 is presented in Table 7.8. It may be noted that 13,919 acre feet were pumped from the younger alluvium and 26,297 acre feet were pumped from the older alluvium in 2005-06.

TABLE 7.7

# SANTA MARGARITA RIVER WATERSHED

# PERCENT PRODUCTION FROM YOUNGER ALLUVIUM IN RANCHO CALIFORNIA WATER DISTRICT WELLS

	LOCATION TOWNSHIP/ RANGE/	SEAL DEPTH	PERFORATED INTERVAL	DEPTH YOUNGER ALLUVIUM	PERCENT YOUNGER ALLUVIUM		
NO.	SECTION	FEET	FEET	FEET	%		REMARKS
106	7S/3W-26R1	55	130-210; 250-310; 340- 440; 700-740; 780-980	0	0.0%	Murrieta ·	No. 108 Winchester, clay 0'-40'
107	7S/3W-26J1	55	60-120; 190-260; 280- 300; 390-590	58	0.0%	Murrieta	No. 105 - gravel & clay 58'-84'
108	7S/3W-25E1		60-110; 190-280; 350- 410; 430-450; 470-490;	55	0.0%	Murrieta	Formerly No. 109 gravel/sandy clay 55'-70'
109	8S/2W-17J1	52	70-150; 170-210	75	84.0%		Brown clay and gravel 75' to 105'
110	8S/1W-6K1	54	75-155	165	97.0%	•	Clay 165'-190'. Prior to 10/23/97 perfint. 70-150; 200-240; 320-380; 420-
113	7S/2W-25H1	52	96-136; 275-462; 482-	Shallow	0.0%		
116	8S/1W-6J	Unknown	60-120; 140-200; 220- 260; 270-330; 370-390	150	94.0%		Clay 150'-170'
119	8S/2W-19J	55	170-260; 300-470		0.0%	Wolf Valley	Perforated below 170'
123	8S/1W-7B	55	100-260; 300-380; 420-	135	65.0%	-	Brown Sand Clay 135'-210'
129	7S/2W-20L	Unknown	180-290; 416-480; 520- 600	Shallow	0.0%	Santa Gertrudis	Qyal very shallow along Santa Gertrudis Creek
132	8S/1W-7D	55	70-390; 430-500	135	82.0%		Brown Clay Streaks 135'-175'
135	7S/3W-27M10	55	70-170	50	0.0%	Murrieta Valley	Silty clay 50'-69'
141	8S/2W-11P	55	120-190; 215-235; 270- 380; 430-510	104	0.0%		Silt & sand 104'-185'; Well 11L1 is 112'
144	7S/3W-27D	55	983-1123; 1143-1283; 1343-1483; 1503-1743	25	0.0%	Murrieta Valley	Sand with silty clay 25'-45'
146	7S/3W-28	50	50-190	42	0.0%	Murrieta	
152	8S/1W-5K	50	70-470; 490-540	130	90.8%		Forebay
153	8S/1W-5K3	50	50-220	170	99.0%		Forebay
157	8S/1W-5L	50	50-210	128	96.8%		Forebay
158	8S/1W-5K	50	50-210	100	96.5%		Forebay
205	7S/3W-35A	50	150-1000	10	0.0%	Santa Gertrudis/	Sandy clay 10'-20'
210	8S/2W-12K	None	48-228	140	94.0%		Clay cobblestones 160'-167', 175'-
218	8S/2W-20B5	. 27	48-289	40	0.0%		Old 28; clay with sand layer 40'-60'; now monitoring wells 427, 428 and
466	8S/3W-1P2		106-822	49	0.0%	Long Canyon	Old 219, Cantarini, hard clay 49'-60'
220	7S/3W-26Q1	34	114-450	58	0.0%		Clay 58' - 73'
467	8S/2W-12K1	Unknown	50-100; 100-140	140	100.0%		Old 221, JK, Exh. 16, Monitoring well since 1983
223	8S/2W-20C1	Unknown	48-250	60	94.0%	Wolf Valley	CAT Well; east of Wildomar Fault; nearby Exh 16 wells 17Q @62' & 17M @55' are also east of Wildomar
224	8S/2W-15D	Unknown	48-250	106	68.0%		Old Well 50, clay 106'-138'
230	8S/2W-11J1	Unknown	24-31; 32.5-34; 35-40; 61- 65; 70-76; 80-85; 86.5- 91; 92.5-98.5	>119 ·	100.0%		Old Well 30, depth of well is 119'
231	8S/2W-20B6	55	80-120; 150-270	35	0.0%		Old 104, P-34, Clay 20'-23'; 35'-41'; East of Wildomar Fault
232	8S/2W-11J3	51	95-135; 175-215; 235- 295	135	92.0%		Old 111, 105, P-31; coarse sand & clay 135' - 155'
233	8S/2W-12K2	51	95-135; 175-215; 235-	145	88.0%		Old 112, P32; sand and clay at 145'-
234	8S/2W-11P1	52	80-100; 120-140; 200- 240; 280-320; 340-400	125	74.0%		Brown Clay at 125'; sand and clay at 125'-140'
235	8S/3W-1Q1	55	Unknown	Shallow	0.0%	Long Canyon	
240	8S/2W-11L1	Unknown		112	86.0%		Old Well No. 40; clay 112'-136'
301	7S/3W-18Q1	93	140-280; 280-520; 540-	26	0.0%	Murrieta	Old JR1; blue clay 26'-32'

## TABLE 7.8

# SANTA MARGARITA RIVER WATERSHED RANCHO CALIFORNIA WATER DISTRICT WELL PRODUCTION FROM YOUNGER AND OLDER ALLUVIUM

2005-06 Quantities in Acre Feet

WELL NO.	QYAL	QTOAL	TOTAL
101	0.00	703.00	703.00
102	0.00	263.00	263.00
106	0.00	201.00	201.00
108	0.00	267.00	267.00
109	605.64	115.36	721.00
110	1,511.26	46.74	1,558.00
113	0.00	620.00	620.00
118	0.00	882.00	882.00
119	0.00	1,523.00	1,523.00
120	0.00	1,348.00	1,348.00
121	0.00	0.00	0.00
122	0.00	836.00	836.00
123	105.30	56.70	162.00
124	0.00	217.00	217.00
125	0.00	1,093.00	1,093.00
126	0.00	1,408.00	1,408.00
128	0.00	370.00	370.00
129	0.00	0.00	0.00
130	0.00	505.00	505.00
131	0.00	785.00	785.00
132	1,024.18	224.82	1,249.00
133	0.00	654.00	654.00
135	0.00	47.00	47.00
138	0.00	2,417.00	2,417.00
139	0.00	783.00	783.00
140	0.00	527.00	527.00
141	0.00	512.00	512.00
143	0.00	427.00	427.00
144	0.00	450.00	450.00
145	0.00	617.00	617.00
146	0.00	32.00	32.00
149	0.00	383.00	383.00
151	0.00	. 0.00	0.00
152	2,793.01	282.99	3,076.00
153	2,333.43	23.57	2,357.00
155	0.00	191.00	191.00
157	1,955.36	64.64	2,020.00
158	1,604.80	58.21	1,663.00
201	0.00	0.00	. 0.00
203	0.00	28.00	28.00
205	0.00	1,564.00	1,564.00
207	0.00	0.00	0.00
208	0.00	0.00	0.00
209	0.00	0.00	0.00
210	544.26	34.74	579.00
211	0.00	0.00	0.00
215	0.00	350.00	350.00
216	0.00 .	544.00	544.00
217 231	0.00 0.00	739.00 506.00	739.00
		506.00	506.00
232	536.36 539.44	46.64 73.56	583.00 613.00
233	539.44	73.56	613.00
234	365.56	128.44	494.00
235	0.00 0.00	638.00	638.00
301 302		0.00 0.00	0.00 0.00
309	0.00 0.00	2,711.00	2,711.00
TOTAL	13,918.59	26,297.41	40,216.00

The production of 13,919 acre feet from the younger alluvium, as shown on Table 7.8 includes recovery of 1,262 acre feet of Vail recharge and 12,657 acre feet of import recharge. The recovered Vail recharge was used for authorized uses in the Permit 7032 service area as shown in Table 7.4. Releases from Vail for recharge were 1,399 acre feet resulting in 137 acre feet of unrecovered recharge. Rancho California WD imported 18,820 acre feet of water in 2005-06 for direct recharge of which 12,657 acre feet were recovered leaving 6,163 acre feet as unrecovered direct recharge.

Imported water carryover to 2006-07 includes the following:

		AF
1.	Carryover from 2004-05	33,359 R
2.	Unrecovered direct recharge in 2005-06	6,163
3.	Import Return Flow Credit for 2005-06	<u>1,163</u>
4.	Total Carryover to 2006-07	40,685

Thus, there was no unauthorized use under Permit 7032 in 2005-06 and 40,685 acre feet of imported supplies remain available to offset younger alluvium production in future years.

# Western Municipal Water District

Western MWD operations within the Watershed are comprised of three categories. First, Western MWD wholesales imported water to Rancho California WD. Deliveries to Rancho California WD are included under Rancho California WD. Second, Western MWD serves water to its Murrieta Division in the vicinity of the City of Murrieta. Third, Western MWD serves imported water to its Improvement District A near the southern boundary of Riverside County along the I-15 freeway.

# Murrieta Division

In November 2005, Western MWD merged with the Murrieta County Water District assuming their operations in an area in the vicinity of the City of Murrieta. Prior Watermaster Reports present information under Murrieta County Water District.

In Water Year 2005-06, the Murrieta Division of Western MWD produced 2,233 acre feet of water from five wells as shown in the following tabulation and imported 316 acre feet as shown in Appendix Table A-5.

Well Designation	Well <u>Name</u>	2005-06 Production Acre Feet	Casing Depth <u>Feet</u>	Water Depth <u>Feet</u>	Well Depth <u>Feet</u>	Perforated Interval <u>Feet</u>
7S/3W-20	Clay	936	101	270 – 355	940	330 - 350 370 - 470 680 - 790 830 - 900
7S/3W-20C9	Holiday	134	25	69 – 99	307	60 – 307
7S/3W-20G5	House	0	50	Dry *	298	120 – 252
7S/3W-17R2	Lynch	0	26	46 – 85	212	172 – 212
7S/3W-18J2	North	502	50	210 – 287	650	240 - 260 500 - 640
7S/3W-20D	South	563	50	170 – 178	446	120 – 446
7S/3W-7M	Alson	98	50	310 – 373	416	106 – 416
TOTAL		2,233				

All of these wells are located in the Murrieta-Temecula Groundwater Area. Interlocutory Judgment No. 30 indicates the younger alluvium deposits in Murrieta Valley extend in various depths to a maximum of approximately 30 feet from the ground surface.

The Court noted that it was impossible, based on evidence available in 1962, to determine with exactness the depth of the younger alluvial deposits throughout the Valley. However, the Court did retain continuing jurisdiction so that subsequent findings could be made, if needed. Older alluvial deposits are found below the younger alluvium.

Six of the seven Murrieta Division wells are perforated at depths of 106 feet or more. The Holiday Well has perforations beginning at a depth of 60 feet. This depth is well below the maximum depth of younger alluvium found by the Court in 1962. In addition, water depths in the Holiday Well ranged from 69 to 99 feet in 2005-06. Accordingly all of Murrieta Division well production is from the older alluvium under a groundwater appropriative right.

Production for the period between 1966 and 2006 is shown in Appendix Table B-6.

# Improvement District A

In Water Year 2005-06, imports to Improvement District A amounted to approximately 66 acre feet as shown in Appendix Table A-10. Deliveries to Improvement District A through turnout WR-13 for the period 1966 to 2006 are shown in Table 5.4 and Appendix Table B-11.

# U. S. Marine Corps - Camp Pendleton

Camp Pendleton is located on the coastal side of the Santa Margarita River Watershed. Water was provided by 11 wells that produced 6,556 acre feet in Water Year 2005-06. This production is from the younger alluvium and is based on riparian and appropriative rights. Of this quantity, 3,783 acre feet were exported to areas of the Base outside the Watershed as shown in Appendix A.

As a result of the Regional Board's Cease and Desist Order (CDO) No. 94-52 and the Consent Decree in Case No. 02-CV-0499 IEG (AJB) in the Federal District Court for the Southern District of California, Camp Pendleton temporarily exports its wastewater effluent to the Oceanside Outfall under NPDES Permit No. CA0109347. This will continue until completion of its new wastewater treatment facilities and receipt of all necessary approvals. Accordingly, 2,527 acre feet of wastewater were exported by Camp Pendleton to the Oceanside Outfall in water year 2005-06.

Production and estimated use inside and outside the Watershed, as well as wastewater returns, are shown in Appendix B for the period 1966-2006.

In addition to the operations at Camp Pendleton involving diversions from the Santa Margarita River, water is also imported by the Naval Weapons Station (NWS). The NWS occupies about 9,148 acres in the northeastern part of Camp Pendleton. Since 1969 the NWS has relied on imported water delivered via Fallbrook PUD for its supply. Wastewater is exported from the NWS and the Watershed via an outfall line also used by the Fallbrook Public Utility District. In 2005-06, 64 acre feet were imported of which 8 acre feet of wastewater were exported, as shown in Appendix A. Imports and use between 1966 and 2006 are shown in Appendix B.

# 7.3 <u>Indian Reservations</u>

Water use information about the Cahuilla, Pechanga and Ramona Indian Reservations in the Watershed is described in the following sections:

# Cahuilla Indian Reservation

In general, domestic water use on the Cahuilla Indian Reservation is not measured, however reports indicate that 309 people reside on the Reservation. These residents use water primarily for domestic purposes as well as for livestock watering and grazing. Annual domestic water use, based on 125 gallons per capita per day, amounts to a total annual use of about 43 acre feet from wells listed in Appendix C.

The foregoing estimate is for total domestic water use on the Reservation. A portion of this use may not be under Court jurisdiction, but the estimate will be used until individual well production quantities are available to allow determination of the portion under Court jurisdiction. The estimated domestic use is included on Table 4.1 under water purveyor production.

An additional 5 acre feet were put to commercial use at a casino. This water was pumped from well 7S/2E-26B3 that overlies basement complex and is outside Court jurisdiction.

Under federal law, production from groundwaters within the lands of the Cahuilla Indian Reservation in either the younger or older alluvial deposits which are a part of the shallow aquifer of the Anza Ground Water Area or which are part of the Cahuilla Ground Water Basin can be considered to be under a federal reserved right, in accordance with Interlocutory Judgment No. 41 which provides as follows in Order No. 3:

IT IS FURTHER ORDERED, ADJUDGED AND DECREED that the United States of America intended to reserve, and did reserve, rights to the use of the waters of the Santa Margarita River which under natural conditions would be physically available on the Cahuilla Indian Reservation, including rights to the use of ground waters, sufficient for the present and future needs of the Indians residing thereon with priority dates of December 27, 1875, for lands transferred by the Executive Order of that date; March 14, 1887, for lands transferred by the Executive Order of that date; December 29, 1891, for lands transferred by the Executive Order of that date.

# Pechanga Indian Reservation

During 2005-06, water well production by the Pechanga Water System amounted to 754 acre feet, as shown in Appendix A, Table A-10 and Appendix C. Information about system wells is shown in the following tabulation:

Well Designation 8S/2W	<u>Name</u>	Water Depth <u>Feet</u>	Well Depth <u>Feet</u>	Perf. Interval <u>Feet</u>
28R1	Ball Park	71.97	1,000	126 - 996
29A2	New Kelsey	107.47	425	105 - 415
29B10	Eduardo	189.27	697	437 - 687
29B11	Eagle III	86.40	645	275 - 635
29F3	New Stevenson	65.36	247	100 – 240
29J3	South Boundary	113.08	350	150 - 340

The wells listed above are in areas of younger alluvium at ground surface. The depth of the younger alluvium in Wolf Valley was estimated by representatives of Rancho California WD and the United States for Rancho California WD Wells No. 117 (8S/2W-20E) and No. 119 (8S/2W-19J) to be in the range of 120 to 170 feet in depth. Thus, based on available well construction data, some of the production is from the younger alluvium and some from the older alluvium. Under state law production from the wells that originate in the older alluvium can be considered to be under a groundwater appropriative right or an overlying right, depending on the circumstances at each well.

Under federal law, production from groundwaters that originate in either the younger or older alluvium within the Murrieta-Temecula Ground Water Area can be considered to be under a federal reserved right, in accordance with Interlocutory Judgment No. 41 which provides as follows in Order No. 7:

IT IS FURTHER ORDERED, ADJUDGED AND DECREED that the United States of America intended to reserve, and did reserve, rights to the use of the waters of the Santa Margarita River stream system which under natural conditions would be physically available on the Pechanga Indian Reservation, including rights to the use of ground waters sufficient for the present and future needs of the Indians residing thereon with priority dates of June 27, 1882, for those lands established by the Executive Order of that date; January 9, 1907, for those lands transferred by the Executive Order of that date; August 29, 1893, for those lands added to the Reservation by Patent on that date.

Production for the Pechanga Water System for Water Years 1991- 2006 is shown on Appendix Table B-11.

# Ramona Indian Reservation

The Ramona Indian Reservation occupies 560 acres of land of which 321 acres are inside the Watershed. The domestic water use on the Ramona Indian Reservation has been estimated based on the reported seven persons residing on the Reservation. Based on 125 gallons per capita per day, the annual domestic water use is estimated to be approximately one acre foot. The water supply is provided by two individual wells. It has not been determined whether the groundwater production is under Court jurisdiction and thus the estimated water use is not included in the various water use tabulations provided throughout the report.

Under federal law, production from groundwaters contained in shallow aquifer of the Anza Ground Water Basin overlain by lands of the Ramona Indian Reservation within the watershed of the Santa Margarita River can be considered to be under a federal reserved right, in accordance with Interlocutory Judgment No. 41 that provides as follows in Order No. 1:

IT IS ORDERED, ADJUDGED AND DECREED that the United States of America when it established the Ramona Indian Reservation intended to reserve and did reserve rights to the use of the waters of the Santa Margarita River stream system which under natural conditions would be physically available on the Ramona Reservation, including rights to the use of ground waters, sufficient for the present and future needs of the Indians residing thereon with a priority date of December 29, 1891.

# 7.4 <u>Small Water Systems</u>

There are a number of mobile home parks in the Watershed. These range from relatively permanent structures, to those catering to recreational vehicles and campgrounds. Water production from wells is shown in Appendix A, Table A-10 for Butterfield Oaks Mobile Home Park, Hawthorn Water System, Outdoor Resorts Rancho California, Inc., and Jojoba Hills SKP Resort. Data for previous water years is shown on Appendix Table B-11.

# 7.5 <u>Irrigation Water Use</u>

Estimated water production reported by substantial users for irrigation in the Santa Margarita River Watershed is shown on Table 7.1 to be 6,389 acre feet. This quantity includes 5,488 acre feet of well production and 901 acre feet of surface diversion as shown in Appendix C.

## **SECTION 8 - UNAUTHORIZED WATER USE**

# 8.1 General

From time to time there are complaints of unauthorized water uses of various types in the Watershed. Such complaints are investigated when they are brought to the attention of the Watermaster. The status of the current list of unauthorized uses is described as follows:

# 8.2 Unauthorized Small Storage Ponds

Many small dams and reservoirs have been constructed on streams in the Watershed. The legal basis for these ponds is described in the 1988-89 Watermaster Report. Basically, the Court has held that storage of water in ponds less than 10 acre feet in capacity and used for stock watering is a valid use of riparian water. The Court has also held that:

The temporary or non-seasonal impoundment by riparian owners for the purpose of providing a head for irrigation or for the purpose of temporarily accumulating sufficient water to make possible efficient irrigation is a proper riparian use of water.

Criteria for determining non-seasonal storage of irrigation water have yet to be developed.

# 8.3 Rancho California Water District Water Use

A number of unauthorized water use issues raised by the United States were settled with the completion of a Cooperative Water Resource Management Agreement (CWRMA) between the United States on behalf of Camp Pendleton, and Rancho California Water District.

Although the CWRMA provides that the United States withdraw its protest of Rancho California WD's application to the State Water Resources Control Board to change the place of use, type of use and re-diversion facilities in Permit 7032, protests by U. S. Fish and Wildlife Service and the California Sportfishing Alliance have not been resolved.

# 8.4 Cahuilla Band Request for Moratorium

On April 20, 2005, the Cahuilla Band of Indians published the following notice requesting a moratorium on increased water use in the Anza/Cahuilla/Terwilliger Valley area:

# To whom it may concern:

Notice is hereby given to all water users, potential water users, and other interested parties in the Anza/Cahuilla/Tewilliger (sic) Valley that the Cahuilla Band of Indians possesses an Aboriginal and Senior reserved water right in the above mentioned valley. The Cahuilla Band has determined that increasing water use by non-Indians threatens the Cahuilla Band's reserved water rights. Therefore, the Cahuilla Band is notifying all interested parties and all present and potential water users that any increased use above present amounts or uses infringes on the Band's reserved right.

The Cahuilla Band further requests a moratorium on increased use until this issue can be resolved with all water users and interested parties in the above mentioned valley. The Cahuilla Band is fully prepared to take all necessary steps to enforce this moratorium and its reserved water rights.

Nothing in this notice shall be deemed or construed as a waiver of any of the rights of the Cahuilla Band of Indians, including the right to take alternate or different positions in the future as to any matter. Should you require more information please contact the Cahuilla Band of Indians through its Chairperson, Jerome Salgado, Sr.

The notice was published in the local newspapers as well as sent to County officials, local water districts and businesses, nearby Indian Bands, the California State Department of Water Resources and the Watermaster.

Following receipt of the notice, a meeting was held with representatives of the Cahuilla Band to discuss the request. On July 20, 2005, a letter was sent to the Cahuilla Band suggesting that certain information would be useful for the Court to consider the request, including:

- 1. The basis for the Band's determination that increasing water use threatens the Cahuilla Band's reserved rights;
- 2. A description of lands to be included in the requested moratorium;
- 3. A description of the existing users, uses and amounts not impacted by the moratorium;
- 4. A plan for enforcing the moratorium;
- 5. The current status of discussions with non-Indian water users to resolve this issue.

Cahuilla Band representatives have indicated they are developing the suggested information and may pursue the moratorium in the future.

As an alternative to proceeding with the moratorium, on October 6, 2006, the Cahuilla Band filed a Motion to Intervene as Plaintiff-Intervenor in *United States v. Fallbrook Public Utility District, et al.* The Cahuilla Band also filed a Complaint asking the Court to quantify its federal reserved water rights by confirming elements of the water rights as declared and decreed by the Court in Interlocutory Judgment No. 41. On October 16, 2006, the Ramona Band of Cahuilla filed a similar motion and Complaint. On January 22, 2007, the Court issued an Order granting the Motions to Intervene and filing the Complaints in intervention. The Cahuilla and Ramona Bands are proceeding with quantification of each Band's federal reserved water rights and the request for moratorium will be resolved as part of the quantification proceeding.

# 8.5 Exportation of Treated Wastewater Derived from Native Waters

Camp Pendleton continues to assert that the exportation of treated wastewater, the source of which is the native waters of the Santa Margarita River System, without an appropriative right as the legal basis for such exportation is unauthorized water use. The exporters of treated wastewater do not agree with this assertion. At the request of Camp Pendleton, the Watermaster will review this issue with particular emphasis on reviewing the methodology on pages 54 and 55 whereby the percentage supply of groundwater for the exported wastewater is compared to the percentage of wastewater reused within the watershed.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

#### **SECTION 9 - THREATS TO WATER SUPPLY**

# 9.1 General

General threats to the long-term water supply in the Santa Margarita River Watershed, which have been described in previous Watermaster Reports, are as follows:

- 1. High nitrate concentrations in Rainbow Creek and in Anza Valley.
- 2. Potential overdraft conditions at various locations in the Watershed.
- 3. Potentially adverse salt balance conditions in the upper Santa Margarita River area.

# 9.2 High Nitrate Concentrations

In past years, high concentrations of nitrate have been measured in Anza Valley and on Rainbow Creek. Conditions in Anza Valley were generally described in the 1993-94 report. Additional water quality data for Anza Valley are being collected by the Riverside County Department of Health Services and the USGS. These data will be reported in future Watermaster Reports.

As described in prior Watermaster Reports, in 1999 the Regional Water Quality Control Board, San Diego Region (Regional Board) began preparation of a plan for Total Maximum Daily Loads (TMDLs) for Total Nitrogen and Total Phosphorus on Rainbow Creek. On February 9, 2005, the Regional Board adopted an amendment to the Basin Plan to include the Total Nitrogen and Total Phosphorus TMDLs and implementation plan. The State Water Resources Control Board, on November 16, 2005, and Office of Administrative Law, on February 1, 2006, subsequently approved the Basin Plan amendment. The U.S. Environmental Protection Agency granted final approval of the TMDLs on March 22, 2006.

The full plan and amendment are presented on the Regional Board's website. Key findings related to the TMDLs are summarized below:

- 1. The TMDL Numeric Targets for nitrate (as nitrogen) is 10 mg/L, total nitrogen is 1.0 mg/L, and total phosphorous is 0.1 mg/L.
- 2. The TMDLs for total nitrogen and total phosphorous discharges into Rainbow Creek are calculated to be 1,658 kilograms of nitrogen per year and 165 kilograms of phosphorous per year. The TMDLs are defined as the maximum loads that Rainbow Creek can receive and will attain water quality objectives and protection of designated beneficial uses.

- 3. A 74 percent overall reduction of total nitrogen loading and an 85 percent overall reduction of total phosphorous loading to Rainbow Creek from point sources (Caltrans) and nonpoint sources (commercial nurseries, agricultural lands, residential land uses, and septic tanks) are required to meet the TMDLs.
- 4. Nutrient wasteload and load reductions are required over a 16-year phased compliance schedule.

# 9.3 Potential Overdraft Conditions

Previous Watermaster reports have noted concerns about overdraft conditions in Anza Valley and in the Murrieta-Temecula area. The 1989-90 Watermaster Report described a water supply study, conducted by a consultant to Riverside County, which concluded that Anza Valley water use in 1986 was approximately equal to the perennial yield and that as of 1986 useable groundwater in storage approximated 56,000 acre feet. No further studies relative to groundwater use in Anza Valley are available. Historical measurements of groundwater levels for Anza Mutual Water Company's Well No. 1 (7S/3E-21G1) located in Anza Valley are plotted in this Report on Figure 4.4. It can be noted that the water level in the fall of 2006 is within the general range observed since the early 1970's.

No recent published studies of safe yield are available for the Murrieta-Temecula area. Groundwater resources in much of the area are being managed by Rancho California WD. The District prepares an annual groundwater production program with the goal of developing the maximum perennial yield from the basin. The District monitors water levels and well production in each of several hydrogeologic subareas. Each year that data, combined with other information including water quality, natural and artificial recharge, pump settings, and well construction factors, are used to develop a recommended production program. Production rates are commonly lowered in subareas where water levels have declined over several years, and production rates are increased in areas where decline has not occurred. As a final check the recommended production rates are checked using the latest version of the Rancho California WD groundwater model.

In addition, Rancho California WD in cooperation with Camp Pendleton is in the process of refining a multi-level groundwater monitoring network, pursuant to the Cooperative Water Resource Management Agreement. The purpose of the network is to develop data for use in assessing safe yield operations. In September 2006 the USGS began drilling and constructing the Pala Community Park Monitoring Well as part of this network. The monitoring well was completed with six piezometers and continuous water level recording devices. Groundwater levels and water quality data for the monitoring well will be reported in the annual Watermaster Report beginning in year 2006-07.

Groundwater level data for three wells in the Murrieta-Temecula Groundwater Area are included in this report as Figures 4.1, 4.3 and 4.5. Water levels in the Windmill Well (8S/2W-12H1) located at the eastern part of Pauba Valley rose 5 feet in 2005-06. Water levels in Well 7S/3W-20C9 in the Murrieta Division of Western MWD area rose 30 feet from last year. Well 8S/2W-29G1 on the Pechanga Indian Reservation in Wolf Valley became dry at the end of 2003-04. The declining water levels in Well 8S/2W-29G1 appear to be attributed to recent relatively dry hydrologic conditions and pumping of the nearby New Kelsey Well. To allow continued monitoring of water levels on the Reservation, Well No. 29G1 is being replaced with Well No. 8S/2W-29B9 which declined 7.1 feet. As can be seen from the long-term hydrographs groundwater levels in the Rancho California WD and Pechanga Reservation areas are at the low end of the broad range of groundwater levels experienced in recent years. Groundwater levels in Western MWD - Murrieta Division area recovered in 2005-06 to the high end of the range of reported groundwater levels.

# 9.4 Salt Balance

A key issue in management of a groundwater basin is potential build up of salts from imported water supplies. Such a build-up could decrease the usability of waters in a basin. Consideration must be given to measures that allow export of salts from a basin to offset the salt load in water entering the groundwater basin.

During 2005-06, Eastern MWD exported 3,510 acre feet of treated wastewater from the watershed for reuse and 6,058 acre feet were exported for operational reasons for discharge to Temescal Creek. Additional treated wastewater may have been exported from the watershed through recirculation in the system but such additional amounts have not been determined. In addition, Rancho California WD exported 1,062 acre feet of treated wastewater for operational reasons. At an average total dissolved solids concentration of 650 mg/l there is approximately 1,768 pounds of salt in every acre foot of wastewater. Thus in 2005-06, approximately 9,397 tons of salt were exported by Eastern MWD and Rancho California WD through the export of 10,630 acre feet of wastewater.

In addition to export of treated wastewater, the salt balances of the Murrieta-Temecula groundwater area and the lower Santa Margarita River groundwater area are affected by discharges from wells into Murrieta Creek, Temecula Creek and Santa Gertrudis Creek. In 2005-06 wells discharged 157 acre feet, as shown below, together with estimated total dissolved solids in the water.

Well No.	Release Acre Feet	TDS mg/l	Sample Date
	•	4.40	0/00/05
101	. 8	440	8/09/05
102	20	700	6/20/95
106	2	310	5/11/04
108	6	360	5/12/06
118	117	590	11/03/05
231	4	1490	5/24/01
Total	<del>157</del>		

## **SECTION 10 - WATER QUALITY**

# 10.1 Surface Water Quality

The USGS collected continuous water quality measurements for dissolved oxygen, pH, specific conductance and temperature at the Santa Margarita River near Temecula gaging station during 2005-06. Data collected at the station are published by the USGS. The highest average daily high and the lowest average daily low for each parameter for each month are shown in Table 10.1 for months in water year 2006.

Surface water quality data collected by the USGS in 2004-05 for Cahuilla Creek are shown in Appendix Table D-12. No surface water quality data for Cahuilla Creek were collected in 2005-06.

Surface water quality data collected in prior years by Camp Pendleton, Eastern MWD, and Rancho California WD are listed in earlier Watermaster reports.

# 10.2 Groundwater Quality

During 2005-06 water quality data were collected from wells at Western MWD – Murrieta Division, Rancho California WD, Pechanga Indian Reservation, and Camp Pendleton.

Western MWD – Murrieta Division sampled five wells in 2005-06. Concentrations of dissolved solids ranged from 310 to 1000 mg/l as shown in Appendix D-3. Total dissolved solids in two wells exceeded the Basin Plan Objective of 750 mg/l. Concentrations of nitrates were generally far below the drinking water standard of 45 mg/l as nitrate for samples in four wells ranging from less than 1 mg/l to 21 mg/l. However, the nitrate concentration for the Holiday Well sampled in January 2006 exceeded the drinking water standard. Groundwater production from the Holiday Well ceased in March 2006.

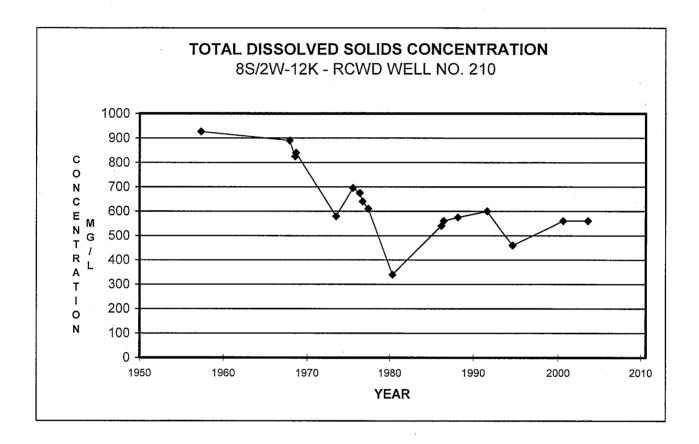
Water quality data for Rancho California WD wells are shown in Appendix Table D-4. Samples were collected from 40 wells during 2005-06. Of the 40 wells, 26 wells were analyzed for nitrates only. In these wells, nitrate concentrations ranged up to 25 mg/l as nitrate, with the drinking water standard being 45 mg/l as nitrate. Samples from the remaining 14 wells were subjected to standard chemical analysis.

TABLE 10.1

SANTA MARGARITA RIVER WATERSHED

# RANGES IN AVERAGE DAILY CONCENTRATION OF DISSOLVED OXYGEN, PH, SPECIFIC CONDUCTANCE AND TEMPERATURE AT SANTA MARGARITA RIVER NEAR TEMECULA

# Water Year 2005-06


COLLECTION MONTH/YEAR		ED OXYGEN ng/l		рН	CONDU	CIFIC CTANCE mens/cm	TEMPERATURE Deg C		
•	<u>High</u>	<u>Low</u>	<u>High</u>	<u>Low</u>	<u>High</u>	<u>Low</u>	<u>High</u>	Low	
2005								•	
October	11.2	7.4	8.2	7.4	1280	498	23.0	14.4	
November	13.6	7.3	8.0	7.7	1450	883	20.4	8.2	
December	10.4	7.8	8.1	7.7	1440	886	16.3	9.2	
2006									
January	11.1 (P/R)	6.6 (P/R)	8.3 (P/R)	7.2 (P/R)	1150 (P/R)	239 (P/R)	16.6 (P/R)	10.2 (P/R)	
February	N/R	N/R	8.5 (P/R)	7.8 (P/R)	866 (P/R)	707 (P/R)	13.1 (P/R)	10.9 (P/R)	
March	N/R	N/R	8.4 (P/R)	7.5 (P/R)	1150 (P/R)	682 P/R)	19.4 (P/R)	9.6 (P/R)	
April	8.9 (P/R)	7.7 (P/R)	8.6 (P/R)	8.0 (P/R)	785 (P/R)	636 P/R)	18.1 (P/R)	13.0 (P/R)	
May	9.3 (P/R)	8.6 (P/R)	8.4 (P/R)	8.2 (P/R)	739 (P/R)	519 (P/R)	19.1 (P/R)	17.4 (P/R)	
June	N/R	N/R	N/R	N/R	N/R	N/R	N/R	N/R	
July .	7.3 (P/R)	4.9 (P/R)	8.6 (P/R)	7.7 (P/R)	816 (P/R)	470 (P/R)	30.1 (P/R)	26.2 (P/R)	
August	9.8	6.8	8.5	7.9	829	678	27.3	25.2	
September	9.3 (P/R)	5.2 (P/R)	8.3 (P/R)	7.7 (P/R)	842 (P/R)	633 (P/R)	27.1 (P/R)	20.2 (P/R)	

# N/R - No Record

P/R - Partial Record - Indicates months with interruptions in record at times due to malfunction of recording equipment. High and low values indicated for days with reported data. Daily data and number of days with no record can be viewed at the following website: <a href="http://web10capp.er.usgs.gov/adr06_lookup/search.jsp">http://web10capp.er.usgs.gov/adr06_lookup/search.jsp</a> searching by site number 11044000

Total dissolved solids concentrations for Rancho California WD Well 210 are shown on Figure 10.1 for samples collected since 1957 when the well was constructed. The figure shows a decline in TDS from approximately 900 mg/l for the samples collected during the 1960's to the 500-600 mg/l range in recent years.

FIGURE 10.1



Appendix Table D-5 shows water quality data collected by the USGS from wells on Indian Reservations. In 2005-06 samples were collected from six wells on the Pechanga Indian Reservation. For the Pechanga wells total dissolved solids concentrations ranged from 222 to 413 mg/l showing moderate declines from the prior year. Nitrate concentrations ranged from <0.06 to 8.48 mg/l as nitrogen.

In 2005-06 samples were collected from three wells on the Cahuilla Indian Reservation. Total dissolved solids concentrations ranged from 160 to 441 mg/l and nitrate concentrations ranged from 1.07 to 8.26 mg/l as nitrogen.

During 2005-06 samples of groundwater were collected from nine wells at Camp Pendleton as shown on Appendix Table D-6. These wells were subjected to standard chemical analysis with results generally consistent with the historical results. Of the nine wells sampled, seven provided one or more samples where total dissolved solids concentrations exceeded 750 mg/l, the Basin Plan Objective. In five of the nine wells, one or more of the samples taken had total dissolved solids concentration that exceeded those in the prior year.

Historical total dissolved solids concentrations for Camp Pendleton Well 7A2 are shown on Figure 10.2 for samples collected since mid-1950. The figure shows a decline between mid-1950 and 1970, then a period of increasing concentration to levels in the 550-950 mg/l range. Analysis of samples collected in 2005-06 indicated total dissolved solids concentrations of 704 and 790 mg/l.

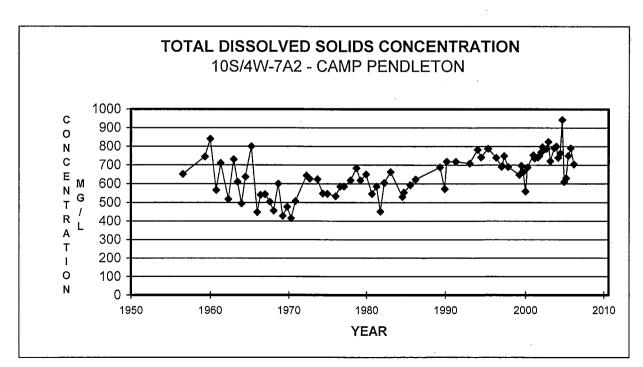
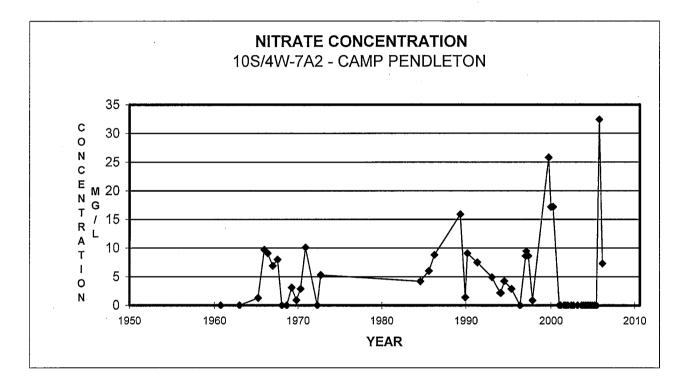




FIGURE 10.2

Historical nitrate concentrations for the same well (7A2) are shown on Figure 10.3. The eight samples collected in 2003-04 and 2004-05 indicated there were no detected concentrations of nitrate. However, the two samples collected in 2005-06 show nitrate concentrations ranging from 7.3 to 32.4 mg/l. The nitrate concentration of 33.3 mg/l is the highest value for data reported since 1960.

**FIGURE 10.3** 



WATERMASTER SANTA MARGARITA RIVER WATERSHED

# SECTION 11 - COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT

# 11.1 General

On August 20, 2002, the Cooperative Water Resource Management Agreement (CWRMA) between Camp Pendleton and Rancho California WD was approved by the District Court. Among other things, the CWRMA provides that on May 1 of each year the Technical Advisory Committee is to compute a hydrologic index for the year based on streamflow and precipitation between October and April. In May 2006 the hydrologic index was determined and the year classified as a "Below Normal" hydrologic year. The hydrologic year establishes the required flows at the Santa Margarita River near Temecula gaging station for the calendar year. Required flows for 2005-06, a "Below Normal" year, are listed in Section 5 of the CWRMA and are shown on Table 11.1.

The CWRMA also settled, for the duration of the Agreement, a number of ongoing water right issues between Camp Pendleton and Rancho California WD. In recent years these issues have been noted in the annual Watermaster Report or have been the subject of comments by the United States about the annual Watermaster Report. In order to avoid this perennial controversy, these issues have been consolidated in Appendix F to this report.

# 11.2 Required Flows

Under the CWRMA Rancho California WD guarantees that the ten-day moving average of the measured flows at the Santa Margarita River near Temecula gaging station shall meet the required flows for each month during the year. In order to meet the required flows, Rancho California WD discharges make-up water from MWD's Outlet WR-34 into the river immediately upstream from the USGS gaging station.

Flow requirements are based on two-thirds of the median natural flow of the Santa Margarita River at the Gorge for a given hydrologic year type. During the winter period (January through April) the District shall maintain a ten-day running average equal to 11.5 cfs less carry-over credits less requested Foregone Make-Up Water, but not less than 3.0 cfs. The District may earn Climatic Credits if it has provided Make-Up Water in excess of the Actual Requirement. The Climatic Credit is equal to the Make-Up Water released less the Actual Requirement less Credits. The Actual Requirement is determined on May 1 of each year and applied retroactively to the flows during the winter period.

During the non-winter period (May through December) the District shall maintain a ten-day running average equal to the flow requirements specified in the Agreement as determined on May 1st less requested Foregone Make-Up Water. When the District is required to provide Make-Up Water in any calendar year in excess of 4,000 acre feet, it may apply a credit for such excess during the following two winter periods. At no time is the District required to make up more than 11.5 cfs.

**TABLE 11.1** 

# SANTA MARGARITA RIVER WATERSHED

# MONTHLY SUMMARY OF REQUIRED FLOWS, DISCHARGES, CREDITS AND ACCOUNTS COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT

# 2006 - BELOW NORMAL YEAR

Climatic Groundwat Credits (Recorded Recorded Re		42.3	205.9 0.0	94.5 0.0	133.8 0.0	0.0 0.0	0.0	0.0 0.0	256.0 0.0 0.0 5,000.0	0.0	0.0		0.0 0.0	3,997.2 476.5 0.0 FULL
	ed from WR-34 Per MWD AF	•	•	•		•								3,6
No. of Days 10- Day Moving Average is Less	I han Kequired Flow /3	14	4	0	0	0	0	0	0	0	0	~	0	19
Section 5	Flows cfs /2	8.0	8.0	8.0	8.0	2.7	4.9	4.3	4.4	4.1	3.9	4.5	5.3	
Minimum Flow Maintenance	Kequirement cfs /1	10.7	10.7	10.7	10.7	2.2	4.9	4.3	4.4	4.1	3.9	4.5	5.3/3.3 *	
USGS Website Daily	Discharge AF	1,415.2	2,120.3	2,058.4	2,534.7	357.2	293.2	266.4	276.1	244.8	245.0	272.9	289.0	10,373.1
USGS Official	Discharge AF	1,400.0	2,166.0	2,023.1	2,646.9	364.6	294.5	276.9	271.1	248.1	246.5	272.9	255.7	10,466.4
Month		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	TOTAL

^{*} On November 30, 2006, Camp Pendleton requested to forego Make-Up Water from December 4 through December 31, 2006, by reducing the required flow to simulate Critically Dry Hydrologic Conditions.

^{** -} Includes 52 acre feet from System River Meter

^{1 -} Minimum Flow Maintenance Requirement equals 11.5 cfs less 0.8 cfs CAP Credit less 0 Climatic Credit.

^{2 -} The Table in Section 5 of the CWRMA sets forth guaranteed monthly flows at the gorge once the Hydrologic Condition for the calendar year is established.

^{3 -} The 14 days in January when the 10-day moving average was less than the required flow were due to an MWD Barrell 5 shutdown from January 9 - 18, 2006.

^{4 -} Climatic Credits equal the WR-34 discharges less actual Flow Requirements, which is the flow indicated in Section 5 of the CRWMA less applicable credits but not less than 3.0 cfs.

^{5 -} Camp Pendleton's rights to groundwater equals the Flow indicated in Section 5 of the CWRMA less the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs.

The measured daily flows, the ten-day moving average, and the differences between the moving average and the required flows are shown in Appendix E. Two listings of daily discharges are shown in the tables in Appendix E: the USGS official discharge and the USGS website discharge. The discharges shown on the website are those that dictate daily decisions regarding the quantities of Make-Up Water required and those discharges are used to compute the ten-day moving average. The official discharge is a more refined estimate developed later by the USGS for publication.

The number of days each month when the ten-day moving average was less than the required flow is summarized on Table 11-1. It can be noted that the moving average was less than the required flow on 19 days during the year. However, the 14 days that occurred in January were due to a Metropolitan Water District Barrel 5 operational shutdown. During the remaining five days the ten-day average flow dropped below the required flow by 0.1 to 0.2 cfs.

During 2006, the total releases by Rancho California WD from WR-34 were 3,997 acre feet. In addition, Cap Credits in the amount of 191 acre feet were used resulting in 206 acre feet of Cap Credits remaining for use by Rancho California WD in 2007. Also, in December 2006, Camp Pendleton requested to forego make-up water in the amount of 111 acre feet to reduce the impact of accumulating additional Cap Credits.

Also in 2006, Climatic Credits of 476 acre feet were accumulated for use in subsequent years to meet required releases by Rancho California WD.

The CWRMA also provides that Camp Pendleton may acquire rights to groundwater above the gorge by foregoing its right to make-up water from the District, or to the extent that the District's Actual Flow Maintenance requirements are less than the flows in the table in Section 5 of the CWRMA. The maximum cumulative balance for the Camp Pendleton groundwater account is 5,000 acre feet. During 2006, Camp Pendleton's groundwater account was maintained at the maximum balance of 5,000 acre feet.

# 11.3 Water Quality

The U. S. Geological Survey continuously monitors four parameters of water quality at the Santa Margarita River near Temecula gaging station, including dissolved oxygen, pH, specific conductance, and temperature. The daily averages for each of these parameters are reported annually. Monthly highs and lows for each parameter are listed in Table 10.1 for the water year ending September 30, 2006.

# 11.4 Monitoring Programs

The Agreement provides for the establishment of two monitoring programs: one to assess the impacts of operations on water supply, water quality and riparian habitat within Camp Pendleton, and; one to assess safe yield operations at Rancho California Water District. During 2005-06, Camp Pendleton continued to develop a monitoring plan for the Santa Margarita River.

Also in 2005-06, Camp Pendleton and Rancho California WD contracted with the USGS to construct a multi-level monitoring well for the Murrieta-Temecula groundwater basin. The Pala Park Groundwater Monitoring Well is located near the confluence of Pechanga and Temecula creeks and was completed at a total depth of 1,499 feet. Six piezometers were installed for continuous water level recording and the Technical Advisory Committee is developing an ongoing water quality monitoring program. The USGS monitoring program for the Pala Park Groundwater Monitoring Well will be included in the ongoing Watermaster budget beginning in year 2007-08. It is anticipated that groundwater level and water quality data from the monitoring well will be reported in the Watermaster Report beginning in 2006-07. Additional information concerning the construction of the monitoring well and groundwater levels can be found at the following website: <a href="http://ca.water.usgs.gov/temecula/">http://ca.water.usgs.gov/temecula/</a>.

# 11.5 CWRMA Accounting Agreement

On February 21, 2006, Camp Pendleton and Rancho California WD entered into the accounting agreement that is provided in Appendix E. The agreement documents agreed-upon accounting methods under CWRMA and memorializes credits earned and used by each party in calendar years 2003, 2004, and 2005. The accounting agreement does not modify or replace the language or intentions of the CWRMA.

# SECTION 12 - FIVE YEAR PROJECTION OF WATERMASTER OFFICE TASKS, EXPENDITURES AND REQUIREMENTS

# 12.1 General

Projected tasks over the next five years are listed below in two categories: normal tasks, which are part of the usual Watermaster office operation; and additional tasks, which are foreseen but are not part of the normal office operations.

# 12.2 Normal Tasks

Tasks that are normally part of the Watermaster Office operation are as follows:

- 1. Update List of Substantial Users
- 2. Collect Water Production, Use, Import and Availability Data
- 3. Collect Well Location, Construction and Water Level Data
- 4. Administer Water Rights
- 5. Collect Water Quality Data
- 6. Monitor Water Quality and Water Right Activities
- 7. Administer Lake Skinner and Diamond Valley Lake MOU's
- 8. Administer Steering Committee Matters
- 9. Prepare Court Reports/Budgets
- 10. Monitor Streamflow and Water Quality Measuring
- 11. Data Management
- 12. Administer Cooperative Water Resource Management Agreement

# 12.3 Additional Tasks

Tasks that have been identified but which are not part of normal operations are as follows:

- 1. Prepare List of All Water Users Under Court Jurisdiction
- 2. Prepare Inventory of Ponds and Reservoirs
- 3. Determine Salt Balance

# 12.4 <u>Projected Expenditures</u>

Projected expenditures for the current year and over the next five years are listed as follows:

	Water Year	Watermaster Office \$	USGS Pala Park Well \$	USGS Gaging Stations \$	Total \$
Current Year	2006-07	281,700		168,300	450,000
Projected Years	2007-08 2008-09 2009-10 2010-11 2011-12	310,225 325,700 342,000 359,100 377,100	20,500 21,500 22,600 23,700 24,900	187,275 196,600 206,400 216,700 227,500	518,000 543,800 571,000 599,500 629,500

# **SECTION 13 - WATERMASTER OFFICE BUDGET 2007-2008**

A total Watermaster Budget of \$518,000 for the Water Year ending September 30, 2008, is shown below.

This budget includes \$310,225 for the Watermaster Office and \$207,775 for USGS gaging station operations and groundwater monitoring. The budgeted cost for services provided by the U. S. Geological Survey is based on the annual renewal of a cooperative agreement with the Watermaster.

	APPROVED BUDGET CURRENT YEAR	PROPOSED BUDGET
	2006-07 \$	2007-08 \$
Watermaster Office		
Rent	12,000	13,800
Accounting Services	3,800	5,800
Supplies	1,000	1,100
General Liability & Professional Insurance	400	500
Printing	2,300	2,400
Audit	3,000	5,000
Publications	2,400	2,500
Clerical/Data Management	68,700	73,000
Telephone/Internet	3,000	2,500
Miscellaneous Operating/Maintenance	1,600	1,625
Mileage/Travel	500	700
Office Equipment and Software	2,000	4,000
Internet/Network/Website		11,300
Watermaster	464 000	100 000
Consulting Services	161,000	166,000
Travel Reimbursement	20,000	20,000
SUBTOTAL WATERMASTER OFFICE	\$ 281,700	\$ 310,225
USGS		
Gaging Station Operation and Maintenance	\$ 141,650	\$ 161,625
Water Quality Operation and Maintenance	26,650	25,650
Pala Community Park Well Water Levels		10,500
Pala Community Park Well Water Quality		10,000
SUBTOTAL USGS	\$ 168,300	\$ 207,775
TOTAL	\$ 450,000	\$ 518,000

WATERMASTER SANTA MARGARITA RIVER WATERSHED

# SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2005-06

# APPENDIX A WATER PRODUCTION AND USE WATER YEAR 2005-06

WATERMASTER SANTA MARGARITA RIVER WATERSHED

# TABLE A-1

# SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

## EASTERN MUNICIPAL WATER DISTRICT

2005-06

Quantities in Acre Feet

	PRODUCTION								USE						RECLAIMED WASTEWATER			
MONTH YEAR	WELLS	IMPORT	EXPORT FROM, SMRW	NET IMPORT	TOTAL		AG 2/	СОММ	DOM 3/	TOTAL	LOSS	TOTAL USE		REUSE IN SMRW 4/	REUSE OUTSIDE SMRW	OTHER REUSE 5/	TOTAL	
2005						<b>.</b> 		·				. i i de circule e d	_]					
OCT	0	2,405	278	2,127	2,127	11	0	0	2,021	2,021	106	2,127	11	318	253	651	1,222	
NOV	0	2,497	129	2,368	2,368	П	0	0	2,249	2,249	119	2,368		204	228	756	1,188	
DEC	0	2,289	532	1,757	1,757	П	0	0	1,669	1,669	88	1,757	11	226	139	764	1,129	
						$\Pi$												
2006						$\Pi$							$\Pi$					
JAN	0	2,010	520	1,490	1,490	$\prod$	0	0	1,415	1,415	75	1,490	11	167	50	997	1,214	
FEB	0	2,093	193	1,900	1,900	$\Pi$	0	0	1,805	1,805	95	1,900	11	173	283	683	1,139	
MAR	0	1,267	531	736	736	П	0	0	699	699	37	736	11	101	58	1,089	1,248	
APR	0	1,586	218	1,368	1,368	$\Pi$	0	0	1,300	1,300	68	1,368		96	170	930	1,196	
MAY	. 0	3,318	316	3,002	3,002	$\Pi$	0	0	2,853	. 2,853	149	3,002	11	271	357	395	1,023	
JUNE	0	4,518	887	3,631	3,631	$\Pi$	0	0	3,449	3,449	182	3,631	$\Box$	362	380	438	1,180	
JULY	0	5,178	1,200	3,978	3,978	11	0	0	3,779	3,779	199	3,978	11	375	529	250	1,154	
AUG	0	4,672	988	3,684	3,684	11	0	0	3,500	3,500	184	3,684	11	405	551	253	1,209	
SEPT	0	4,574	1,081	3,493	3,493	   -	0	0	3,318	3,318	175	3,493	11	410	512	190	1,112	
TOTAL	0	36.407	6.873	29.534	29.534	11	0	0	28.057	28,057	1,477	29,534	11	3,108	3,510	7,396	14,014	

^{1/} Does not include deliveries to Rancho California Water District or Elsinore Valley Municipal Water District

^{2/} Figures are 95% of water pumped and imported to allow for 5% loss

 $^{3\}slash\$  Figures are 95% of water pumped and imported to allow for 5% loss

^{4/} Includes 910 AF of sewage diverted to RCWD

^{5/} Other Reuse includes changes of storage in Winchester and Sun City storage ponds, evaporation and percolation losses, and discharges to Temescal Creek in the Santa Ana Watershed of 6,058 AF.

TABLE A-2

# SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

# **ELSINORE VALLEY MUNICIPAL WATER DISTRICT**

2005-06 Quantities in Acre Feet

**PRODUCTION** 

USE

	.000011	•••									
MONTH YEAR	WELLS	IMPORT	TOTAL	AG	·	сомм	DOM	TOTAL DELIVERED	LOSS , *	TOTAL USE	WASTEWATER EXPORTED
2005			· 	1 .							
OCT	0	956	956 j	i	14	365	577	956	0	956	105
NOV	0	570	570	İ	7	223	340	570	0	570	107
DEC	0	663		•	10	286	367	663	0	663	70
2006			\ 	1							
JAN	0	720	720	İ	11	334	375	720	0	720	86
FEB	. 0	609	609	1	9	261	339	609	0	609	<b>77</b> ·
MAR	0	475	475	1	3	206	266	475	0	475	93
APR	0	453	453		3	208	242	453	0	453	82
MAY	. 0	882			8	383	491	882	0	882	66
JUNE	0	923			13	368	542		0	923	62
JULY .	0	1,468	1,468	1	23	625	820	1,468	0	1,468	63
AUG	0	1,002	1,002		12	394	596	1,002	0	1,002	64
SEPT	0	1,098	1,098   	 	14	465	619	1,098	0	1,098	63
TOTAL	. 0	9,819	9,819	j · 1	27	4,118	5,574	9,819	0	9,819	938

^{*} Assumes no loss

TABLE A-3

SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

# FALLBROOK PUBLIC UTILITY DISTRICT

<b>~</b>	EXPORTED FROM SMRW	136	127	134		142	123	148	144	162	144	180	159	117	1,716
EWATE	FROM I.S.	0.85	0.54	0.58		0.54	99.0	0.69	0.68	0.74	0.46	0.58	0.59	0.59	ω
WASTEWATER	REUSE IN SMRW	2.00	2.20	1.40		1.50	1.50	0.30	0.90	2.40	2.90	4.30	3.40	3.00	26
	FROM	139	130	136		144	126	149	145	165	148	185	163	120	1,750
			=		=	=	=	=	=	=			=	=	
	TOTAL USE IN SMRW	878	885	828		661	582	244	422	949	1,139	1,422	1,435	1,283	751 10,728
	+SSO7	(140)	133	(10)		28	(97)	(47)	80	384	190	288	(100)	45	751
USE	TOTAL IN SMRW	1,018	752	838		633	629	291	342	265	949	1,134	1,535	1,241	578 3,441 9,977
	DOM	416	240	309		208	264	151	175	179	340	317	494	348	3,441
	СОММ	53	44	4		4	37	27	59	42	53	71	99	73	578
	AG	549	468	488		385	378	113	138	344	556	746	973	820	5,958
	N	==	=	==	=	=	=	=	=	=	=	=	=	=	
	TOTAL	878	885	828		661	582	244	422	949	1,139	1,422	1,435	1,283	10,728
	TOTAL SMRW IMPORT	878	885	828		661	582	231	420	858	1,139	1,422	1,435	1,283	10,622 10,728
z	SMRW IMPORT 2/	538	564	523		409	342	195	300	615	758	914	725	745	6,628
PRODUCTION	FALLBROOK AREA IMPORT II	1,169	1,227	1,136		890	744	423	652	1,337	1,648	1,986	1,576	1,621	14,409
PF	DELUZ AREA IMPORT	340	321	305		252	240	36	120	243	381	508	710	538	3,994
	TOTAL DISTRICT IMPORT 1/	1,509	1,548	1,442		1,141	984	459	773	1,580	2,028	2,494	2,286	2,159	18,403
	LAKE SKINNER DIVERSIONS DELIVERED	0	0	0		0	0	13	2	91	0	0	0	0	106
	TOTAL LAKE SKINNER DIVERSIONS	0	0	0		0	0	13	2	91	0	0	0	0	106
	MONTH	2005 OCT	NOV	DEC	2006	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL

^{1/} Includes deliveries from Lake Skinner Diversion
2/ Approximately 46% of the Fallbrook area is within the Santa Margarita River Watershed *Loss = Total production less total use

TABLE A-4

#### SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

#### METROPOLITAN WATER DISTRICT **DELIVERIES IN DOMENIGONI VALLEY**

	PF	RODUCTIO	N					USE		
MONTH YEAR	WELLS	IMPORT TO SMRW	TOTAL IN SMRW		AG	COMM/ DOM *	GW RECHARGE	TOTAL DELIVERED	LOSS **	TOTAL USE
2005				I I						
OCT	0	67	67	 	64	0	0	64	3	67
NOV	Ö	67	67	ii	64	Ō	Ō	64	3	67
DEC	0	26	26	ij	25	0	0	25	1	26
2006		_		1 I 1 I						
JAN	0	12	12	ij	11	0	0	11	1	12
FEB	0	25	25		24	0	0	24	1	25
MAR	0	6	6		6	0	0	6	0	6
APR	0	7	7		6	0	0	6	1	7
MAY	0	8	8		7	0	0	7	1	8
JUNE	0	45	45		43		0	43	2	45
JULY	0	83	83		79	0	0	79	4	83
AUG	0	74	74	11	70	0	0	70	4	74
SEPT	0	. 86	86		82	0	0	82	4	86
TOTAL	0	506	506		481	0	0	481	25	506

^{*} Construction water

^{**} Loss = 5%

TABLE A-5

# SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

# WESTERN MUNICIPAL WATER DISTRICT MURRIETA DIVISION

2005-06

	P	RODUCTIO	N					USE		
MONTH YEAR	WELLS	IMPORT	TOTAL		AG	СОММ	DOM	TOTAL DELIVERED	LOSS *	TOTAL USE
2005					•					
OCT	208	4	212		36	53	168	257	(45)	212
NOV	179	O	179	11	19	47	127	193	(14)	179
DEC	168	1	169	ii	23	23	112	158	11	169
				Ħ						
2006										
JAN	156	0	156		18	24	101	143	13	156
FEB	162	0	162		21	22	101	144	18	162
MAR	120	1	121	11	14	19	86	119	2	121
APR	125	0	125		16	29	. 79	124	1	125
MAY	218	0	218	П	19	- 21	112	152	66	218
JUNE	226	43	269		33	28	172	233	36	269
JULY	229	77	306		40	32	205	277	· 29	306
AUG	230	92	322		52	55	242	349	(27)	322
SEPT	212	. 98	310		47	43	191	281	29	310
		•						•		
TOTAL	2,233	316	2,549	П	338	396	1,696	2,430	119	2,549

^{*} Loss = Total production less total delivered

TABLE A-6

SANTA MARGARITA RIVER WATERSHED

MONTHLY WATER PRODUCTION AND USE

#### RAINBOW MUNICIPAL WATER DISTRICT

2005-06 Quantities in Acre Feet

**PRODUCTION** USE LOSS* MONTH LOCAL IMPORT TO **TOTAL IN** AG COMMERCIAL/ **TOTAL TOTAL** DOMESTIC WATERSHED WATERSHED **DELIVERIES** USE YEAR OCT NOV  $\Pi$ DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT 0. **TOTAL** 1,851 1,851 1,529 1,683 1,851

^{*}Loss = 10% of use

TABLE A-7

# MONTHLY WATER PRODUCTION AND USE SANTA MARGARITA RIVER WATERSHED

# RANCHO CALIFORNIA WATER DISTRICT

2005-2006

RECLAIMED WASTEWATER	REUSED	SMRW	/6		402	368	375		361	322	453	418	409	383	447	433	425	4,796
VAIL	RELEASE	RECHARGE	8/		273	72	0		215	205	0	0	(223)	(29)	277	384	(28)	1,399
	TOTAL	····			6,349	7,081	5,963		5,017	5,671	3,110	4,053	7,709	8,855	13,019	10,726	10,352	87,905
	ross		//		(2,234)	250	(646)		(190)	` <b>^</b>	(1,586)	1,179	3,294	1,118	2,413	(107)	586	4,084
	TOTAL				8,583	6,831	609'9		5,207	5,664	4,696	2,874	4,415	7,737	10,606	10,833	9,766	83,821
	IMPORT		/9		49	326	411		327	602	438	404	347	462	1,460	955	382	6,163
USE	SMR RELEASE F		2/		558	520	376		465	616	430	529	334	289	289	264	253	4,923
	DOM				3,123	2,410	2,205		1,775	1,775	1,629	1,280	1,851	2,983	3,658	3,829	3,691	30,209
	COMM				568	515	379		350	355	329	268	312	463	559	533	529	5,190
	AG/ DOM				742	539	547							614				6,448
	AG				3,543	2,521	2,691		1,891	1,937	1,517	303	1,305	2,926	3,846	4,333	4,075	30,888
	TOTAL			_	6,349	7,081	5,963		5,017	5,671	3,110 []	4,053	1,709	8,855	13,019	10,726	10,352	    306'28
	NET IMPORT				3,958	4,642	3,399		2,929	3,392	2,053	2,230	5,040	7,262	9,863	8,165	7,730	60,663
NO	EXPORT		4/		69	43	40		28	31	21	7	38	91	120	113	120	725
PRODUCTION	IMPORT		3/		4,027	4,685	3,439		2,957	3,423	2,074	2,241	5,078	7,353	9,983	8,278	7,850	61,388
	NET WELLS				2,391	2,439	2,564		2,088	2,279	1,057	1,823	2,669	1,593	3,156	2,561	2,622	27,242
	WELLS EXPORT		7/		41	24	34		24	28	4	13	20	16	37	32	34	317
	WELLS		1/		2,432	2,463	2,598		2,112	2,307	1,071	1,836	2,689	1,609	3,193	2,593	2,656	27,559
	MONTH	YEAR		2005	OCT	NOV	DEC	2006	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	TOTAL

Wells recovered 26,297 AF from older alluvium and 1,262 AF from Vail recharge
 Groundwater used in San Mateo Watershed
 Includes 37,802 AF direct use; 18,820 AF direct recharge; and 4,714 AF from MWD WR-34; and 52 AF from System River Meter
 Import used in San Mateo Watershed
 A AF into Well 231; 153 AF into Murieta Creek from Wells 101, 102, 106, 108 and 118, and 52 AF from System River Meter; and 4,714 AF from MWD WR-34 of intext recharge less 12,657 AF of import recovery
 Loss = Total production less total use and includes 342 acre feet pumped from wells 102, 135 and 146 directly into reclaimed water system
 Vail releases and the related Vail recharge are computed as Total Release less Inflow to be bypassed
 Does not include EMWD reclaimed wastewater production

^{18,820} AF of direct recharge less 12,657 AF of import recovery
Loss = Total production less total use and includes 342 acre feet pumped from wells 102, 135 and 146 directly into reclaimed water system
Vail releases and the related Vail recharge are computed as Total Release less Inflow to be bypassed
Does not include EMWD reclaimed wastewater production

TABLE A-8

#### U.S.M.C. - CAMP PENDLETON

	PRO	DUCTIC	N				ι	JSE					w	ASTEWATER	
MONTH YEAR	AG LOCAL	CAMP SUPPLY	TOTAL		AGRICUI IN SMRW	TURE 1/ OUT SMRW	CAMP S IN SMRW	UPPLY 2/ OUT SMRW	TOTAL EXPORT	TOTAL 3 IN SMRW	;/   	FROM INSIDE SMRW 4/	FROM OUTSIDE SMRW 5/	TOTAL EXPORTED TO OCEANSIDE OUTFALL	USED ON GOLF COURSE OUTSIDE SMRW
2005	,			П							11				
OCT	210	438	648	Ϊİ	82	128	191	247	375	273	H	88	146	234	44
NOV	88	374	462	П	34	54	164	210	264	198	-11	83	124	207	29
DEC	9	423	432	П	4	5	183	240	245	187	11	85	124	209	24
				$\parallel$							П				
2006				-11							П				
JAN	0	359	359	$\mathbb{H}$	0	0	155	204	204	155	- [ ]	87	132	219	19
FEB	0	357	357	11	0	0	154	203	203	154	П	77	116	193	14
MAR	0	320	320	-11	0	0	139	181	181	139	11	80	124	204	23
APR	6	330	336	11	. 2	4	142	188	192	144	11	82	117	199	31
MAY	72	432	504	11	28	44	187	245	289	215	$\Box$	62	122	184	42
JUNE	164	501	665	11	64	100	217	284	384	281	П	84	122	206	49
JULY	346	615	961	11	135	211	265	350	561	400	П	82	138	220	55
AUG	328	602	930	11	128	200	260	342	542	388	-11	85	143	228	61
SEPT	307	560	867	П	120	187	244	316	503	364	$\Box$	74	150	224	58
				11							11				
TOTAL	1,530	5,311	6,841	-11	597	933	2,301	3,010	3,943	2,898	11	969	1,558	2,527	449 E

^{1/} Agricultural water use is divided with 39% used inside the SMRW and 61% used outside

^{2/} Camp Supply water use inside the SMRW equals 44% of sum of Camp Supply production plus Naval Weapons Station Import, minus the NWS Import (SMRW CS = .44 {CS+NWS Imp.} - NWS Imp.)

^{3/} Assumes no losses

^{4/} Discharge from Plant Nos. 3 plus 8 plus 29.17 acre feet per month from Plant No. 13

^{5/} Discharge from Plant No. 1, plus discharge from Pond 2, plus excess of Plant No. 13 over 29.17 acre feet per month

E - Estimate

TABLE A-9

# SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

#### U. S. NAVAL WEAPONS STATION, FALLBROOK ANNEX

2005-06

	PRO	DUCTION				USE	=			WASTEWATER
MONTH YEAR	LOCAL	IMPORT TO WATERSHED 1/	TOTAL		AG	COMMERCI		TOTAL USE		EXPORTED
2005									П	
OCT	0.0	3.2	3.2	ij	0.0	2.9	0.3	3.2	Ϊİ	0.9
NOV	0.0	1.6	1.6	İÌ	0.0	1.5	0.1	1.6	ÌÌ	0.5
DEC	0.0	5.7	5.7		0.0	5.2	0.5	5.7		0.6
2006										
JAN	0.0	4.8	4.8	İÌ	0.0	4.4	0.4	4.8		0.5
FEB	0.0	4.8	4.8		0.0	4.4	0.4	4.8		0.7
MAR	0.0	2.9	2.9		0.0	2.6	0.3	2.9		0.7
APR	0.0	4.7	4.7		0.0	4.3	0.4	4.7	$\parallel$	0.7
MAY	0.0	6.0	6.0		0.0	5.5	0.5	6.0	$\parallel$	0.7
JUNE	0.0	6.7	6.7		0.0	. 6.1	0.6	6.7		0.5
JULY	0.0	10.2	10.2		0.0	9.3	0.9	10.2		0.6
AUG	0.0	7.9	7.9		0.0	7.2	0.7	7.9		0.6
SEPT	0.0	5.6	5.6		0.0	5.1	0.5	5.6		0.6
TOTAL	0.0	64.1	64.1		0.0	58.3	5.8	64.1		7.5

^{1/ -} Import via Fallbrook Public Utility District

^{2/ -} Loss = 10% of Use

TABLE A-10

#### SANTA MARGARITA RIVER WATERSHED

#### MISCELLANEOUS WATER PRODUCTION AND IMPORTS

2005-06

Quantities in Acre Feet

**IMPORT** 

#### **PRODUCTION**

MONTH YEAR	WESTERN MWD IMPORTS TO IMPROVEMENT DISTRICT A	ANZA MUTUAL WATER COMPANY	OUTDOOR RESORTS RANCHO CALIFORNIA, INC.	BUTTERFIELD OAKS MOBILE HOME PARK	LAKE RIVERSIDE ESTATES	PECHANGA INDIAN RESERVATION	HAWTHORN WATER SYSTEM	JOJOBA HILLS SKP RESORT
2005								
OCT	6.40	2.83	2.03	0.55	13.43	73.10	5.34	5.87
NOV	5.40	1.94	2.16	0.34	27.10	53.40	2.92	5.75
DEC	4.60	2.54	1.87	0.65	2.61	48.80	3.02	5.32
2006								
JAN	4.30	2.54	1 2.55	0.64	3.45	42.50	2.27	5.62
FEB	4.40	2.54	0.76	1.29	1.39	45.80	1.56	4.81
MAR	4.00	10.82	0.09	1.80	0.41	45.20	1.73	3.20
APR	3.90	2.70	1.68	2.13	27.47	41.70	1.67	2.64
MAY	4.20	2.70	² 4.17	1.96	33.96	62.50	2.39	5.51
JUNE	10.90	6.52	³ 4.46	2.61	48.23	74.50	2.85	6.80
JULY	5.60	6.52	6.40	2.61	44.24	103.10	2.94	6.60
AUG	6.20	4.86	4 8.86	2.61	42.88	87.20	6.76	6.92
SEPT	5.90	4.86	5.89	2.61	23.43	75.70	6.80	5.64
SUBTO	TAL ·		40.92 158.00 *	19.80 * 7.50 *		753.50 0.00 **		
TOTAL	65.80 0.00	51.37	198.92	27.30	268.60	753.50	40.25	64.68

^{1/} Average for December, January, and February

^{2/} Average for April and May

^{3/} Average for June and July

^{4/} Average for August and September

^{*} Estimated non-metered use

^{**} Surface Diversion

# SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2005-06

# APPENDIX B WATER PRODUCTION AND USE WATER YEAR 1965-66 TO WATER YEAR 2005-06

WATERMASTER SANTA MARGARITA RIVER WATERSHED

## SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

#### **EASTERN MUNICIPAL WATER DISTRICT**

Quantities in Acre Feet

	PRODUCTION						USE							RE	ECLAIMED V	VASTEWAT	ER			
WATER YEAR	WELLS	IMPORT 1/	EXPORT FROM SMRW	NET IMPORT	TOTAL		AG 2/	сомм	DOM 3/	TOTAL	LOSS	TOTAL	•	REUSE IN SMRW		REUSE OUTSIDE SMRW	OTHER REUSE 41	RELEASE TO RIVER	RECHARGE	TOTAL
1966	0	1,604	0	1,604	1,604	11	1,520	. 0	4	1,524	80	1,604	— 	0		0		0	100	100
1967	0	1,630	0	1,630	1,630	11	1,544	0	4	1,548	82	1,630	- 11	0		0		0	100	100
1968	0	1,464	0	1,464	1,464	-11	1,386	0	5	1,391	73	1,464	П			0		0	100	100
1969	0	1,741	0	1,741	1,741	-11	1,648	0	6	1,654	87	1,741	11			0		0	100	100
1970	. 0	1,417	. 0	1,417		٠.	1,340	0	7	1,346	71	1,417	Ш			0		0	101	101
1971	0	1,383	. 0	1,383	1,383		1,306	0	8	1,314	69	1,383				0		0	119	119
1972	0	1,470	0	1,470		٠.	1,388	0	8	1,396	74	1,470	- 11			0		0	242	242
1973	0	1,533	0	1,533	1,533		1,447	0	10	1,456	77	1,533	Ш			0		0	217	217
1974	0	1,601	0	1,601	1,601		1,511	Q	10	1,521	80	1,601	Ш			0		0	193	193
1975	0	1,969	0	1,969	1,969	٠.	1,859	0	11	1,871	98	1,969	Ш			0		0	253	253
1976	145	2,493	0	2,493	2,638		2,356	0	150	2,506	132	2,638	Ш			0		0	155	289
1977	431	2,947	0	2,947	3,378	٠.	2,723	64	423	3,209	169	3,378	- !!			0		0	70	314
1978	375	2,551	0	2,551			2,409	0	371	2,780	146	2,926	- !!			0		. 0	75	375
1979	289	1,894	0	1,894	2,183	٠.,	1,784	0	290	2,074	109	2,183	- []			0		0	147 220	497 595
1980	281	1,192	0	1,192	1,473		1,116	. 0	283	1,399 948	74	1,473 998	- []			0		0	304	595 679
1981	282	716	0	716	998			0	285 323		50 72		- []			0		0	386	761
1982	321	1,112	0	1,112	1,433		1,038	0	120	1,361 1,251	66	1,433 1,317	- 11			0		a	466	841
1983	106	1,211 699	0	1,211 699	1,317 935			0	244	888	47	935	- 11			0		0	525	925
1984 1985	236 314	679	. 0	679	993	11	644 624	0	319	943	50	993	11			0		0	565	1.015
1986	229	760	. 0	760	989	11	700	0	239	940	49	989	11			o		0	509	1,109
1987	89	1,155	0	1,155	1,244	11	638	0	543	1,182	62	1,244	11			o		0	554	1,204
1988	4	2,047	0	2,047	2,051	11	524	0	1,424	1,948	103	2,051	11			ō		Ô	650	1,300
1989	685	3,746	0	3.746	4.431	11		0	3,064	4,209	222	4,431	11			o		0	1,636	2,694
1990	492	8,578	2,977	5,601	6,093	11		ŏ	4,810	5,788	305	6.093	ii			ō		0	2,160	3,727
1991	456	16,621	7,142	9,479	9,935	Н		0	8,587	9,438	497	9,935	ii			0		0	2,272	3,554
1992	527	13,486	4,893	8,593	9,120	П	29	Ö	8,635	8,664	456	9,120	ii			0		245	2,385	3,953
1993	524	7,287	1,894	5.393	5,917	ii	36	ō	5,585	5,621	296	5,917	ii			990	(285)	192	2,020	4,626
1994		10,082	2,932	7,150	7.382	11	Ó	0	7,013	7,013	369	7,382	ii	•		2,465	694	0	. 0	5,846
1995		11,539	6,914	4,625	4,807	11	16	0	4,551	4,567	240	4,807	i i			1,357	2,551	0	0	6,062
1996	299	11,730	6,770	4,960	5,259	ii	0	0	4,996	4,996	263	5,259	i i			2,473	520	0	0	5,972
1997	408	5,093	1,809	3,284	3,692	ii	0	0	5,226	5,226	(1,534)	3,692	i i			2,319	882	0	0	6,327
1998	240	6,609	1,492	5,117	5.357	ii	0	0	5,090	5,090	267	5,357	- 11		5/	2,139	2,374	0	0	7,462
1999	669	7,118	2,719	4,327	4,996	ΞÜ	Ò	0	4,746	4,746	250	4,996	İ	3,741	6/	3,070	1,063	0	0	7,874
2000	630	9.179	1,923	7,256	7,886	іi	0	0	7,493	7,493	393	7,886	ii	-	7/	3,664	(15)	0	0	8,318
2001	355	9,219	3,271	5,948	6,303	H	0	0	5,989	5,989	314	6,303	Ü	4,571	8/	3,249	1,208	. 0	0	9,028
2002	13	12,777	4,954	8,117	8,130	ii	0	0	7,724	7,724	406	8,130	- ii	4,843	9/	4,863	462	0	0	10,168
2003	0	14,175	5,113	9,062	9,062	H	0	0	8,610	8,610	452	9,062	- ii	3,542	10/	2,955	4,681	0	0	11,178
2004	0	17,381	8,243	9,138	9,138	11	0	0	8,960	8,960	178	9,138	- 11	3,221	11/	3,688	5,427	0	0	12,336
2005	0	27,636	5,518	22,158	22,158	-11	0	0	21,050	R 21,050	1,108	22,158	- 11	2,664	12/	2,690	8,986	0	0	14,340
2006	0	36,407	6,873	29,534	29,534	П	0	0	28,057	28,057	1,477	29,534	- 11	3,108	13/	3,510	7,396	0	0	14,014

^{1/} Does not include deliveries to Rancho California WD or Elsinore Valley MWD

7/ Includes1,162 AF of sewage diverted to RCWD

8/ Includes1,201 AF of sewage diverted to RCWD

R - Revision

^{2/} Figures are 95% of water pumped and imported to allow for 5% loss

^{3/} Figures are 95% of water pumped and imported to allow for 5% loss

^{4/} Other Reuse includes changes in storage in Winchester and Sun City storage ponds, evaporation and percolation losses, and discharges to the Santa Ana Watershed

^{5/} Includes 905 AF of sewage diverted to RCWD

^{6/} Includes1,159 AF of sewage diverted to RCWD

^{9/} Includes1,219 AF of sewage diverted to RCWD

^{10/} includes 1,056 AF of sewage diverted to RCWD

^{11/} Includes 0 AF of sewage diverted to RCWD

^{12/} Includes 574 AF of sewage diverted to RCWD 13/ Includes 910 AF of sewage diverted to RCWD

# SANTA MARGARITA RIVER WATERSHED MONTHLY WATER PRODUCTION AND USE

#### **ELSINORE VALLEY MUNICIPAL WATER DISTRICT**

PF	RODUCTION	ON								
WATER YEAR	WELLS	IMPORT	TOTAL	AG	COMM	DOM	TOTAL DELIVERED	LOSS *	TOTAL USE	WASTEWATER EXPORTED
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981										
1983 1984 1985 1986 1987			     	]     						
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006	000000000000000000000000000000000000000	2,255 2,421 2,190 2,964 3,232 3,127 4,197 4,296 5,100 6,133 7,174 6,215 7,596 7,091 8,438 8,215	4,296   5,100   6,133   7,174   6,215   7,596   7,091   8,438   8,215	   539   687   520   871   848   667   921   1,089   925   1,173   63	93 100 109 118 1,396 1,626 1,971 1,815 1,902 2,665 3,238 3,044	2,341 2,452 2,507 3,217 3,330 3,037 3,586 4,114 3,475 4,521 4,363 5,104 5,067 5,574	1,341 2,255 2,421 2,190 2,964 3,232 3,127 4,197 4,296 5,100 6,133 7,174 6,215 7,596 7,091 8,438 8,215 9,819	000000000000000000000000000000000000000	2,255 2,421 2,190 2,964 I 3,232 I 3,127 I 4,197 I 4,296 I 5,100 6,133 I 7,174 I 6,215 I 7,596 7,091 8,438 8,215	R 170 R 185 R 213 R 226 247 R 254

^{*} Assumes no loss

## SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

#### **FALLBROOK PUBLIC UTILITY DISTRICT**

Quantities in Acre Feet

	USE		
	OTAL LOSS TOTAL USE MRW 3/ IN SMRW	•	
1966 176 11,169 0 11,169 3,351 3,404    2,735 328 3	063 341 3,404		
	572 285 2,857		
	085 342 3,427		
1969 178 9,458 0 9,458 2,837 2,837 2,891   1,787 814 2	601 290 2,891		
1970 305 11,794 0 11,794 3,538 3,538 3,630   2,649 617 3	266 364 3,630		
1971 7 11,350 0 11,350 3,405 3,405 3,407    2,386 681 3	067 340 3,407		
1972 0 13,054 0 13,054 3,916 3,916 3,916    2,749 775 3	524 392 3,916		
	888 322 3,210		
	571 396 3,967		
1975 0 11,492 213 11,279 3,384 3,597 3,597    2,420 816 3	236 361 3,597		
	165 462 4,627		
	710 522 5,232		
	769 530 5,299		
1979 187 12,865 961 11,904 4,762 5,723 5,910    3,820 1,498 5	318 592 5,910		
	936 660 6,596		
	832 798 8,630		
	476 603 7,079		
	191 529 6,720		
	891 615 8,506		
	322 509 7,831		
	017 568 8,585		
	074 582 8,656		
	529 532 8,061		
	326 834 9,160		
	153 965 10,118		
	460 548 8,008		
	486 452 7,938		
	678 333 7,011		
	948 385 7,333		
a series alone alone alone alone alone	316 225 6,541		
	658 335 7,993		
in the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the	600 294 7,894		
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	043 339 6,382		
	019 411 7,430 041 324 9,365		
• •	•		
	950 448 8,398 221 359 9,580		
	778 (648) 9,130		
a select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the select along the sele	240 509 11,749		
, , , , , , , , , , , , , , , , , , , ,	867 2.096 10,963		

6,628 10,622

2006

(Neglects change in Storage at Red Mtn After 1985)

|| 5,958 4,019

9,977

10,728

10,728

^{1/} Includes deliveries from Lake Skinner Diversion beginning 2005

^{2/} Total SMRW production equals SMRW Import plus 30% local (1966-1971)

^{3/} Loss = Total production less total use

#### SANTA MARGARITA RIVER WATERSHED

#### ANNUAL WASTEWATER PRODUCTION AND DISTRIBUTION

#### FALLBROOK PUBLIC UTILITY DISTRICT

Quantities in Acre Feet

WATER YEAR	TOTAL WASTEWATER PRODUCTION	PERCENT WASTEWATER FROM SMRW	WASTEWATER FROM SMRW	WASTEWATER REUSED IN SMRW	WASTEWATER FROM U.S.N.W.S.	WASTEWATER EXPORTED FROM SMRW	PERCENT WASTEWATER FROM SLR WATERSHED 1/	WASTEWATER IMPORTED FROM SLR WATERSHED
1966	395	81	320		0	0	19	75
1967	460	80	368		0	0	20	92
1968	524	80	419	•	0	0	20	105
1969	588	79	465		0	0	21	123
1970	652	78	509		0	0	· 22	143
1971	717	78	559		0	0	22	158
1972	782	77	602		0	0	23	180
1973	847	76	644		0	0	24	203
1974	912	75	684		0	0	25	228
1975	976	75	732		0	0	25	244
1976	1,040	74	770		0	0	26	270
1977	1,105	73	807		0	0	27	298
1978	1,170	72	842		0	0	28	328
1979	1,234	72	888		0	0	28	346
1980	1,298	71	922		0	0	29	376
1981	1,363	70	954		0	0	- 30	409
1982	1,428	69	985		0	0	31	443
1983	1,492	69	1,029		26 E	1,003	0	0
1984	1,556	68	1,058		26 E	1,032	0	0
1985	1,621	67	1,086		26 E	1,060	0	0
1986	1,685	66	1,112		18 P	1,094	0	0
1987	1,750	66	1,155		27	1,128	0	0
1988	1,815	65	1,180		25	1,155	0	0
1989	1,881	64	1,204		22	1,182	0	0
1990	1,952	66	1,298		27	1,271	0	0
1991	1,622	60	973		11	962	0	. 0
1992	1,730	63	1,090		7	1,083	0	0
1993	2,051	62	1,271		16	1,255	0	0
1994	1,834	58	1,073		5	1,068	0	0
1995	1,941	60	1,165		12	1,153	0	0
1996	1,799	58	1,040		5	1,035	0	0
1997	1,780	58	1,027		6	1,021	0	0
1998	2,297	65	1,490		8	1,482	0	0
1999	2,175	64	1,382		5	1,377	0	0
2000	2,164	76	1,641		7	1,634	0	0
2001	2,191	76	1,675	24	8	1,643	0	0
2002	2,061	74	1,532	28	9	1,495	0	0
2003	2,276	76	1,737	21	10	1,706	0	0
2004	2,199	75	1,654	26	8	1,620	0	0
2005	2,505	73	1,822	24	16	1,782	0	0
2006	2,479	71	1,750	26	8	1,716	0	0

NOTE: Measured quantities available for Total Wastewater in Water Year 1969 and July 1989
All other quantities are estimated (1966 - 1989). Prior to 1983, Wastewater was
discharged into Fallbrook Creek. After 1983, Wastewater is discharged into an ocean outfall.

^{1/ -} San Luis Rey Watershed

TABLE B-5

#### SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

#### **METROPOLITAN WATER DISTRICT DELIVERIES IN DOMENIGONI VALLEY**

Þ	P	$\cap$	ח	1	C	П	$\cap$	N
т	$\mathbf{r}$	u	$\mathbf{L}$	u	•		v	LY

	PF	RODUCTION					USE		
WATER YEAR	WELLS	IMPORT TO SMRW	TOTAL IN SMRW	AG	COMM/ DOM *	GW RECHARGI	TOTAL E DELIVERED	LOSS **	TOTAL USE
		_		· · · · · · · · · · · · · · · · · · ·		_			
1966	0	0	0	(		0	0	0	0
1967	0	0	0	(		0	0	0	0
1968	0	0	0	(		0	0	0	0
1969	0	. 0	0	(		0	0	0	0
1970	0	0	. 0	(		0	0	0	. 0
1971	0	0	0	(		0	0	0	0
1972	0	0	0	(		0	0	0	0
1973	0	0	0	(		0	0 0	0	0 0
1974	0	0	0	(		0		0	0
1975	0	0	0	(		0	0 0	0	0
1976	0	0	0	(		0 0	0	0	0
1977	0	0	0	(		0	0	. 0	0
1978	0	0	0	(		0	0	0	0
1979 1980	0	0	0	(		0	0	0	0
	0	0	0	(		0	0	0	0
1981 1982	0	0	0	· (		0	0	0	0
	0	0	0	(		0	0	0	0
1983 1984	0	0	0	(		0	0	0	0
190 <del>4</del> 1985	. 0	0	0	(		0	0	0	0
1986	. 0	0	0	(		0	0	0	0
1987	0	0	0	(		0	Ö	. 0	0
1988	0	0	0	(		0	0	. 0	0
1989	0	0	0	(		0	Ő	0	0
1990	0	. 0	. 0		). 0	Ö	Ŏ	Ő	Ö
1990	0	0	0	(		Ö	0	0	0
1992	0	0	0	Ò		Ö	Ö	0	0
1993	0	0	0	(		Ö	Ō	Ō	Ō
1994	Ö	0	0	· ·		Ö	Ö	Ō	Ō
1995	ő	547	547	337		Ō	520	27	547
1996	Ö	1,005	1,005	725		. 0	955	50	1,005
1997	Ö	3,521	3,521	56		37	3,345	176	3,521
1998	0	5,023	5,023	183		406	4,772	251	5,023
1999	Ö	3,781	3,781	384		379	3,592	189	3,781
2000	0		712	87		251	677	35	712
2000	0		689	480		175	655	34	689
2002	0		595	540		0	565	30	595
2002	Ö		495	470		Ö	470	25	495
2004	0		766	728		Ō	728	38	766
2005	ő		556	528		Ō	528	28	556
2006	ō		506	48		0	481	25	506
	_								

^{*} Construction Water ** Loss = 5%

## SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

# WESTERN MUNICIPAL WATER DISTRICT MURRIETA DIVISION

	PR	ODUCTIO	N .		,			USE		
WATER YEAR	WELLS	IMPORT	TOTAL		AG	сомм	DOM	TOTAL DELIVERED	LOSS *	TOTAL USE
1966	41	0	41	11	0	0	37	37	4	41
1967	45		45		0	0	41	41	4	45
1968	54		54		0	0	49	49	5	54
1969	54		54		0	0	49	49	5	54
1970	73		73		0	0	66	66	7	73
1971	83		83		3	0	72	75	8	83
1972	111	0	111		10	0	91	101	10	111
1973	92		92		11	0	72	84	8	92
1974	132		132		14	0	107	120	12	132
1975	153	0	153		18	0	121	139	14	153
1976	117	. 0	117	П	22	0	84	106	11	117
1977	170	0	170	$\prod$	. 21	0	134	155	15	170
1978	169	0	169	$\prod$	19	0	135	154	15	169
1979	197	0	197		19	0	160	179	18	197
1980	218	0	218		20	0	178	198	20	218
1981	265	0	265	$\Pi$	30	0	211	241	24	265
1982	230		230		21	0	188	209	21	230
1983	216		216		14	0	182	196	20	216
1984	304		304		26	0	250	276	28	304
1985	308		308		19	0	261	280	28	308
1986	305		305		22	. 0	255	277	28	305
1987	326		326		23	0	273	296	30	326
1988	303		303		13	35	262	275	28	303
1989	286		286		11	72	262	344	(4)	286
1990	465		465		13	76	266	355	110	465
1991	459		459		15	88	250	353	106	459
1992	492		492		6	122	302	430	62	492
1993 1994	508 512		508 512		4 10	105 103	323 324	432 437	76 75	508 512
1995	521	0	521		12	99	321	432	89	521
1996	629		629		88	113	384	585	44	629
1997	638		638		76	99	392	567	71	638
1998	603		603		79	. 90	362	531	72	603
1999	827		827		79	125	548	752	75	827
2000	1,123		1,123		199	365	519	1,083	40	1,123
2001	1,389		1,389		163	414	740	1,317	72	1,389
2002	1,679		1,679		230	348	1,115	1,693	(14)	1,679
2003	1,748		1,850		272	275	1,340	1,887	(37)	1,850
2004	1,979		2,309		282	407	1,479	2,168	141	2,309
2005	2,098		2,173		262	274	1,539	2,075	98	2,173
2006	2,233		2,549		338	396	1,696	2,430	119	2,549

^{*} Loss = Total production less total delivered

#### SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

#### RAINBOW MUNICIPAL WATER DISTRICT

		PRODUC	TION	-			USE		
WATER YEAR	LOCAL	IMPORT TO DISTRICT	TOTAL IN WATERSHED 1/		AG 2/	COMMERCIAL/ DOMESTIC 3/	TOTAL DELIVERIES	LOSS 4/	TOTAL USE
1966	0	14,538	1,308		1,049	140	1,189	119	1,308
1967	0	12,167		İİ	878	117	995	100	1,095
1968	0	15,301		ii	1,104	147	1,252	125	1,377
1969	0	13,917		H	1,005	134	1,139	114	1,252
1970	0	18,764	1,689	İİ	1,354	181	1,535	154	1,689
1971	0	18,338	1,650	Ħ	1,324	177	1,500	150	1,650
1972	0	22,633	2,037	П	1,634	218	1,852	185	2,037
1973	0 -	17,955	1,616	H	1,296	173	1,469	147	1,616
1974	0	22,768	2,049		1,643	219	1,863	186	2,049
1975	0	13,856		П	1,000	133	1,134	113	1,247
1976	0	24,878	2,239		1,796	240	2,035	204	2,239
1977	0	26,038	2,343		1,879	251	2,130	213	2,343
1978	0	24,312	2,188		1,755	234	1,989	199	2,188
1979	0	26,084	2,348	[]	1,883	251	2,134	213	2,347
1980	0	27,660	2,489		1,997	266	2,263	226	2,489
1981	0	35,036	3,153	11	2,529	337	2,866	287	3,153
1982	0	27,334	2,460		1,973	263	2,236	224	2,460
1983	0	24,957	2,190	11	1,735	256	1,991	199	2,190
1984	0	32,526	3,068	11	2,483	306	2,789	279	3,068
1985	0	28,612	3,410	11	2,798	302	3,100	310	3,410
1986	0	29,023	2,945	11	2,353	324	2,677	268	2,945
1987	0	29,449	3,390	11.	2,765	317	3,082	308	3,390
1988	0	29,070	2,985	[]	2,372	342	2,714	271	2,985
1989	0	32,034	3,003		2,385	345	2,730	273	3,003
1990	0	34,612	3,818		3,003	468	3,471	347	3,818
1991	0.	27,754	2,904		2,276	364	2,640	264	2,904
1992	0	26,056			1,877	193	2,070	207	2,277
1993	0	23,766	1,965		1,655	132	1,787	178	1,965
1994	0	22,173	1,651		1,368	133	1,501	150	1,651
1995	0	20,935	1,661		1,398	112	1,510	151	1,661
1996	0	24,835			1,487	163	1,650	165	1,815
1997	0	24,638	1,429	$ \cdot $	1,139	160	1,299	130	1,429
1998	0	19,693	1,601	11	1,315	141	1,456	145	1,601
1999	0	24,961	1,727	П	1,411	159	1,570	157	1,727
2000	0	30,446	2,217		1,861	154	2,015	202	2,217
2001	0	27,214	1,804	11	1,439	202	1,641	163	1,804
2002	0	32,854	1,676	11	1,368	156	1,524	152	1,676
2003	0	29,156	1,510	П	1,237	136	1,373	137	1,510
2004	0	33,686	1,888	П	1,567	149	1,716	172	1,888
2005	0	25,135		11	1,331	133	1,464	146	1,610
2006	0	29,797	1,851	11	1,529	154	1,683	168	1,851

^{1/ 1966} through 1982 estimated to be 9% of total district imports 2/ 1966 through 1982 estimated to be 80.2% of total deliveries to watershed 3/ 1966 through 1982 estimated to be 10.7% of total deliveries to watershed

^{4/} Loss = 10% of use

TABLE B-8

# SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

# RANCHO CALIFORNIA WATER DISTRICT Quantities in Acre Feet

			ď	PRODUCTION	z							USE				Λ	VAIL	RECLAIN	RECLAIMED WASTEWATER
YEAR	WELLS	EXPORT 1/	NET WELLS	IMPORT	EXPORT 2/	NET IMPORT	TOTAL	AG	AG/ CI	сомм ром		SMR IMPORT RELEASE RECHARGE TO STORAGE	TOTAL	° LOSS	TOTAL	RELEASE AND RECHARGE	IRRIGATION	REUSE IN SMRW	MURRIETA CREEK DISCHARGE 5/
1966				0	0	0	0	=				0				0	185	0	0
1967	4,288			0	0	0	4,288	_				0		•		0	1,136	0	0
1968				0	0	0	5,100	_				0				0	388	0	0
1969				0	0	0	3,617	_				0				0	1 269	0	0
1970				0	0	0	6,721	_				0				0	540	0	0
1971				0	0	0	7,960	_				0				0	1.541	-	0
1972				0	0	0	8,369	. –				C				· C	203	-	· c
1973				0	0	0	7,726	_				0				0	524		
1974				0	0	0	10.163	-				c					1 066 1		
1975				0	0	0	10,357	_				0					1 698		000
1976				119	0	119	11.928					C				-	200		000
1977				1.845	0	1.845	12.367	_				C					3		
1978				5.774	0	5.774	14.704					· C				· c		-	» c
1979				7.009	0	7,009	18,380	_				C				•	-		o c
1980				10,126	0	10,126	22.747					0				10 944			) C
1981				15,282	0	15,282	30.894									6,802	-	-	
1982				13,378	0	13,378	26.009					C				6.058	-		· c
1983		>		5.752	0	5.752	22.427									12 113	715		
1984				6.716	0	6716	32,376	_				0 C				6612	1 144		
1985				7.158		7 158	31 531					o C				5,027	1 20		0 0
1986				11.174	0	11.174	38.171					o c				8 722	1053		o c
1987				7.564	0	7 564	41 299					o C				27,0	1,576	7	0
1988				17.854	0	17.854	39.221					o C				4 844	2	2 2	o c
1989				22,895	0	22.895	49.026	1 25,333		3.316 13.19			6/ 42.699		7 49 026	C		168	» c
1990				22,030	0	22,030	55,271	27,643		3,940 14,916				7.870		0		133	o C
1991				21,238	0	21,238	47,741	32,924					7/ 47,253		3 47.741	6.253	-	352	c
1992				16,931	0	16,931	46,899	30,651						2 3,487		2.244	0	374	0
1993				11,411	0	11,411	42,440	29,265		•		0	42,543			31,704	- 0	378	o
1994		•		16,386	0	16,386	49,111	32,534		2,322 12,370			47,693	3 1.418		8.469	0	1.936	0
1995				15,108	0	15,108	48,219	31,081					48,850			11,158	0	1,753	0
1996				23,600	0	23,600	29,686	35,912				0	57,143		3 59,686	9,427	0	2,264	0
1997				26,992	0	26,992	60,972	38,287				164	63,414			1,725	0	693 8/	0
1998	26,851			19,584	0	19,584	46,435	28,307		2,805 16,273		0	47,844			4,514	0	1,376 8/	
1999				34,490	0	34,490	65,088	37,157				2,286	63,77			1,010	0	1,524 8/	
2000				55,409	0	55.409	83.347	40.672					79.03			(49)	-	3.550.8/	
2001				41.823	C	41.823	68 244	30.383					64 71			(361)	-	3719.8/	
2002				54 148		54 148	79.043	35 747		5 285 26 573			75 110			(34)		7.100	
2002		8	25 176	50,037	247	1000	25,045	30,77					10.0		75,045	(4)(4)		4,013,00	
2007		\$ 5	22,170	728'00	747	000,00	0000	177'00 1				7,750	00,57			(900)	_ ·	3,780 8/	
7 PUU2	25,353	312	25,041	63,170	762	62,408	87,449	33,46/	5,549	4,883 29,314	3,201		81,508	5,941		(101)	0	3,257 8/	0
H COUS		STS	27,288	48,245	9/9	47,666	74,954	25,138				5,162	82'69		3 74,954	(1,269)	l 0	4,284 8/	
2006		317	27,242	61,388	725	60,663	87,905	30,888					83,82			1,399	<u> </u>	4,796 8/	
1/ Ground	posit retember	sodos Motor Motor Motors	Matarahad																

^{1/} Groundwater used in San Mateo Watershed 2/ Import used in San Mateo Watershed 3/ Lose = Total production less total use 1/ Irrigation 1966 to 1976 by pumping from Vail Lake. Figures from 1966 to 1972 supplied by USGS, 1972 to 2006 supplied by RCWD. 5/ Discharge from 2MGD Demonstration project

^{6/} Import recharge was 2.294 AF but portion remaining in storage was not computed due to lack of data 7/ Import recharge was 701 AF but portion remaining in storage was not computed due to lack of data 8/ Does not include EMWD reclaimed wastewater production R - Revision

## SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

## U.S.M.C. - CAMP PENDLETON EXCLUDING NAVAL WEAPONS STATION SHOWN ON B-10

	PRO	DUCTIO	NC	,				USE			,		REC	LAIMED WASTE	WATER	
WATER YEAR	AG LOCAL	CAMP SUPPLY	TOTAL		AGRICUL IN SMRW	OUT	IN	SUPPLY 2. OUT SMRW	/ TOTAL EXPORT	TOTAL 3/ IN SMRW		RECHARGED IN-SMRW 4/		TOTAL RECHARGED IN SMRW	TOTAL EXPORTED 6/	USED ON GOLF COURSE OUTSIDE SMRW
1966	1,101	4,605	5,706	11	429	672	2,026	2,579	3,251	2,455	- 11	919	974	1,893		
1967	796	4,811	5,607	ii	310	486	2,117	2,694	3,180	2,427	ii		1,243	2,156		
1968	986	4,939	5,925	ii	385	601	2,172	2,767	3,368	2,557	ii	866	1,214	2,080		
1969	940	4,821	5,761	11	367	573	2,058	2,763	3,276	2,485	11	1,019	1,170	2,189		
1970	1,106	5,481	6,587	11	431	675	2,347	3,134	3,809	2,778	П	1,032	1,113	2,145		
1971	819	5,291	6,110	11	319	500	2,264	3,028	3,527	2,583	П	921	1,090	2,011		*
1972	817	5,323	6,140	11	319	498	2,278	3,045	3,543	2,597	П	900	1,168	2,068		
1973	1,003	5,121	6,124	$\Pi$	391	612	,	2,932	3,544	2,580	П			2,137		
1974	909	5,202	6,111	11	355	554	2,224	2,978	3,532	2,579	11			2,055		
1975	757	4,593	5,350	11	295	462	1,957	2,636	3,098	2,252	П		•	2,519		
1976	885	5,384	6,269	11	345	540	2,305	3,079	3,619	2,650	П		•	2,447		
1977	994	4,506	5,500	11	388	606	1,918	2,588	3,194	2,306	11			2,358		
1978	176	5,177	5,353		69	107	•	2,964	3,071	2,282	11		•	2,446		
1979	1,070	7,213	8,283	11	417	653	3,109	4,104	4,756	3,527	11		· · ·	2,493		
1980	835	5,495	6,330	П	326 571	509	2,353	3,142	3,651	2,679	11		· · · · · · · · · · · · · · · · · · ·	2,506		
1981	1,464	5,240	6,704		571 564	893	2,241	2,999	3,892	2,812	11			2,368 2,254		
1982 1983	1,447 942	5,024 4,215	6,471 5,157	11	367	883 575	2,146 1,790	2,878 2,425	3,761 3,000	2,710 2,157	11			2,254		
1984	1,078	4,501	5,579	Н	420	658	1,790	2,585	3,243	2,137	11		•	2,443		
1985	1,069	4,764	5,833	11	417	652		2,725	3,377	2,456	11			2,619		
1986	953	4,807	5,760	Н	372	581	2,062		3,326	2,434	11			2,240		
1987	1.098	4.838	5,936		428	670	2.064	2,774	3,444	2,492	11			3,166		
1988	1,223	4,721	5,944	ii	477	746	2,010	2,711	3,457	2,487	H			3,396		
1989	856	5,044	5,900	н	334	522		2,896	3,418	2,482	11		*	2,747		
1990	855	4,228	5,083	ii	333	522	1,779	2,449	2,971	2,112	ii	1,277	1,451	2,728		
1991	554	3,159	3,713	ii	216	338	1,329	1,830	2,168	1,545	11	1,070	1,219	2,289		362
1992	898	3,254	4,152	П	350	548	1,376	1,878	2,426	1,726	11	933	1,548	2,481		279
1993	1,067	2,879	3,946	$\Pi$	416	651	1,201	1,678	2,329	1,617	11	1,049	1,926	2,975		205
1994	1,471	3,150	4,621	$\Pi$	574	897	1,345	1,805	2,702	1,919	11	1,034	1,501	2,535		279
1995	985	3,768	4,753	$\parallel$	384	601	1,588	2,180	2,781	1,972	П			2,453		280
1996	1,000	5,199	6,199	11	390	610	2,232		3,577	2,622	П		•	2,444		330
1997	1,066	5,238	6,304	11	416	650	2,244	2,994	3,644	2,660	Ш		•	2,920		509
1998	1,026	5,468	6,494	11	400	626	2,352	-	3,742	2,752	Ш		•	3,008		222
1999	1,064	5,054	6,118	П	415	649	2,145	2,909	3,558	2,560	!!		-,	3,023		205
2000	1,296	5,765	7,061	Ш	506	790	,		4,072	2,989	П		•	3,152		411
2001	1,025	5,341	6,366	П	399	626	•		3,653	2,713			•	3,140		454
2002	1,184	5,269	6,453	П	462	722	,	2,979	3,701	2,752		•	•	2,900		469
2003	1,270	5,210	6,480	П	495	775	2,218		3,767	2,713	11			2,687 0	2,776	415 444
2004	1,227	5,538	6,765	11	479 514	748	2,396		3,890	2,875	11			0	2,778	489
2005	1,317	4,902	6,219 6,556	11	514 597	803 933	2,134 2,176		3,571 3,783	2,648 2,773		-	_	0	2,736	449
2006	1,530	5,026	0,000	П	597	933	2,176	۷,۵۵۷	3,703	2,113	H	, ,	U	U	2,527	449

^{1/} Agricultural water use is divided with 39% used inside the SMRW and 61% used outside.

^{2/} Camp Supply water use inside the SMRW equals 44% of sum of Camp Supply production plus Naval Weapons Station Import, less the NWS Import for years beginning 1969. Prior to 1969 44% was used inside the SMRW and 56% was used outside.

^{3/} Assumes no losses.

^{4/} For years 1966 - 2003 Wastewater Recharged in SMR equals effluent from Plants 3, 8 and 13 (partial).

^{5/} For years 1966 - 2003 Wastewater Import Recharged in SMRW equals effluent from Plant 1 plus the portion of the effluent from Plant 2 returned to SMRW via Pond 2 plus the portion of effluent from Plant 13 not included in 4/. No record available for effluent from Plant 2 returned to SMRW for 1966-1974 & 1982 - June 1990. Calculation of import recharged in SMRW from Plant 2 is based on zero when no record is available.

^{6/} Beginning January 2003, all wastewater (except water used on Golf Course in San Luis Rey Waterhshed) was exported to Oceanside Outfall during construction of new wastewater treatment plant

TABLE B-10

## SANTA MARGARITA RIVER WATERSHED ANNUAL WATER PRODUCTION AND USE

#### U. S. NAVAL WEAPONS STATION, FALLBROOK ANNEX

	J	PRODUCTION	1	_		U	SE			WASTEWATER
WATER YEAR	LOCAL	IMPORT TO WATERSHED 1/	TOTAL		AG	COMMERCIA DOMESTIC		TOTAL 'USE		EXPORTS
<u> </u>				•					•	
1966	87	0	87	11	0	79	9	87	11	0
1967	92	0	92	ii	0	83	9	92	ii	0
1968	108	0	108	ii	0	97	11	108	ii.	0
1969	138	0	138	ΪÌ	0	113	25	138	II	0
1970	152	0	152	11	0	125	27	152	11	0
1971	39 P	76 E	115	11	0	100	15	115	$\parallel$	0
1972	0	115 E	115	11	0	105	10	115	$\parallel$	0
1973	0	115 E	115	11	0	105	10	115	$\Pi$	0
1974	0	115 E	115	11	0	105	10	115		0
1975	0	115 E	115	-11	0	105	10	115		0 ·
1976	0	115 E	115	11	0	105	10	115	$\parallel$	0
1977	0	115 E	115		0	105	10	115		0
1978	0	115 E	115	11	0	105	10	115	11	0
1979	0	115 E	115		0	105	10	115	Ш	0
1980	0	115 E	115	11	0	105	10	115	II	0
1981	0	115 E	115	11	0	105	10	115	- [ [	0
1982	0	115 E	115		0	105	10	115	11	0
1983 1984	0 0	115 E 115 E	115 115		0	105 105	10 10	115 115	-	26 E 26 E
1985	0	102	102		0	93	9	102	11	26 E
1986	0	94	94		0	93 85	9	94		18 P
1987	0	116	116		.0	105	11	116		27
1988	0	120	120		.0	109	11	120	Ш	25
1989	0	128	128		0	116	12	128		22
1990	0	145	145		0	132	13	145	ii	27
1991	0	109	109		0	99	10	109	li	11
1992	Ö	99	99	-11	Ö	90	9	99	Ш	7
1993	0	117	117	ii	0	106	11	117	ii	16
1994	0	73	73	ii	0	66	7	73	ii	5
1995	0	125	125	ii	0	114	11	125	ii	12
1996	0	100	100	ii	0	91	9	100	ii	5
1997	0	109	109	Ϊİ	0	99	10	109	ΪĹ	6
1998	0	97	97	Ϊİ	0	. 88	9	97	H	8
1999	0	111	111	11	0	101	10	111	11	5
2000	0	104	104	11	, 0	95	9	104	11	7
2001	0	73	73	11	0	66	7	73	11	8 .
2002	0	97	97		0	88	9	97	$\Pi$	9
2003	0	88	88	11	0	80	8	88	$\prod$	10
2004	0	73	73	11	0	66	7	73	11	8
2005	0	40	40	$\Box$	0	36	4	40		16
2006	0	64	64	11	0	58	6	64	11	8

^{1/ -} Estimate 1969-1984 - Records not available

^{2/ -} Loss = 10% of Use

E - Estimate

P - Partial year data

## SANTA MARGARITA RIVER WATERSHED MISCELLANEOUS WATER PRODUCTION AND IMPORTS

Quantities in Acre Feet

**IMPORT** 

#### **PRODUCTION**

YEAR	WESTERN MWD IMPORTS TO IMPROVEMENT DISTRICT A	ANZA MUTUAL WATER COMPANY	OUTDOOR RESORTS RANCHO CALIFORNIA, INC.	BUTTERFIELD OAKS MOBILE HOME PARK	LAKE RIVERSIDE ESTATES	PECHANGA INDIAN RESERVATION	HAWTHORN WATER SYSTEM	JOJOBA HILLS SKP RESORT	
1966	23.50								
1967	20.40								
1968	27.00				*		*		
1969	24.60							•	
1970	30.60								
1971	34.40								
1972	34.10			•					
1973	30.20								
1974	36.40								
1975	34.20								
1976 1977	35.00								
1017	27.20								
1978 1979	26.00 24.00								
1980	24.70								
1981	34.30	•							
1982	34.20								
1983	26.00								
1984	26.00								
1985	27.00		•						
1986	34.40								
1987	35.50								
1988	35.70								
1989	22.80	33.00	42.00	23.50	249.52				
1990	21.90	37.00	50.69	23.50	247.42				
1991	20.70	35.06	50.59	12.21	339.77				
1992	24.60	31.21	42.86	12.24	279.04				
1993	31.40	32.16	42.44	12.20	192.09				
1994	36.60	37.32	38.04	23.82 R					
1995	29.10	45.69	69.54	22.60 R					
1996	35.10	45.53	58.59	21.96 R					
1997 1998	30.40	43.87 39.54	83.42 87.42	30.25 R 24.41 R					
1999	31.00 40.70	33.30	70.74	25.70 R	209.55				
2000	41.90	44.67	90.10	24.58 R				53.28	
2000	58.70	45.00	208.64	23.21 R				74.87	
2001	64.40	41.10	216.13	24.43 R			82.87	91.83	
2002	42.40	44.04	201.63	34.56 R			81.61	74.70	
2004	50.30	40.44	216.77	32.20 R			94.19		
2005	62.20	38.26	187.06	18.09 R			55.87	66.95	
2006	65.80	51.36	198.92	27.30	268.60		40.25		
	23.00								

R - Revised

WATERMASTER SANTA MARGARITA RIVER WATERSHED

# SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2005-06

# APPENDIX C SUBSTANTIAL USERS OUTSIDE ORGANIZED WATER SERVICE AREAS

WATERMASTER SANTA MARGARITA RIVER WATERSHED

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
AGUANGA GRO	UNDWATER AREA							
Clawson, Gary A.	43425 Sage Road Aguanga, Ca. 92536	917-050-009 917-050-007 581-070-013 581-150-013 581-150-016	309.74 82.19 43.10 120.56 25.37	Total   of 				
	·.	581-070-014	158.08	30.00	Alfalfa	8S/1E-7N(1) 8S/1E-7N(2) 8S/1E-7Q(1) 8S/1E-7Q(2)	Total of   90.00	
Strange, Owen W. and Elizabeth G. Val Verde Partners	m/t P.O. Box 1974 Rancho Santa Fe, Ca. 92067 43023 Hwy 79 Aguanga, CA 92536	583-040-022 583-040-021 583-130-001-3 583-120-001-2 583-060-003-9	97.78 13.45 80.00 120.00 41.60	Total   of   90.00	Oats and Pasture	8S/1E-19Q(1) 8S/1E-19Q(2)	0.00 150.00	
						8S/1E-29L Divers	ion	250.00
Twin Creek Ranch/ Chester M. Mason Family Trust	c/o Jim Holden P. O. Box 519 Corona, Ca. 91718 44201 Hwy 79 Aguanga	583-120-081 583-120-083	17.29 68.09	65.00	Row Crops	8S/1E-28N1 8S/1E-28N(2)	Total   	
	44735 Hwy 79 Aguanga	583-120-084 583-150-001	179.39 80.00	30.00 15.00	Row Crops Row Crops	8S/1E-29H	of   	
		583-140-014 583-140-015 583-140-016 583-140-018 583-140-020 583-140-019	48.03 40.00 40.00 10.09 10.15 10.00	15.00 35.00 38.00	Row Crops Row Crops Row Crops	8S/1E-33F 8S/1E-33G1 8S/1E-33B	       792.00	

# SANTA MARGARITA RIVER WATERSHED SUBSTANTIAL USERS OUTSIDE ORGANIZED WATER SERVICE AREAS

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
AGUANGA GROI	JNDWATER AREA (C	ont)						
Harris, Homer N.	44444 Sage Road	581-160-014	17.73	Total Of		8S/1E-18J(1)		
and Dolores G.	Aguanga, CA 92536			20.50	Citrus & Grass	8S/1E-18J(2)		
		581-160-015	7.42	6.00	Fruit and			
		581-150-009	7.00	10.00	Walnuts	8S/1E-18H(1)	30.60	
						8S/1E-18H(2)	0.20	
		581-180-022	30.00	0.00				
		581-180-004	20.00	0.00				
		581-180-020	20.00	0.00		8S/1E-17M	61.18	
		581-180-021	2.15			8S/1E-17E	25.40	
Valeywide Recreation and Parks District	901 W. Esplanade Ave San Jacinto, CA 92582	581-170-009	7.82	7.82	Grass	Used 8S/1E-17E	owned by Harris	S
Wilson Creek Farms	Sage Road	581-170-012	190.40	Total of		8S/1E-17B	350.00	
	Aguanga, CA 92536	581-170-013	99.63	84.00	Potatoes			
	m/t P. O. Box 2921	581-180-005	2.76					
	Hemet, CA 92546	581-180-009	120.00	20.00	Row Crops			
	, , , , , , , , , , , , , , , , , , , ,	581-190-013	280.00	80.00	Potatoes			
		581-190-014	40.00					
Wilson Creek	Sage Road	581-070-002	160.00					
Development LLC	Aguanga, CA 92536	581-070-005	640.00			8S/1E-9Q		140.00
•	m/t P. O. Box 2921	581-100-013	80.00					
	Hemet, CA 92546	581-100-019	30.00					
	•	581-100-020	10.00					
		581-100-022	20.00					
		581-100-038	9.53					
		581-100-039	9.23					
		581-100-040	8.91					
California Golf Academy	43590 Sage Road Aguanga, CA 92536 m/t 44535 Bedford Court Temecula, CA 92592	581-120-006	200.00	6.00	Grapes	8S/1E-8K2	24.00	

TOTAL AGUANGA GROUNDWATER AREA

552,32

1,523.38

390.00

CURRENT OWNE	R ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	WELL/ DIVERSION LOCATION PR TWP/RNG/SEC	WELL RODUCTION AC. FT	SURFACE DIVERSION AC. FT
TEMECULA CR	REEK ABOVE AGUANGA	A GROUNDW	/ATER ARE	ΞA				
And France Inc	m/t P. O. Box 490	113-090-01	377.07	150.00	Potatoes			
Agri-Empire, Inc.				150.00	Potatoes			
	San Jacinto, CA 92383	113-090-03	21.46					
		113-090-05 113-100-01	541.22 389.81			OR/OF 11B Discomi		0.00
		113-100-01	150.09			9S/2E-11B - Diversion 9S/2E-17D - Spring	UII	0.00 0.00
		113-130-01	196.54			9S/2E-17D - Spring 9S/2E-16N2	10.00	0.00
		113-140-03	190.04			9S/2E-16M	77.00	
						9S/2E-16M 9S/2E-16F1	49.00	
						9S/2E-16N1	18.00	
						9S/2E-16F2	0.00	
						9S/2E-16K - Diversion		96.00
		113-140-04	503.24			SOIZE-TOIX - DIVERSI	511	50.00
		113-140-05	45.09					
		113-140-06	93.94					
		114-020-09	37.16	0.00				
		114-030-08	331.79	0.00		9S/2E-22	0.00	
		114-030-26	42.87					
Bergman, Arlie W. a	anc 37126 Hwy 79	113-140-01	358.62	0.00			78.00	
Coral R.	Warner Springs, CA 92086	;						
(Water used on Agr	i-Empire, Inc.'s Fields)							
Papac, Andrew	m/t 2030 Santa Anita Ave	113-060-012	63.21	20.00	Bermuda Grass	9S/2E-7D	38.00	
and Olga	South El Monte, CA 91733 38642 Highway 79 Warner Springs, CA 92086	3				9S/2E-7E - Diversion	n	38.00
TOTAL TEMEC ABOVE AG	Warner Springs, CA 92086			170.00	•		270.00	134.0

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
WILSON CREEK ANZA VALLEY	ABOVE AGUANGA G	ROUNDWAT	ER AREA					
Greenwald, Alvin G.	6010 Wilshire Blvd #500 Los Angeles, CA 90036	573-180-001 576-070-001	156.38 70.00	156.38 70.00	Row Crops Pasture	7S/3E-17E 7S/3E-20N	625.52 266.00	·
Agri-Empire, Inc.	P.O. Box 490 San Jacinto, CA 92383						•	
	Section 8	573-090-005 573-100-002	40.00 27.79	0.00				
	Section 10	575-050-044 575-060-002	14.36 133.93	0.00 0.00		7S/3E-11N4 7S/3E-11P3	201.00 149.00	
	Section 13	575-100-037	57.80	0.00		70/012-1110	140.00	
	Section 14	575-110-021 575-110-027	143.75 54.45	0.00 0.00		7S/3E-14D1	0.00	
		575-310-002 575-310-011 575-310-012	39.09 80.00 80.00	0.00 0.00 0.00		7S/3E-14C2	337.00	
		575-310-013 575-310-014	17.46 0.75	0.00 0.00				
		575-310-027 575-310-028	17.46 0.92	0.00 0.00				
	Section 15	575-080-014 575-080-015	9.92 4.35	0.00				
		575-080-017 575-080-018	9.75 10.13	0.00 0.00				
		575-080-019 575-080-021 575-080-022	31.29 20.00 20.00	0.00 0.00 0.00				
		575-080-024 575-080-027 575-090-010	20.00 20.00 38.80	0.00 0.00 0.00				
	Section 17	573-180-011	39.74	0.00				

# SANTA MARGARITA RIVER WATERSHED SUBSTANTIAL USERS OUTSIDE ORGANIZED WATER SERVICE AREAS

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
VILSON CREEK ABO	OVE ACHANCA	CDOUNDMAT	ED ADEA					
ANZA VALLEY (Cont)	OVE AGUANGA	GROUNDWAT	EK AKEA					
gri-Empire, Inc. (Cont)								
git Empire, tile. (cont)	Section 20	576-060-009	8.26	210.00	Potatoes			
	000001120	576-060-031	16.09	0.00	. 0.0.000			
		576-060-033	79.45	0.00				
		576-060-038	5.41	0.00				
		576-070-003	80.00	0.00				
		576-070-005	116.57	0.00				
	Section 22	576-100-061	37.71	0.00				
		576-110-001	160.00	0.00				
		576-110-002	28.00	0.00				
		576-110-004	50.00	0.00				
		576-110-006	19.29	0.00		7S/3E-21R3	158.00	
		576-110-007	17.85	0.00				
		576-110-008	17.00	0.00				
		576-110-009	18.41	0.00				
	Section 22	575-120-012	88.03	75.00	Potatoes			
•		575-130-003	19.55	0.00				
		575-130-006	40.89	0.00				
		575-130-008	18.56	0.00				
		575-130-009	20.06	0.00				
		575-130-010	20.07	0.00				•
•		575-130-011	19.19	0.00				
		575-130-012	18.18	0.00				
		575-130-013	19.02	0.00				
		575-130-014	19.00	0.00				
		575-130-015	17.58	0.00				
		575-120-018	20.45	0.00				
		575-120-019	20.45	0.00				
		575-120-032	4.69	0.00				•
4		575-120-033	4.68	0.00				
		575-120-034	4.68	0.00				
		575-120-035	4.28	0.00				

105.04

60.00

Potatoes

Section 23

575-140-019

#### SANTA MARGARITA RIVER WATERSHED SUBSTANTIAL USERS OUTSIDE ORGANIZED WATER SERVICE AREAS

CURRENT OWNER ADDRESS PARCEL PARCEL IRRIGATED CROP LOCATION PRODUCTION DIVERSION NO. ACREAGE 2005-2006 2005-2006 TWP/RNG/SEC AC. FT AC. FT
--------------------------------------------------------------------------------------------------------------------------------------------

#### WILSON CREEK ABOVE AGUANGA GROUNDWATER AREA

ANZA VALLEY (Con	t) .							
Cahuilla Indian Reservation								
	Domestic and	Commercial Well	s Reported by B	ureau of Indian A	Affairs		Total	
	Wells in	Wells out of					1 .	
	Basement Complex	Watershed	Wells	with QYAL and/o	r QTOAL		į	
	7S/2E-14L1	8S/3E-2A1	7S/2E-14J1	7S/2E-28Q1	7S/3E-31L2		1	
	7S/2E-25D1	8S/3E-2B1	7S/2E-14M1	7S/2E-33C1	7S/3E-34E1		i	
	7S/2E-26B1	8S/3E-2D1	7S/2E-14M2	7S/2E-33E1	7S/3E-34N1		· i	
	7S/2E-26B2	8S/3E-2E1	7S/2E-14R1	7S/2E-33N1	7S/3E-34Q1		İ	
	7S/2E-26B3	8S/3E-2G1	7S/2E-23A1	7S/3E-27C1	8S/2E-4D1		i	
	7S/2E-34E1	8S/3E-2H1	7S/2E-23D1	7S/3E-27C2	8S/2E-4N1		i	
	7S/2E-36A1	8S/3E-2K1	7S/2E-23F1	7S/3E-27H1	8S/2E-4N2		i	
	7S/2E-36J1		7S/2E-23G1	7S/3E-27M1	8S/2E-4P1		i	
	7S/2E-36R1		7S/2E-23H1	7S/3E-28A1	8S/2E-4R1		i	
	7S/3E-26A1		7S/2E-23K1	7S/3E-28A2	8S/2E-4R2		i	
	7S/3E-29Q1		7S/2E-23M1	7S/3E-28D1	8S/3E-5Q1		of	
	7S/3E-30H1		7S/2E-23P1	7S/3E-29C1	8S/3E-6J1		1	
	7S/3E-31A1		7S/2E-23Q1	7S/3E-29M1			i	
	7\$/3E-31N1		7S/2E-25C1	7S/3E-3OP1			i	
	7S/3E-31Q1		7S/2E-25F1	7S/3E-3QQ1			i	
	7S/3E-32D1		7S/2E-25R1	7S/3E-3OR1			i	
	7S/3E-32D2		7S/2E-26E1	7S/3E-3OR2			i	
	8\$/3E-6B1		7S/2E-26L1	7S/3E-3OR3			i	
	8S/3E-6B2		7S/2E-27A1	7S/3E-31C1			i	
	8S/3E-6G1		7S/2E-27H1	7S/3E-31F1			i	
	8S/3E-6R1		7S/2E-28N1	7S/3E-31L1			i	
							43.00	
SUBTOTAL ANZA VA	ALLEY			571.38			1,779.52	0.00
WILSON CREEK AN	BOVE AGUANGA G	ROUNDWAT	ER AREA					
Green Shell Company 39	9850 Sage Road emet, CA 92343	571-080-012	80.00	50.00	Olive Trees	7S/1E-20Q	55.00	
SUBTOTAL LEWIS V	'ALLEY			50.00			55.00	0.00
TOTAL WILSON CF ABOVE AGUAN	REEK GA GROUNDWATE	R AREA		621.38			1,834.52	0.00

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
MURRIETA-TEMI	ECULA GROUNDWAT	ER AREA						
Temecula Ranchos Louidar	c/o McMillan Farm Mgt. 29379 Rancho Cal. Rd #201 Temecula, CA 92390	943-040-011 943-060-010 943-060-011	20.00 94.49 26.50	18.00 89.00 29.00	Citrus Citrus Citrus	7S/2W-28L	249.00	
Anza Grove Selina J Cavaletto Lassalette Enterprise	c/o McMillan Farm Mgt. 29379 Rancho Cal. Rd #201 Temecula, CA 92390	942-180-002 942-240-003 942-240-004 942-240-005	40.28 40.83 40.83 39.31	Total of   155.00	Citrus	7S/2W-26B1	129.00	
A Peel Citrus Giddings, Richard W. Mendoza, Bertha	c/o Stage Ranch Farm Mgm P. O. Box 1371 Temecula, CA 92593 38695 Highway 79 Warner Springs, CA 92086	917-240-015-7 917-240-014-6 917-150-006-1 917-150-002-7	20.00 60.00 120.00 117.76	0.00 0.00 110.00 0.00	Citrus	8S/1W-21K(1) 8S/1W-21K(2) 8S/1W-21P(1) 8S/1W-21P(2)	275.00	
Boots, Clydene	P. O. Box 321 Murrieta, CA 92362 25555 Washington Ave Murrieta, Ca. 92564	909-090-019 909-100-017	16.66	14.00	Pasture	7S/3W-21P	60.00	
James A. and Maggie Carter Living Trust	Highway 79 S Temecula, CA m/t P. O. Box 28739 Santa Ana, CA 92799-8739	943-230-001 917-250-004 917-250-005	109.34 80.00 80.00	75.00 Total of	Grapes	8S/1W-25Q 8S/1W-25P 8S/1W-25N(1)Sp	0.00 22.00 ring 3	0.00
		917-250-007	240.00	220.00	Grapes	8S/1W-36K Sprin 8S/1W-36H Sprin 8S/1W-36K(1) 8S/1W-36K(2) 8S/1W-36K(3) 8S/1W-36L - Stre	54.00 53.00 96.00	0.00 0.00 52.00

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
MI IRRIETA TEM	ECULA GROUNDWAT	FR AREA (C	ont)					·
		•	•		•			
Regency Properties	44051 Rainbow Cyn Rd.	922-220-002	86.11	Total		8S/2W-19(D)	275.83	
	Temecula, CA 92592	922-220-003	5.75	ļ				•
		922-220-004	52.18	ļ				
		922-220-007	14.36					
		922-220-008	3.99	of				
		922-230-002	59.29	1				
		922-230-003	1.00	1				
		922-230-004	40.00	1				
		922-230-007	25.00	1				
		922-230-008	16.11	150.00	Grass			
Carson, David M.	25471 Hayes Ave	909-260-036	8.87	7.00	Pasture	7\$/3W-29G	39.90	
and Carol J.	Murrieta, CA 92362	909-260-042	4.31	3.50	Pasture			
Pechanga Indian Res		id Commercial W	elis Reported	hy Pechanga R	and			
	Domestic at	id Collinercial VV	ens reported	by recilaliga b	anu			
	Wells in	Wells out of		Wells with				
	Basement Complex	Watershed		QYAL and/or C	TOAL			
				8S/2W-28R1			Total	
				8S/2W-29A2*			1	
				8S/2W-29B10*			i	
				8S/2W-29B11*			of	
				8S/2W-29F3			1	
				8S/2W-29J3*			j	
			* - Total prod	uction attributed	d to these four we	ells for 2005-06	 	
					Domestic Use	194.00		
					Commercial Use			
					Irrigation	159.00		
					TOTAL USE		754.00	0.00
				<del></del>			10 1.00	3.0

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	LOCATION PRO	WELL DUCTION AC. FT	SURFACE DIVERSION AC. FT
SANTA MARGAF	RITA RIVER BELOW G	ORGE						
DE LUZ CREEK								
Ezor, Albert E.	40922 DeLuz Road Fallbrook, CA 92028	101-271-17	47.79	12.00 2.00	Avocados Vegetables	8S/4W-29D(1) 8S/4W-29D(2)	36.80 Total	
Prestininzi, Pete	2525 E. Mission Road	101-220-12	31.63		Pasture & Flower	-		
and Dorothy N.	Fallbrook, CA 92028 Richmond Truck Trail and DeLuz Murrieta Road	101-210-53	50.44	12.00	Avocados and Citrus	8S/4W-20A(1) 8S/4W-20H(1) 8S/4W-20H(2) 8S/4W-20A(2) 8S/4W-20H(3) 8S/4W-20A - Diversio	16.00 16.00 14.00	0.00
Varela, Alfred	41125 DeLuz Rd Fallbrook, CA 92028	101-210-11	15.23	8.50 0.50	Avocados Citrus	8S/4W-20Q(1) 8S/4W-20Q(2)	21.60 Total	
Lake Forest LLC	41257 DeLuz Rd Fallbrook, CA 92028 m/t 26051 Glen Canyon Dr. Laguna Hills, CA 92653	101-210-12	30.28	10.00 18.00 2.00	Avocados Citrus Row crops	8S/4W-20Q(1) 8S/4W-20Q(2) 8S/4W-20Q(3)	Total of 66.20	
Wagner Family Trust	41128 DeLuz Falibrook, CA 92028	101-210-23 101-210-22	17.19 4.55	15.00 3.00	Avocados Persimmons	8S/4W-20P(1) 8S/4W-20P(2) 8S/4W-20P(3)	0.00 0.00 36.00	
Chambers, Robert R. and Clytia M.	m/t 11439 Laurelcrest Dr. Studio City, CA 91604 40888 DeLuz-Murrieta Rd.	101-571-03 102-130-42	41.72 73.14	20.00 5.00 20.00	Flowers Fruit Flowers	8S/4W-28A 8S/4W-28A - Diversio 9S/4W-9B(1) 9S/4W-9B(2) 9S/4W-9B(3)	30.00 n 51.00 1.00 30.00	5.00
Weiburn, Douglas J. and Sue	40787 DeLuz Murrieta Rd. Fallbrook, CA 92028 40751 DeLuz Murrieta Rd	101-571-08	26.98	8.50 1.50	Gourds/Melons Fruit Trees	8S/4W-28G1	35.00	
Nezami, Mohammed Bluebird Ranch	2193 Calle Rociada Fallbrook, CA m/t P. O. Box 1089 Fallbrook, CA 92088	101-312-02 101-312-01	58.17 82.29	45.00 5.00 42.00	Flowers Avocados Flowers	8S/4W-31K(1) 8S/4W-31K(2) 8S/4W-31K(3) 8S/4W-31L	Total of   162.18	
*		101-312-01	02,29	42,00	Flowers	8S/4W-31L - Diversion		31.48

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	DIVERSION LOCATION PR TWP/RNG/SEC	WELL ODUCTION AC. FT	SURFACE DIVERSION AC. FT
SANTA MARGAF	RITA RIVER BELOW G	ORGE (Cont	)					
DE LUZ CREEK (	Cont)							
√anginkel, Norman and Deborah	39452 DeLuz Road Fallbrook, CA 92028 m/t 20664 Calle De La Lad Yorba Linda, CA 92887	101-312-03 era	80.00	25.00	Nursery Stock	8S/4W-31J(2) 8S/4W-31J(3) 8S/4W-31J(4) 8S/4W-31J(5)	16.00 4.00 40.00 14.00	
		102-052-04 102-731-02	22.04 4.26	10.00	Avocados			
Daily Family Trust	40555 Ross Road Fallbrook, CA 92028	101-430-27 101-430-30 101-500-01 101-480-14	2.73 16.39 16.62 13.20	Total of 7.00 7.00 6.00	Avocados Limes Persimmons	8S/4W-34- Lake Dive	areion	7.00
SUBTOTAL DELU	Z CREEK	101-400-14	10.20	236.00	1 eraumona	OS/4W-34- Lake Dive	589.78	43.4
SANDIA CREEK			,					
Cal June, Inc.	m/t P. O. Box 9551 No. Hollywood, CA 91609 40376 Sandia Creek Fallbrook, CA 92028	101-360-40	126.32	65.00	Avocados	8S/4W-25P(1) 8S/4W-25P(2) 8S/4W-25P(3) 8S/4W-25P(4) 8S/4W-25P(5)		
						8S/4W-25P - Diversion	on	132.0
SUBTOTAL SAND	IA CREEK			65.00			0.00	132.00
SANTA MARGARI	TA RIVER							
San Diego State Jniversity Foundation	47981 Willow Glen Rd. Temecula, CA m/t Matt Rahn, Director SDSU Foundation 5500 Campanile Dr. San Diego, CA 92182-461	918-040-10 918-060-17	120.00 40.00	Total of 20.00	Citrus and Avocados	8S/3W-33Q1 8S/3W-33Q(2) 8S/3W-33Q - Diversi	8.00 8.00 on	50.00
SUBTOTAL SANT	A MARGARITA RIVER			20.00			16.00	50.00
TOTAL SANTA M	IARGARITA RIVER BE	LOW GORG	E	321.00			605.78	225.48

CURRENT OWNER	ADDRESS	ASSESSOR PARCEL NO.	PARCEL ACREAGE	ACRES IRRIGATED 2005-2006	IRRIGATED CROP 2005-2006	WELL/ DIVERSION LOCATION TWP/RNG/SEC	WELL PRODUCTION AC. FT	SURFACE DIVERSION AC. FT
LOWER MURRIE	TA							
Ronnenberg Family	c/o Cliff Ronnenberg	571-020-046	81.09	0.00				
Trust	11292 Western Avenue	571-020-047	40.80	0.00				
11001	Stanton, CA 90680	571-020-048	36.75	0.00				
(Sage Ranch Nurserv	) 42522 E. Benton Rd.	571-020-049	148.86	0.00		7S/1E-7D	5.50	
(g	Aguanga, CA	571-020-004	1.50	0.00				
		571-520-007	109.50	Total				
		571-520-008	99.43	1				•
		571-520-009	80.23	۰ of				
		571-520-010	78.20	i				
		915-140-003	101.65	i				
		915-140-008	21.39	i				
		470-210-007	53.62	i				
		470-220-004	121.00	400.00	Olive trees	7S/1E-7E - Diver	sion	100.00
EG High Desert	39800 E. Benton Rd.	915-120-18	37.74	10.00	Pasture	7S/1W-10R(1)	Total	
Properties LLC	Temecula, CA 92390	010 120 10	0,,,,	10.00	. 4014.0	7S/1W-10R(2)	of	
	m/t 12979 Arroyo Street					7S/1W-10R(3)	i i	
	San Fernando, CA 91340					7S/1W-10R(4)	38.00	
						7S/1W-10R(5)	Domestic	
						7S/1W-10R(6)		
						7S/1W-10R(7)	-	
TOTAL LOWER	MURRIETA			410.00			43.50	100.00
GRAND TOTAL				2,945.20			6,284.91	901.48
GRAND TOTAL	. Not including Pechanga Ind and Cahuilla Indian Reserv		(754 AF)	2,945.20			5,487.91	901.48

WATERMASTER SANTA MARGARITA RIVER WATERSHED

# SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2005-06

## APPENDIX D WATER QUALITY DATA

**AUGUST 2007** 

WATERMASTER SANTA MARGARITA RIVER WATERSHED

#### TABLE D-3

### SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

#### WELLS SAMPLED BY MURRIETA COUNTY WATER DISTRICT

Site Location	Date	Specific Conductance	Total Dissolved Solids	Che	Chemical Constituents - mg/l						
Site Location	Tested	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3	NO3
Holiday Well	06/16/89	1300	775	122	39	100	2	178	66	372	40
7S/3W-20C09	10/18/91										25
	11/15/91										26
	12/13/91										28
	01/10/92	,									27
	02/07/92	<del></del>			·						27
•	05/01/92										32
	05/29/92										28
•	08/21/92										27
	01/22/93	960	605	83	29	83	2	130	84	278	33
	10/15/93										32
	03/30/94										44
•	06/22/94								٠		35
	09/14/94										31
	12/07/94										30
	03/01/95										32
	06/21/95										11
•	09/13/95										27
	12/06/95										26
	03/27/96										. 15
	06/06/96										24
	09/11/96	·									22
	11/08/96										55
	11/14/96										25
	12/05/96										24
	03/27/97										20
	06/18/97			·							21
	12/03/97										18
	03/25/98										21
	04/22/98	1090	680	89	29	85	1	150	76	290	22
,	06/17/98										23
	10/01/98										25
	12/02/98										28
	02/24/99										33
	03/24/99										26
	09/09/99									. <u></u> -	36
	12/03/99										32
	07/12/00										21
	08/04/00			110	36	99		180	110	320	21
											17
	10/24/01 03/06/02										15
			- 780							- 310	
	07/11/02		000	113						- 332	
	10/03/03			113						- 002	
	04/21/04		 - 980	160	<del>-</del> 47					- 440	
	01/27/05			100							
	03/30/05			160	48	130	1.6	240	130		46
	01/26/06			160	48	190	1.0	240			. 49
	01/30/06								- <b></b>		70

### SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

#### WELLS SAMPLED BY MURRIETA COUNTY WATER DISTRICT

Site Location	Date	Specific Conductance	Total Dissolved Solids									
	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3	
***************************************	H											
House Well	06/16/89	660	345	34	3	95	2	87	60	153	<1	
7S/3W-20G06	02/27/91	770						110	65	168	<1	
	03/01/91	730					'	110			<1	
	03/08/91	680	420	42	5	90	2	110	68	122	<1	
•	05/10/91	750									<1	
	10/11/91										<1	
	11/08/91										<1	
	05/22/92										<1	
	08/14/92	·									<1	
	01/22/93	720	415	40	5	106	2	100	68	168	<1	
	09/07/94								****		<1	
	12/27/95	****									<1	
	03/22/95										<1	
•	06/14/95		· · · · · · · · · · · · · · · · · · ·						·		<1	
	09/06/95										<1	
	12/27/95										<1	
	03/20/96	. <del></del>									<2	
	06/12/96									·	<2	
	09/04/96	·									<2	
	12/26/96										<2	
	03/19/97										<2	
	06/12/97	·			· <del></del>						<2	
	12/30/97			·							<2	
	03/18/98										<2	
	04/15/98	660	360	. 30	3	94	1	91	62	130	<2	
	06/10/98										<2	
	10/01/98	·									<2	
	12/23/98										<2	
	02/17/99										<2	
	03/17/99										<2	
	06/09/99										<2	
	09/01/99				·						<2	
	12/22/99										ND	
	03/15/00	640	370	. 29	3	92	2	82	61	130	<2	
	06/07/00										<2	
	09/27/00										<2	
	10/24/01										<2	
	03/06/02										<2	
	07/11/02		- 440							170		
	10/03/03			34	3	103		87		140	ND	
	04/21/04				·						<2	

ND - None Detected

### SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

#### WELLS SAMPLED BY MURRIETA COUNTY WATER DISTRICT

Site Location	Date	Specific Conductance	Total Dissolved Solids			Cher	nical C	onstituer	ıts - m	g/l	
	Tested	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3	NO3
South Well	09/07/90	690	405	62	17	68	2	83	56	229	4
7S/3W-20D	10/04/91										2
70/3W-20D	11/01/91		-								3
	11/26/91										2
	05/15/92										<1
	10/01/93										2
•	09/28/94					-					1
	12/21/94										3
	03/15/95										2
	06/07/95										2
	09/27/95										2
	12/20/95							·			3
	03/13/96		***								2
	06/15/96										3
	09/25/96										3
	12/18/96				·						3
	04/09/97										2
	06/04/97		***								2
	03/11/98					·					<2
	04/08/98	820	500	73	18	67	2	92	73	250	3
	06/03/98		***								3
	10/01/98										3
	12/16/98										2 .
	03/10/98							·			2
	06/09/99										2
	09/22/99										<2
	12/15/99										ND
	02/09/00	810	460	55	14	84	1	99	63	210	<2
•	05/03/00										<2
	08/04/00	780	440	47	9	100		99	48	210	<2
	08/23/00	· .									<2
	10/24/01										<2
	03/20/02										4
	07/11/02		460								
	10/03/03		460	59	·					207	
	04/21/04										<2
	01/27/05		610	. 110	28					300	
	03/30/05										·5
	01/26/06		440	42	9.1	110	1.2	120	65		1.2
	04/12/06										6.1
	05/10/06										1.6
	06/14/06										1.4
	07/12/06										<1
	08/09/06										1.4
	09/13/06										1.5

ND - None Detected

### SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

#### WELLS SAMPLED BY MURRIETA COUNTY WATER DISTRICT

0:1-1	Data	Specific	Total Dissolved Solids			Chei	nical Co	onstituer	nts - m	g/l	
Site Location	Date Tested	Conductance umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3	NO3
										~~~~~	
North Well	06/16/89	730	390	40	7	98	2	98	45	201	<1
7S/3W-18J02	10/25/91										<1
	11/22/91										<1
	05/08/92	·									<1
	08/28/92										<1
	01/22/93	680	405	39	8	99	2	100	51	183	<1
	10/22/93							·			<1
•	07/08/94	810	520			87		130	53		<1
	09/21/94		-	·							<1
	12/14/94										<1
	03/08/95										<1
	06/28/95	·				·					<1
	09/20/95										<1
	12/13/95	,									<1
	03/06/96										<2
	06/26/96										<2
	09/18/96										<2
	12/11/96										<2
	06/25/97	·									<2
	07/08/98	760	460	49	9	100	2	110	51	220	<2
	10/01/98										<2
	12/09/98									٠	<2
	02/03/99					-					<2
	03/03/99		. <u></u>								<2
	06/23/99										<2
	09/22/99							,			<2
	12/08/99										<2
	01/05/00	780	440	47	9	100		99	48	210	<2
	05/03/00										<2
	07/19/00										<2
	10/24/01										<2
	03/06/02										<2
	07/11/02		420							180	
	10/03/03		- 440	53							
	04/21/04										<2
	01/27/05		- 440	59	10					230	
	03/30/05										<2
	01/26/06		450	60	11	96	2	120	52		. 1
	05/10/06										<1
	07/19/06										<1
	08/16/06										<1
	09/20/06										. <1

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY MURRIETA COUNTY WATER DISTRICT

Site Location	Date	Specific Conductance	Total Dissolved Solids			Chemical Constituents - mg/l					
Site Location	Tested	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3	NO3
Lynch Well 7S/3W-17R02	06/16/89	760	410	70	17	55	1	86	30	262	8
Morris Well 7S/3W-19R	09/07/90	530	280	38	7	68	3	50	49	168	3
Alson Well 7S/3W-7M	06/06/90 07/21/98 09/09/98 05/03/00 05/19/00 11/28/01	1520 1260 1200 1290 1290	915 880 850 800 750	138 100 110 97 93	46 37 39 36 33	110 120 120 110 110	1 <1 <1 <1 <1	250 180 180 180 180	81 92 100 96 96	433 330 320 330 310	31 23 23 20 19 17
	03/06/02 07/01/02 10/03/03 01/27/05 01/26/06	880 1100 1500		80 100 120	26 32 41	95 110 120	 1.2	 ND 150 230	ND 81 120	270 259 320	20 ND 18
	04/12/06 05/10/06 06/28/06 07/26/06 08/23/06 09/27/06										19 18 20 20 18 21
New Clay Well 7S/3W-20	03/09/04 01/26/06 01/31/06 01/31/06 04/04/06 04/12/06 05/10/06 06/07/06	480 590 	340 310 	23 20	1 1.2	87 93 	1 1.2	79 85 	64 57 	98	<2 <1 7.2 6.9 <1 <1 <1 <1 <1
	07/05/06 08/02/06 09/06/06										<1 <1

ND - None Detected

WATERMASTER SANTA MARGARITA RIVER WATERSHED

TABLE D-4

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	Constitue	nts - m	ng/l	
One Location	Tested	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	НСО3	NO3
No. 101	06/01/88	810	495	76	15	79	8	116	16	314	
7S/3W-34G1	08/05/88										<1
	05/23/90	630	365	30	6	91	2	101	35	107	. 3
•	08/04/93	860	465	76	14	78	2	120	22	275	<1
	08/09/96	820	480	69	14	83	2 .	110	15	310	<2
() ()	10/16/97					·					<2
	08/11/99	840	510	70	. 14	85	2	110	17	300	<2
•	06/25/02										<2
	08/14/02	870	500	66	14.	85	2.5	120	15	250	<2
	06/11/03										<2
	06/15/04										<2
	06/14/05										<1
	08/09/05	880	440	75	15	87	2.5	140	22	300	<1
	06/07/06				~~~						<1
No. 102	01/04/89	695	370	9	2	134	1	101	25	195	<1
8S/3W-2Q1	01/15/92	930	615	38	4	160	3	160	55	250	<1
	05/17/95	850	475	21	1	144	1	120	130	98	<1
	06/20/95	1190	700	26	2	207	2	150	220	131	<1
	06/09/97										<2
No. 105	07/06/89	500	280	30	6	66	2	71	22	134	14
7S/3W-25M1	03/17/93	480	310	17	2	80	2	67	22	110	14
No. 106	06/29/88	920	485	38	5	143	3	182	66	70	16
7S/3W-26R1	05/13/92	880	515	35	4	142	2	180	72	110	17
	05/16/95	870	495	32	3	138	2	160	57	116	14
	07/07/97										8
	07/20/98										9
	07/20/99										9
	07/06/00		***								8
	05/01/01	490	300	7	<1	96	<1	70	23	100	8
	07/10/01										12
	07/03/02										8
	07/07/03										6.8
	05/11/04	530	310	9	<1	93	1	80	25	88	8
	07/13/04										8
	07/07/05										6.5
	07/19/06										6.1

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

		0	Chemical Constituents - mg/l								
Site Location	Date	Specific Conductance	Dissolved Solids			Cne	micai G	onstitue	nts - n	ıg/ı	
	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 107	04/11/88	490	365	19	4	73	2	69	22	116	15
7S/3W-26J1	05/29/91	950	535	63	15	104	3	130	120	171	11
No. 108	05/25/88	780	455	51	11	96	2	120	68	153	14
7S/3W-25E1	05/29/91	930	500	59	14	104	3	130	110	153	10
i .	05/13/94	640	395	23	5	100	2	120	51	104	7
	05/16/95					·					5
	05/13/97	540	300	7	<1	110	<1	110	15	85	4
	05/05/99			·		·					8
	05/16/00	630	350	7	<1	110	· <1	130	12	65	3
	05/02/01										2 .
	11/19/02										2
	04/14/05										2
	04/18/06										1
	05/12/06	750	360	8.2	<1	140	<1	190	7.9	50	1.1
No. 109	06/01/88	1400	920	136	35	120	4	100	300	296	
8S/2W-17J1	08/05/88										10
	06/12/91	1330	800	110	26	120	5	120	270	275	9
A Company	06/22/94	1370	1010	138	32	124	5	140	320	287	7
	06/06/95										8
	06/13/97	1440	1010	130	31	140	4	140	330	280	10
	07/16/97										2.2 as N
	04/14/99						·				12
	04/11/00			·		,					13
	06/21/00	1330	870	120	28	130	4	120	280	270	3.2
	04/10/01										13
	06/11/03	1400	970	140	32	130	4	130	340	290	12
	06/19/03	. 1400	97.0	150	32	120	4.2	130	340	290	12
	01/07/04										13
	01/11/05										13
	01/04/06									·	12
	07/12/06	1300	930	130	30	130	4.8	130	280	280	12
No. 110	03/31/88	1100	630	70	23	132	6	115	163	268	3
8S/1W-06K1	03/11/93	1010	610	60	21	124	5	110	200	201	3
	04/27/95			٠							. 1
	07/20/99										<2
	07/06/00			·							2
	07/10/01										2
	03/11/02	850	500	58	20	81	5	74	190	160	<2
	07/03/02										<2
	09/16/03										2
	09/01/04								<u>:</u>		2
	03/02/05		510	56	21	79	4.9	76	170	150	<2
	09/07/05										1.8

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

			Total		•						
Site Location	Date	Specific Conductance	Dissolved Solids			Che	mical Co	onstituei	nts - m	ıg/l	
Site Location	Tested	umhos	(mg/i)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
No. 113	03/28/88	700	400	41	12	87	2	11	20	192	18
7S/2W-25H01	03/21/91	570	290	. 21	5	79	2	88	17	119	11
	03/03/94	700	410	46	13	86	2	120	25	189	19
	04/27/95										24
	03/20/97	880	500	53	15	96	2	140	33	200	22
•	07/20/98										23
	09/16/98										22
	02/25/99										19
	04/14/99										17
	06/03/99										21
	09/14/99										22
	10/21/99										25
	11/02/99		******								22
	12/14/99										23
•	01/11/00										18
	03/07/00	810	470	75	16	59	2	70	94	.200	11
	04/11/00										23
	05/03/00										24
	06/21/00										23
*	09/13/00										23
	10/06/00										21
	02/14/01										16
•	05/30/01										23
	06/12/01										22
	08/01/01										22
	11/13/01										22
	05/01/02										19
	08/06/02										20
	11/05/02										21
	02/07/03										22
	03/05/03	1000	610	65	19	110	2.5	160	41	260	26
	08/05/03		010	. 00	13	110	2.0	100			21
	11/13/03				,						24
											24
	02/10/04 05/04/04										23
											. 24
•	08/10/04										25
	11/17/04							_			25
	02/09/05						_	_			23
	05/12/05										25 25
	11/02/05										24
	02/14/06		 540	 E /	15	100	2.2	140	31	210	24
	03/08/06		540	54	15	100	2.3	140	31	210	24 24
	05/11/06										
	08/03/06										21

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	d Chemical Constituents - mg/l								
	Tested	umhos	Solids (mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 118	08/08/90	715	480	14	1	162	1	120	79	101	1
8S/3W-11B	09/26/90										1
	09/10/93	860	525	19	1	178	1	130	94	198	<1
	06/20/95							·			<1
•	09/16/96	970	560	33	2	180	2	120	120	230	<2
	07/23/97										0.2 as N
	09/16/98								·		2
	11/02/99	1040	580	46	4	170	2	130	100	240	<2
	09/20/00										<2
	08/18/02										<2
	11/08/02	1100	590	46	4.5	160	1.3	140	94	240	<2
	09/23/03										<2
	12/30/04	·		·							<2
	01/25/05	·									<2
	09/07/05				·				·		<1
	11/03/05	980	590	55	5.1	150	1.7	140	110	240	<1
No. 119	07/16/96	450	280	44	9	35	<1	39	18	180	15
8S/2W-19J	08/14/97										12
	12/24/97		320								3.1 as N
	03/04/98		. 380								3.3 as N
•	06/04/98	,									3.8 as N
	06/12/98		400								
	09/16/98										3.7 as N
	01/08/99		430						· ·		
	04/13/99										28
	06/02/99		560								4.8 as N
	07/27/99	940	640	103	21	58	1	. 70	150	264	30
	09/14/99								·		22
	09/14/99										4.8 as N
	10/26/99										24
	11/02/99										22
	12/14/99		560	,							22
	04/04/00										. 20
	12/14/00										4.6 as N
	03/29/01										20
	06/20/01										4.2 as N
	09/14/01										4.2 as N
	09/28/01										18
	11/16/01										16
	05/23/02	770	480		4.5						18
	07/24/02	770	490	81	15	49	1.1	51	90	240	19

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS SAMPLED BY RANCHO CALIFORNIA WATER DISTRICT

		Specific	Total Dissolved			Cha	mical C	onstituei	nte - m	na/l	
Site Location	Date Tested	Conductance umhos		Ca	Mg	Na	K	CI		HCO3	NO3
No. 119 (cont'd)	11/08/02										15
8S/2W-19J	02/19/03										17
	02/10/04										15
	02/28/05			٠			4.4	C.4	140	200	10
	07/06/05	820	600	95	20	63	1.4	64	140	260	13
	02/07/06										15
No. 120	06/20/90	570	330	6	1	116	1	82	31	113	11
8S/2W-17G	06/10/93	590	340	6	<1	122	. 1	85	35	104	12
	07/19/96	630	360	6	<1	120	1 .	88	42	120	14
	06/16/97										10
	08/14/97										9
	06/02/99	620	360	6	<1	122	<1	84	45	120	10
	06/06/00										11
	06/13/01										12
	06/01/02	670	370	8.1	<1	130	1	86	46	130	11
	06/11/03										12
	06/22/04										15
	06/15/05	720	410	11	<1	140	1.3	90	62	140	12
	06/07/06	***									11
No. 121	10/27/89	900	475	63	14	99	2	109	28	290	<1
7S/3W-34J	05/19/92	1000	560	72	17	120	3	170	56	270	<1
•	07/18/97								<u> </u>		ND
	07/24/97		640								ND
	08/20/97										ND
	09/03/97		****				-				ND
	06/19/02										ND
No. 122	06/23/97										6
8S/2W-20P1	07/25/97	660	460	64	13	44	1	61	65	190	8
00/201-201-1	10/10/97		-100								9
	12/23/97		400								1.8 as N
	03/25/98		450								2.2 as N
	06/03/98										2.4 as N
•	06/05/98		460								
	09/17/98			·							2.2 as N
	01/08/99		450								
	06/03/99		470								2.1 as N
	04/13/99										9
	09/21/99										2.1 as N
	03/07/00								. <u></u> .		16
	04/04/00										9
	0 1/0 1/00										-

ND - None Detected

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date				Chemical Constituents - mg/l							
Site Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3	
No. 122 (cont'd)	06/28/00	780	470	79	16	62	1	73	100	210	11	
8S/2W-20P1	12/13/00										2.5 as N	
	03/27/01	 -									2.5 as N	
	04/18/01										. 10	
	06/20/01										2.4 as N	
	09/13/01										2.7 as N	
·	12/13/01		550					-				
	05/14/02		570								9	
	03/05/03	***									10	
	03/16/04										12	
	03/17/05										9	
	03/21/06										9.4	
											•,,	
No. 123	06/06/90	1100	690	69	27	132	6	130	170	281	4	
8S/1W-7B	06/10/93	1120	690	74	25	136	6	120	190	250	5	
00/11/1/15	02/05/97	930	550	55	18	110	5	83	130	250	1.3	
·	04/27/99	,									3	
	06/02/99										3	
	07/20/99										2	
	08/11/99										2	
	09/14/99										2	
	10/21/99										2	
	11/02/99										2	
4	02/09/00	1150	610	59	20	100	5	83	150	240	3	
						100			150	240	3	
	02/09/01	990	 EEO		20	87	4.5	80	180	170	<2	
	03/10/03	880	550	59	20	01	4.5	00	100	170	2	
	02/03/04										2	
,	02/14/05										3.6	
	02/14/06		. 500	٠					400			
	03/14/06	890	530	65	22	88	5	91	180	180	2.3	
No. 124	06/20/90	660	380	38	4	92	3	97	48	153	13	
8S/2W-11R1	07/22/93	690	430	42	5	89	3	90	57	159	17	
	07/18/95										11	
	10/26/99	700	420	45	4	94	3	97	61	160	16	
	07/06/00										17	
	07/10/01										16	
	07/03/02										10	
	10/02/02	600	330	24	2.4	92	1.9	75	38	150	10	
	01/08/03										2.3 as N	
	07/01/03										8.3	
	07/07/04										9.4	
	07/07/04										8.4	
	10/05/05	580	360	19	2.4	96	1.6	74	35	140	7.8	
	09/26/06	500	300		د. 		1.0				17	

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids	d Chemical Constituents - mg/l								
Site Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3	
No. 125	06/20/90	740	425	17	5	132	3	99	54	186	4	
8S/2W-12H	06/10/93	770	450	18	5	140	, 3	150	60	131	3	
	06/20/95										2	
	06/09/97										2	
	09/17/98										3	
	06/03/99	720	440	- 10	3	135	2	89	. 76	170	<2	
	11/02/99	·				·					3	
	11/15/00										2	
	07/24/01										4	
	06/19/02	700	400	8.8	2.3	130	1.8	87	54	170	<2	
	07/03/02										2	
	01/13/03		***								.38 as N	
	07/01/03										<2	
	06/09/04										<2	
	06/14/05	650	350	8.3	2.1	130	1.6	82	52	180	1.8	
	06/13/06										2.8	
No. 126	05/04/88	480	290	4	<1	106	<1	53	14	64	<1	
8S/2W-15H	07/06/89	500	270	2	1	108	<1	55	11	98	<1	
	07/18/95	540	315	1	<1	122	<1	72	11	122	<1	
	07/07/97										<2	
	07/16/97							****			0.2 as N	
	07/23/97			·							0.2 as N	
	08/20/97										0.4 as N	
	09/03/97										0.2 as N	
	09/17/97										0.2 as N	
	07/20/98	520	330	2	<1	120	<1	56	11	130	<2	
	09/16/98		300								0.4 as N	
	04/14/99										2	
	04/11/00										<2	
	04/11/01									·	2	
	07/12/01	530	300	2	<1	100	<1	53	12	140	<2	
	06/20/02		·								<2	
	08/06/02										<2	
	01/08/03	348 Ent Cor									0.25 as N	
	11/04/03										<2	
	07/22/04	520	310	1.5	ND	110	ND	59	10	120	0.27 as N	
	11/03/04										<2	
	11/02/05										<1	

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstituei	nts - m	ng/l	
One Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
No. 128	07/06/89	400	230	27	3	54	2	59	7	101	25
7/3W-36M	07/08/92	390	230	21	2	59	2	55	1		24
	07/20/95	380	275	16	2	66	1	65	10	101	19
•	07/07/97				·						15
	07/20/98	370	260	12	<1.	71	1	48	11	110	14
	06/02/99						~~~				13
	06/08/01		·								14
	07/10/01	400	230	10	<1	68	<1	44	12	100	12
	06/20/02										12
	01/08/03										12
	01/14/04										10
	07/14/04	390	240	8.3	1	67	1	48	11	92	13
	01/11/05										6
	01/10/06					64f == 849					7.9
No. 129	11/29/89	430	260	16	3	66	2	71	16	92	9
7S/2W-20L	08/08/90	440	280	20	5	64	2	72	14	119	10
	04/01/92										12
	09/10/93	470	275	24	6	60	. 2	74	16	110	. 13
	08/09/96	460	270	19	3	67	2	70	15	100	11
	02/04/97	-									53
	12/20/00	550	330	44	13	47	2	81	14	130	20
	03/22/01			·							20
	04/17/01										20
	05/02/01							<u></u>			18
	06/08/01										20
	10/16/01										19
	11/13/01	***									18
	02/26/02										16
	05/23/02										14
	09/18/02			,				***		• ••••	15
No. 130	02/17/88	650	365	16	1	132	1	69	64	0	4
8S/2W-11R	02/14/91	640	365	4	<1	132	1	68	56	122	
	04/24/91										3
	02/09/94	650	410	3	<1	148	1	81	72	146	4
	05/16/95										4
	02/05/97	780	450	4	<1	170	<1	78	82	150	5
	05/14/97										4
	04/14/99										5

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical Co	onstituer	nts - m	ıg/l	
Site Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
No. 130 (cont'd)	02/10/00	.750	440	4	<1	170	<1	76	77	170	5
8S/2W-11R	04/12/00	***	· ·								5
	05/25/00										6
	05/24/01	****	·								6
	05/24/02										5
	02/19/03	820	460	4.1	<1	170	<1	87	96	180	. 5
*	05/04/04										5.1
	05/12/05	,									5
	02/14/06	800	450	4.1	<1	170	<1	83	91	200	5.1
	05/12/06										4.5
No. 131	03/10/88	530	270	4	<1	108	1	57	52	31	1
8S/1W-12J	03/21/91	630	335	7	<1	120	1	74	65	98	3
	03/03/94	660	345	9	<1	124	2	86	73	119	2
	03/30/95										2
	03/20/97	660	370	6	<1	125	1	81	73	100	2
	07/07/97										<2
	07/27/98										2
	06/03/99										<2
	03/07/00	720	. 380	9	<1	140	2	81	80	130	3
	06/21/00		***					******			2
	06/27/01										2
	06/05/02										<2
	03/13/03	700	390	8	<1	130	1.4	88	88	130	3
	06/11/03		<u>:</u>					<u></u>			<2
	06/09/04										<2
	06/15/05										2
	03/07/06	710	420	9.1	<1	140	1.5	93	93	130	3.
	06/07/06		 .								1.7
No. 132	04/18/88	1000	620	94	13	103	6	109	153	235	2
8S/1W-07D	05/08/91	920	590	64	19	110	5	100	160	201	<1
	05/13/94	730	460	50	15	78	5	73	110	195	1
	05/16/95						<u></u>				<1
	07/18/95	860	520	59	17	100	4	90	130	223	1
	07/20/98		590	69	20	110	5	89	150	230	2
	01/06/99										2
	02/03/99										2
	04/14/99										3
	06/03/99										3

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Chei	nical C	onstituer	nts - m	ıg/l	
	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 132 (cont'd)	07/27/99									~~~	5
8S/1W-07D	08/11/99										4
	09/15/99										4
* .	10/21/99										4
	11/02/99										3
	12/15/99										3
	05/03/00		****					at 100 100			2
	05/16/01	800	500	57	17	74	5	63	180	150	3
	05/01/02										2
	05/03/05		200								<2
	05/12/06										3.2
No. 133	03/28/90	970	605	50	20	112	5	120	131		3
8S/1W-7C	03/11/93	970	580	48	19	120	4	110	140	204	3
	06/06/95										2
	07/18/95	850	680	26	10	142	2	120	100	174	2
	06/23/97						:				3
	07/20/98	790	500	24	9	140	2	96	93	170	2
	08/02/00										3
	03/28/01	800	460	22	10	130	2	98	100	170	<2
•	08/02/01										<2
	09/18/02										2
	09/16/03										2
	03/12/04	810	500	25	10	130	2.4	95	99	180	2
No. 135	05/24/89	2450	1390	122	65	300	2	410	225	464	33
7S/3W-27M	06/06/90	1540	945	73	36	215	1	250	150	323	13
	12/11/90	4400	2670	270	109	480	4	1030	380	314	<1
	08/06/92	1800	810	63	. 33	170	1	200	160	281	
	01/16/97										3.7 as N
	02/04/97							****			3.5 as N
	02/12/97	4= -									4.0 as N
	02/20/97					,					3.4 as N
	02/25/97										3.4 as N
	03/04/97						****				3.7 as N
	03/18/97										3.3 as N
	03/25/97										3.5 as N
	04/08/97										3.4 as N
	04/15/97										3.4 as N
	04/22/97										3.5 as N

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

		•	Total Dissolved		•	Che	mical C	onstitue	nts - n	ng/l	
Site Location	Date Tested	Conductance umhos	Solids (mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 135 (cont'd)	05/06/97	1930	1050	97	48	220	2	340	190	360	3.3 as N
7S/3W-27M	05/14/97						·				3.4 as N
	05/21/97										3.3 as N
	06/04/97				·						3.3 as N
	06/11/97										3.3 as N
	06/18/97										3.3 as N
•	06/25/97										3.3 as N
	07/02/97	was									3.3 as N
	09/17/97	1960	1260					430	220		13
No. 138	10/30/90	460	240	19	2	74	2	71	13	113	18
8S/2W-6F	10/06/93	420	240	11	<1	70	1	56	10	92	14
	10/11/96	430	270	9	<1	78	1	55	8.9	100	15
	04/14/99							·			5
	06/03/99										3
	10/26/99	430	240	10	<1	76	1	60	11	100	19
	03/13/00										5
	03/22/01										17
	03/13/02		-	·							21
	06/20/02										16
	10/02/02	440	220	10	<1	75	1.2	58	7.8	96	17
	06/12/03										16
	12/30/04							·			5
	01/27/05										12
	10/18/05	430	280	11	. <1	72	1.3	65	8.3	110	18
	01/06/06										· 17
No. 139	12/29/87	460	295	24	7	65	1	60	11	104	7
7S/2W-32G	11/23/92	450	275	, 32	9	46	2	60	13	134	20
	12/19/95	500	298	36	12	50	2	72	12	156	2.8
	03/25/97										10
	03/13/00										9
	03/28/01					,					8
	03/11/02	530	280	29	10	57	2	73	13	140	9
	03/09/04										8
	03/09/05	520	310	21	7.7	72	1.3	78	13	150	6
	03/09/06										9.9

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

	D .4	•	Total Dissolved			Chei	mical Co	onstituer	nts - m	ıg/l	
Site Location	Date Tested	Conductance umhos	Solids (mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 140	02/18/88	560	325	33	10	65	2	77	14	153	13
7S/2W-33F	01/15/92	450	235	11	2	88	1	68	18	107	2
	02/28/95	560	325	36	11	58	2	94	14	140	12
	03/25/97		,								8
	02/27/98	650	360	31	11	76	2	95	16	130	5
	09/17/98										8
	05/16/01		· 								11
	02/01/01	650	370	31	12	72	2	110	21	150	4
	05/24/02										7
	04/05/05	680	390	37	16	69	2.3	140	18	150	4
	04/06/06										4.4
No. 141	01/06/88	780	440	64	11	82	3	65	91	217	13
8S/2W-11P	01/30/92	820	500	63	13	95	3	79	110	238	19
	03/30/95	840	490	58	11	100	3	70	97	241	14
	03/25/97										15
	03/26/98	760	480	62	12	90	3	69	86	230	16
	01/04/99										14
	02/12/99										19
	10/21/99										17
	11/03/99			٠							14
	12/14/99										14
	06/20/00										15
	01/04/01	700	450	52	6	84	3	75	70	190	15
	09/28/01										18
	11/08/02										15
	09/16/03										19
	01/13/04	760	490	65	11	84	3.1	70	90	220	21.
	01/06/05										18
	01/06/06										16
No. 143	01/15/88	670	345	. 8	2	134	1	91	57	95	. 11
8S/2W-17J	10/17/90		345	25	4	112	2	89	62	140	12
	03/03/94		370	24	3	114	2	93	68	131	11
	03/30/95										11
	03/25/97		330	15	2	110	1	87	44	89	9
	07/18/97										2.0 as N
	07/23/97										2.0 as N
	08/20/97										2.3 as N
	09/03/97										2.2 as N

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical Co	onstitue	nts - m	ng/l	
One Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 143 (cont'd)	09/17/97										2.0 as N
8S/2W-17J	09/17/98		350								2.3 as N
	10/21/99										13
	03/07/00	730	400	21	. 3	120	· 2	84	68	140	12
	10/13/00										8
	10/10/01										8
	01/13/03							-			2.1 as N
	11/19/02										10
	03/10/03	650	370	14	1.9	110	1	92	52	130	10
	01/07/04										12
	01/18/05			,		****					10
	01/06/06										8.7
	06/08/06	560	270	9.5	. 1.3	100	. 1	86	<0.5	100	7.2
No. 144	09/14/88	610	335	8	<1	114	1	95	. 33	92	<1
7S/3W-27D3	12/19/95	730	420	34	1	124	1	120	33	186	<1
	12/20/00	690	400	28	1	120	<1	120	35	170	<2
	05/22/01	·		٠							<2
	08/20/02										<2
	08/27/03									. ,	<2
	12/16/03	630	420	33	1.8	110	1	110	28	170	<2
	08/12/04			·			·				<2
	10/11/05										2
No. 145	10/04/90	800	490	43	8	110	2	110	78	171	<1
7S/3W-28C	10/06/93	650	375	23	3	106	1	85	58	146	<1
	11/27/96	650	340	26	2	110	1	87	48	150	<2
	02/04/97	670	370	24	2	110	1	87	55	160	<2
	01/28/98										<2
	01/04/99										<2
	10/26/99	690	400	29	3	110	1	96	61	170	<2
	01/06/00										<2
	01/25/01										· <2
	01/18/02										<2
	10/09/02		390	26	2.3	110	1.2	94	52	160	<2
	01/15/03										<2
	01/07/04										<2
	01/13/05										<2
	10/11/05		430	33	2.7	120	1.4	100	54	180	<1
	10/18/05	700	440	34	2.8	120	1.5	100	59	180	<1
	04/13/06										<1

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Cita I anation	Data	Specific	Total Dissolved Solids			Che	mical Co	onstituer	nts - m	ıg/l	
Site Location	Date Tested	Conductance umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
No. 146	12/10/96	900	500	57	23	98	<1	100	64	280	15
7S/3W-28	03/02/00		· estable								4
No. 149	06/15/93										5
8S/1W-2C	10/10/01										4
	03/11/02	1040	610	61	23	120	4	100	170	250	4
	12/11/02	-									3.2
	01/23/03										4
	03/12/03	1000	600	59	22	120	3.7	100	170	230	3
	01/13/04		,					·			4
	01/11/06										2.5
	03/09/06	940	580	56	21	110	3.8	87	160	220	2.7
No. 149A	08/26/88	950	540	71	211	96	1	115	47	302	18
7S/3W-28A	10/31/91	800	480	36	13	122	3	93	110	195	
No. 150	09/29/88	1950	1235	134	29	225	2	290	220	390	15
7S/3W-27P	12/21/91	1000	590	74	17	108	4	130	110	207	
No. 151	09/20/88	5780	3410	280	114	840	5	1660	670	369	<1
7S/3W-34B	Abandoned										
No. 151	07/25/91	. 860	485	53	16	103	4	90	130	183	
8S/2W-2G	07/28/91	730	400	39	12	100	3	91	58		
	07/29/91	600	340	9	2	122	5	63	34		
	10/17/91	510	295	3	<1	118	1	45	10		
	08/10/94	550	340	3	<1	110	1	59	22	119	· <1
	06/16/97										<2
	08/14/97	540	300	2	<1	110	<1	44	10	160	<2
	09/16/98										<2
	01/06/00	510	300	1	<1	110	<1	33	4.6	180	<2
	01/06/05										<2
No. 152	01/11/02	860	550	64	20	77	6	75	190	160	<2
8S/1W-5K2	01/08/03										<2
	01/07/04		~~~					******			<2
	01/24/05	850	510	71	25	77	4.6	85	190	280 250 230 220 302 195 390 207 369 183 177 204 137 119 160 180 180	<2
	01/04/06										1.1

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	nts - m	ng/l	
Oile Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
No. 153	12/29/93	804	485	53	18	92	5	86	120	214	<1
8S/1W-5K3	04/13/99	880	540	63	23	79	5	68	220	150	<2
	04/11/00										2
	06/14/01										<2
	04/02/02	820	500	63	22	75	4.2	80	190	140	<2
	04/14/05	700	410	44	17	65	3	76	110	140	3
	04/04/06				• •						2.3
No. 154 8S/1W-5L2	01/28/94	930	530	46	20	106	6	89	130	214	3
No. 155	09/16/93	680	355	22	2	108	1	90	64	104	· <1
7S/3W-28C	02/23/95	760	445	- 30	3	126	1	120	82	140	4
	06/06/95										5
	08/14/97										4
	02/25/98	880	540	43	5	130	1	100	100	190	5
	07/27/98										3
	02/09/00							-			2
	09/13/00	690	410	23	2	120	<1	100	72	130	2
	02/14/01										5
	02/21/02										. 2
	02/28/03			·							<2
	01/07/04	600	360	10	<1	120	<1	100	60	100	<2
	02/23/04	·									6
	10/11/05										2
	02/16/05	·									5
	02/07/06										4.9
No. 157	04/13/99	930	600	59	21	110	7	95	150	240	<2
8S/1W-5L	04/11/00										2
	06/14/01	Any tool Am									<2
	04/02/02	830	520	60	22	78	4.1	78	190	150	<2
	04/14/05	720	420	47	18	69	3.2	74	120	150	. 2
No. 158	06/21/94	1090	620	67	23	124	7	120	170	259	
8S/1W-5K	04/14/99	1050	660	63	24	120	7	110	160	270	<2
	04/11/00										2
	06/14/01										2
	04/02/02	900	550	61	22	92	5.7	93	190	180	<2
	04/14/05	800	450	51	19	79	4.6	83	150	160	2
	04/04/06										3.9

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site I continu	Date		Total Dissolved Solids			Che	mical C	onstituer	nts - m	ng/l	
Site Location	Tested	Conductance umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 201	03/28/91	530	315	19	6	83	2	83	16	110	2
7S/2W-27J	03/11/93	460	300	8	2	87	1	51	20	146	<1
No. 202 7S/2W-36J1	12/11/88	740	440	47	18	84	3	. 97	48	223	17
No. 203	05/18/88	960	580	50	39	110	4	96	115	275	
8S/1W-6P1	06/29/88	970	530	44	36	112	4	120	123	250	5
	06/12/91	800	415	21	17	108	3	91	90	174	2
	06/22/94	980	645	59	38	99	4	130	130	256	4
	06/07/95										5
	06/23/97	880	530	31	26	120	3	100	110	230	4
,	08/14/97										3
	11/02/99										5
	06/22/00	820	580	94	18	58	<1	63	110	250	22
	07/12/00	880	570	43	33	120	3	100	130	240	7
	08/08/00										6
	11/22/00										- 5
	11/20/01										5
	11/08/02										4
	01/08/03										.90 as N
	06/10/03	850	460	31	23	100	2.2	92	100	220	5
	11/04/03										5
	11/18/04										7
	06/08/06	940	540	39	32	110	3	100	130	220	5.5
No. 204	05/22/91	740	425	50	12	85	3	120	18	198	19
7S/2W-26G	05/13/94	690	375	37	7	85	3	130	19	125	19
No. 205	03/28/88	500	290	23	3	81	2	83	27	107	21
7S/3W-35A	03/13/91	490	275	. 22	3	75	2	62	23	113	21
	03/03/94	510	275	20	2	72	2	72	24	104	20
	04/26/95										22
	03/25/97		270	20	2	75	2	66	18	110	21
	05/09/01	410	270	21	3	67	1	60	17	120	23
	11/13/01										21
	02/19/02										20
	05/14/02										18
	08/27/02										20

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids	•		Che	mical Co	onstitue	nts - n	ng/l	
Site Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 205 (cont'd)	11/20/02						·				18
7S/3W-35A	01/08/03										4.5 as N
	03/31/03										18
	06/11/03										18
	09/16/03										21
	12/04/03	. · ·		~~~							20
	03/09/04					-		,			18
	06/09/04										18
	09/01/04										19
	12/07/04			<u></u>							20
	03/08/05										21
	06/07/05		·								17
	09/13/05										16
	12/05/05										15
	03/09/06	,									17
	06/07/06										17
No. 207	09/01/88	510	245	1	<1	108	<1	54	26	82	<1
8S/2W-14B	09/14/88	480	305	_. 3	<1	106	<1	58	23	24	1
	08/14/91	480	245	1	<1	100	<1	52	28	55	<1
	08/10/94	440	285	2	<1	91	1	56	29	76	2
	08/15/97	510	280	2	<1	97	<1	52	25	98	<2
	07/27/98										2
	12/27/00	480	280	2	<1	100	<1	53	30	120	2
No. 208	09/01/88	680	415	44	15	77	3	119	14	186	18
7S/2W-35M	09/14/88	690	440	44	. 14	77	3	129	14	183	16
	08/14/91	600	340	23	7	89	2	85	18	162	4
•	08/10/94	560	370	22	6	89	2	93	20	156	5
	06/06/95							-		. :	4
	08/12/96										2
	07/27/99										15
	08/18/99		. 								20

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	nts - m	ng/l	
Site Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
No. 209	05/22/91	790	435	40	14	105	2	150	35	162	8
7S/2W-28J	05/13/94	760	525	64	22	48	3	150	15	153	25
	06/20/95										5
	05/15/97	690	390	10	3	130	<1 _.	110	56	130	1.3
No. 210	04/15/59	1366		101	23	150	10	149	200	275	3
8S/2W-12K	01/18/63	400	926	99	30	17.5	4.5	145	255	329	4
	11/30/67	1415	890	136	5	152	10	146	230	305	3
	07/26/68	1250	825	96	22	144	8	130	190	290	5
	09/06/68	1310	840	82	26	132	5	142	222	276	12
	07/19/73	1200	579	84	21.4	149	6.8	122	237	301	19.7
	08/08/75	1140	695	84	14	150	6	101	190	287	15
	06/22/76	1240	675	76	26	142	7	101	205	278	. 36
	10/13/76	1120	640	92	22	100	6	110	170	262	5
	06/16/77	1130	610	84	18	114	6	110	170	259	11
	05/20/80	580	340	30	8	75	4	51	67	152	9
	04/03/86	800	540	65	17	86	4.5	. 75	112	235	3.5
	07/15/86	830	560	72	19	86	4	87	118	250	4
	03/28/88	1030	575	76	22	93	5	99	143	247	4
	09/25/91	1040	600	74	20	120	- 5	120	160	238	5
	09/19/94	645	460	52	14	79	4	70	100	198	2
	09/16/96			·	·			·			3
	09/16/98										3
	12/15/98										2
	01/04/99								~~~		2
	02/03/99										2
	04/08/99							·			3
	06/02/99	·									3
	09/07/99		***								4 .
	10/21/99										5
	12/15/99										5
	05/03/00		nin-	, 							5
	09/13/00	830	560	64	17	100	4	74	190	180	· 4
	05/08/01										4
	05/13/02										3
	01/08/03										.52 as N
	08/20/03										2.2
	09/16/03	830	560	65	18	78	4.5	76	180	160	2
	08/10/04										3.2
	08/02/05										5.4
	08/15/06									- 	6.7

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids		٠	Che	mical C	onstitue	nts - m	ng/l	
One Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 211	04/08/97	720	400	67	14	54	1	59	65	220	13
8S/2W-20R1	12/23/97		410	·		·					3.1 as N
	03/25/98		620								3.6 as N
	06/03/98										3.4 as N
·	06/05/98		480							****	
	09/17/98										3.3 as N
	12/17/98		430					56	66		16
	06/03/99		430								3.4 as N
	12/14/99		310								10
	04/04/00	700	430	71	14	52	1	57	66	220	17
•	06/22/00		400								15
	12/13/00										4.5 as N
	03/27/01										4.5 as N
	06/20/01										2.7 as N
	09/13/01										4.7 as N
	11/13/01		450								
	05/14/02		370								12
	07/15/03	630	370	61	11	46	1.2	46	51	220	11
No. 212	03/28/88	640	330	42	2	74	3	81	33	146	14
8S/2W-11N	09/25/91	600	320	41	2	82	4	86	35	146	14
No. 215	08/15/90	650	380	40	13	71	3	100	14	162	11
7S/2W-34M	09/26/90			,				*			13
	06/22/94	630	400	41	13	67	2	110	16	159	11
	06/16/97	630	370	29	9	81	2	110	16	160	6
	08/15/97										7
	08/11/04	630	380	35	12	76	2.6	100	14	150	<2
	09/09/04	<u></u> -									9
	06/26/06										6.6
No. 216	06/01/88	480	280	25	4	65	2	71	11	134	
8S/2W-7W	06/29/88	480	275	29	5	59	3	81	7	110	. 26
	06/12/91	500	285	30	5	59	2	76	9	113	23
	05/27/92	470	285	33	6	53	2	72	10	119	20
	04/25/01	490	300	28	4	55	2	74	13		12
	09/21/04	540	320	31	5.6	53	2.1	74	10	130	14
	10/26/04										15
	11/02/04										15
	11/10/04										16
	10/18/05										19

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	nts - m	ng/l	
One Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
No. 217	03/28/88	580	285	8	1	108	1	81	20	113	15
8S/2W-17M1	08/10/88	570	280	8	1	105	1	82	20	55	13
	08/14/91	570	305	17	2	99	2	74	28	134	16
	08/10/94	610	365	20	3	97	2	82	38	134	16
	08/15/97	660	370	20	3	107	1	80	41	130	13
	05/09/00		***								15
	10/12/00	650	380	19	2	110	1	81	49	150	16
	05/14/01							٠			17
	05/14/02										12
	10/15/03	690	400	25	3.3	110	1.6	84	58	150	16
	05/06/04										17
	05/11/06				,						15
No. 231	08/15/90	1280	805	126	18	120	5	100	310	244	9
8S/2W-20B6	09/26/90					-					6
	03/04/92	1700	1270	180	51	160	6	140	510	332	5
	06/20/95	1640	1300	171	44	124	6	75	520	287	5.3
	02/27/98										3
	05/16/00										5
•	05/24/01	1490	1080	140	35	120	5	120	340	330	3
	05/13/02										2
	07/12/05										2.2
	07/20/06	wn=									3.7
No. 232	08/15/90	960	590	71	19	110	5	98	130	235	30
8S/2W-11J3	09/26/90		****								35
	09/25/91	980	565	74	19	106	. 5	98	120		37
	09/19/94	805	495	54	14	92	4	80	110	207	15
	09/13/96										22
	11/04/97	1000	660	76	20	110	4	97	130	230	29
	07/27/98										38
	12/10/98										22
	01/06/98										30
	01/29/99				****						10
	02/03/99										26
	02/24/99										37
	04/08/99		604 pas tan			,					33
	04/21/99										34
	06/23/99										33

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	Constituer	nts - m		
Site Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 232 (cont'd)	07/08/99										36
8S/2W-11J3	08/25/99										33
•	09/21/99										31
•	10/06/99		· · ·								30
	11/17/99										32
	12/14/99						,				32
	01/18/00							 .		·	31
	02/29/00										10
	03/21/00										25
•	04/11/00										29
	05/25/00		-								26
	06/21/00	out red too		***							26
	07/11/00										25
	09/13/00	920	590	65	17	105	. 4	91	150	210	21
	10/06/00			******							18
	11/08/00										17
	12/13/00										20
	01/04/01										19
	02/28/01										10
•	04/10/01										20
	10/10/01			·							26
	05/14/02										22
	08/06/02	****									4*
	01/08/03										6.0 as N
	03/31/03										11
	06/10/03										31
	07/08/03										30
	08/20/03										28
•	09/16/03	1100	680	67	. 18	110	4.3	100	150	240	33
	10/14/03										31
	01/14/04										23
	02/10/04										· 21
	04/14/04										25
	05/06/04										26
	06/22/04							ww~			25
	07/14/04										25
	08/10/04										31
	09/08/04										26

^{*} Sample may have been switched with Well 233

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Chei	nical Co	nstituer	ıts - m	g/l	
	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 232 (cont'd)	10/26/04										15
8S/2W-11J3	11/18/04	****									26
	12/07/04										16
•	01/10/05										20
•	02/14/05										14
	03/11/05										11
	04/13/05				·		·				- 25
	06/08/05										24
	07/12/05										22
	08/02/05	, 									18
	09/20/05										19
	10/18/05	and test mak			٠						18
•	11/08/05	project dank									18
	12/06/05										19
	01/04/06										15
	02/14/06										18
	03/13/06										8.3
	04/18/06										12
	05/12/06	·									15
	06/22/06			·							11
	07/19/06										13
	08/15/06										14
No. 233 (Old 112)	06/15/88	900	535	71	21	100	5	96	136	247	4
8S/2W-12K2	03/27/91	1020	580	66	19	114	5	95	140	247	12
	03/03/94	740	425	50	14	75	4	71	100	186	2
	04/27/95										· 6
	03/27/97	880	510	57	15	100	4	81	120	220	4
	01/04/99										5
	02/03/99										4
	04/08/99										4
	06/03/99										4
	07/20/99										5
	08/11/99										4
	09/07/99										4
	10/21/99										5
	11/03/99										4
	04/11/00	970	570	64	18	110	4	85	150	230	4

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstituer	nts - m	ng/l	
Site Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	S04	HCO3	NO3
No. 233 (Old 112)	10/06/00										3
8S/2W-12K2	10/10/01										4
(Cont'd)	08/06/02										26*
	01/13/03										1 as N
	07/07/03		and one out								2.7
	07/13/04		n to et								. 3
	07/12/05		-								2.8
	04/04/06	960	600	75	20	87	4.5	93	180	180	7.3
	08/04/06										11
No. 234 (Old 114)	03/31/88	840	480	54	15	100	4	61	109	241	18
8S/2W-11P	03/27/91	1020	605	69	19	114	5	77	138	256	37
	06/20/95										11
	09/26/96										9
	02/04/97										12
	04/25/97	840	500	56	15	95	4	77	120	230	8
	01/19/99						*****				12
	02/12/99		Con 840 to 6								16
	04/21/99			٠ ــــ							15
	06/03/99										16
	07/27/99										18
	08/19/99										17
	09/21/99							·			16
	10/26/99										13
	04/13/00	900	550	64	18	10	4	70	150	220	13
	07/06/00										12
	07/12/01				·						7
	08/02/01										<2
	11/20/02			,						•	3
	12/11/02	850	520	62	17	80	3.7	74	170	170	4
	11/04/03										10
	11/05/04										10
	11/03/05										12
	12/06/05	890	620	70	19	89	4.1	85	180	200	12

^{*} Sample may have been switched with Well 232

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	nts - n	ng/l	
ono Loounon	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 235 (Old 137)	06/24/88	460	310	40	10	41	2	58	10	140	15
8S/3W-1Q1	06/20/90	420	230	22	4	56	2	50	6	128	18
	06/10/93	370	235	15	2	65	2	51	9	113	17
	07/16/96	410	230	16	2	60	1	48	8.9	110	20
	06/09/97		·								17
	06/03/99	390	240	13	1	63	1	46	6.7	98	17
	11/03/99										16
	11/09/00										15
	11/20/01										13
	06/11/02	380	210	10	<1	62	1.2	48	7.2	100	16
	11/05/02										17
	11/18/03										11
	11/18/05										18
	06/22/05	380	230	9.4	<1	68	1.1	49	7.3	96	16
	11/08/05	·									17
No. 301	07/29/92	500	290	20	6	80	1	45	56	143	<1
7S/3W-18Q1	02/27/97	580	350	45	16	48	2	49	54	200	4
	08/15/97										6
	12/27/00	570	. 360	49	15	53	2	55	57	180	7
•	02/22/02										<2
	05/14/02	550	340					57	50		3
	12/11/02	580	350								2.5
No. 302	04/11/88	690	360	36	6	100	1	77	65	192	<1
7S/3W-18H	05/15/91	760	425	58	9	87	2	83	72	220	<1
	05/14/92		270	12	2	90	<1	48	48		
	05/05/94	870	530	69	16	84	2	110	88	238	<1
	05/16/95										<1
	07/16/96	530	320		·			60	54		. 2
	05/13/97	560	500	73	14	94	2	110	86	240	<2
	07/27/99										<2
	05/17/00	520	320	11	1	99	<1	51	50	130	<2
	06/13/00	520	310								<2
	07/11/00										<2
	12/20/01	790	500					110	140		<2
	12/11/02	870	510								ND
	06/19/03	620	370	22	3.8	95	<1	77	63	140	<2
	03/17/04	830	510					110	85		<2
	06/22/04										<2
	09/21/04	900	550					110	82		<2

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Che	mical C	onstitue	nts - n	ng/l	
One Location	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
No. 309	08/15/90	690	370	19	3	119	2	140	25	73	5
7S/3W-27H	04/11/91	,	· 								<.001
	09/25/91	730	365	19	2	122	2	150	27	82	5
	08/11/94	730	430	20	2	120	2	160	30	73	5
	02/16/95							w			18
	07/16/97										1.1 as N
	07/23/97						******				1.2 as N
	08/20/97										1.1 as N
	09/03/97										1.1 as N
	09/18/97										1.1 as N
	10/03/97	790	520	21	2	130	2	170	33	85	6
	08/06/98										6
	09/16/98	***	460								1.4 as N
	07/20/99										6
	05/10/00		450	20	2	130	<1			85	
	07/06/00										6
	08/02/00	740	450	21	2	140	1,	180	38	87	7
	07/19/01								****		7
•	11/19/02			٠							5
	01/13/03						~ w ~				1.1 as N
	08/20/03	880	490	21	2.1	140	1.5	190	33	83	5
	01/07/04										6
	11/11/05										6
	01/04/06										5.4

WATERMASTER SANTA MARGARITA RIVER WATERSHED

TABLE D-5

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON INDIAN RESERVATIONS

Site Location	Date	Specific Conductance	Total Dissolved Solids		Chemical Constituents - mg/l							
	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3*	NO3	
Pechanga Indian	Reservation	on	# 4 2 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				W		7-10-4-10-			
8S/2W-20J01**	08/15/90 12/20/93	1130 868	596 	100 80	22 16	110 76	2.3 1.4	110 86	200 110		1.3 as N 3.6 as N	
8S/2W-20J02**	08/15/90 12/20/93	404 408	216 	42 42	6.3 6	38 35	8.0 8.0	27 29	12 12		1.2 as N 1.2 as N	
8S/2W-28M03	08/26/99 08/12/03 08/19/04 08/02/05 08/02/06	562 534 708 746 678	319 344 440 459 413	38 40.7 61.4 69.7 55.9	13 14.7 22.5 26.9 21	52 53.5 51 44.3 42.6	0.77 0.86 0.93 1.01 0.85	68 58.9 87.6 87.8 74.9	15 14.1 52 61.8 43.1		2.59 as N 4.21 as N 6.16 as N 5.09 as N 8.25 as N	
8S/2W-28R01	08/03/89 07/26/90 07/17/91 07/27/93 08/15/94	495 525 462 445 421	286 296 261 269 232	41 48 31 44 32	4.0 4.8 3.2 4.4 3.3	60 54 66 43 55	0.9 1.0 0.8 0.5 0.9	37 45 44 28 28	13 14 12 14 11	191 155 170	1.1 as N 1.5 as N .8 as N 1.9 as N 1.5 as N	
	08/30/95 08/27/96 08/13/97 08/20/98 08/25/99 08/22/00 08/21/01 08/21/02	375 398 481 446 456 522 457 518	200 241 282 252 265 320 284 330 317	21 20 36 28 29 51 33 55 56.8	2.2 2.1 3.9 3.1 3.3 5.9 3.7 6.5 6.2	55 59 60 59 61 48 61 50.4 47.9	0.6 0.62 0.85 0.66 0.73 1.0 0.87 1.08 1.4	31 37 38 41 39 42 41 39.7 42.6	11 11 14 12 14 16 13 14.3	130 167 	.7 as N 1.5 as N .572 as N 1.1 as N .758 as N .759 as N 1.73 as N 1.09 as N 1.94 as N 1.64 as N	
	08/18/04 08/03/05	541	333	60.5	6.5	45.3	1.2	40.2	14.1		2.23 as N	

^{* -} Alkalinity as CaC03

^{** -} Wells located off reservation. Data collected under cooperative program between USGS and Pechanga Band.

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON INDIAN RESERVATIONS

Site Location	Date	Specific Conductance	Total Dissolved Solids (mg/l)	Chemical Constituents - mg/l									
Oite Location	Tested	umhos		Ca	Mg	Na	K	CI	S04	HCO3*	NO3		
Pechanga Indian	Reservatio	n (Continued)	4444444444								***************************************		
8S/2W-28Q02	10/05/89	629	378	48	19	49	0.7	76	14	169	4.2 as N		
	07/26/90	613	383	48	18	47	0.6	75	12	171	3.9 as N		
•	07/18/91	618	379	49	18	49	0.7	83	14	172	3.0 as N		
	07/28/93	620	400	51	20	47	0.7	63	15		9.6 as N		
	08/17/94	641	396	51	21	50	0.8	60	17		11.0 as N		
	08/31/95	653	396	53	21	48	0.7	60	19		12.0 as N		
	08/28/96	<u></u>		·							11.0 as N		
	08/12/97	614	411	47	19	47	0.7	63	15		8.9 as N		
	08/19/98	625	402	47	20	47	0.7	60	14		9.85 as N		
	08/21/02	598	394	47	19	46	0.7	64	15		8.5 as N		
	08/12/03	604	405	48.8	19.8	47.8	0.69	69.1	14		7.1 as N		
	08/18/04	615	386	51.6	20.2	45.6	0.86	78.8	16.5		4.03 as N		
	08/02/05	822	514	76.8	30.2	54	0.84	93.7	30.9		14.7 as N		
8S/2W-28Q06	09/17/93	312	200	19	2.9	43	1	16	2.8	126	1.0 as N		
	08/30/95	310	174	16	3.4	46	0.6	16	3.8	131	1.4 as N		
	08/13/97	300	186	11	1.4	55	0.59	17	2.7		1.16 as N		
	08/20/98	434	247	12	0.7	79	0.6	57	15	111	<.05 as N		
8S/2W-28Q07	08/20/98	367	223	13	1.4	66	0.57	32	10	121	.731 as N		
	08/25/99	377	216	13	. 1.4	63	0.52	32	9.8		.760 as N		
	08/22/00	384	234	18	2.1	62	0.68	28	11		1.14 as N		
	08/21/01	402	242	22	2.5	60	0.81	33	12		1.03 as N		
	08/21/02	383	238	18	2.1	65	0.75	30	11		1.2 as N		
	08/12/03	394	255	23.1	2.7	63.7	0.85	30	11.8		1.61 as N		
	08/18/04	376	234	22.1	2.3	61.3	0.93	29.5	10.9		1.29 as N		
	08/02/05	380	233	20.8	2.3	59.5	0.88	27.8	10.8		.97 as N		
8S/2W-29A01	08/02/89	346	207	31	11	24	0.4	18	7.0	131	2.0 as N		
	07/24/90		193	32	11	25	0.4	24	6.7	133	2.0 as N		
	07/18/91	361	194	32	10	26	0.4	25	6.0	134	1.8 as N		
	08/15/94	363	216	33	12	25	0.5	24	7.7	132	2.6 as N		
	08/31/95	363	208	32	11	23	0.4	21	8.1	137	2.6 as N		
	08/28/96										2.9 as N		
	08/12/97		238	32	12	24	0.44	22	7.4		3.05 as N		
	08/19/98		246	36	11	31	0.45	25	8.2		2.94 as N		
	08/25/99			33	12	23	0.39	20	6.7		3.81 as N		
	08/22/00			33	12	24	0.42	18	7.3		3.48 as N		
	08/21/01		236	34	12	24	0.46	20	7.3		3.56 as N		
	08/02/05	382	243	38.7	11.6	27.1	0.53	27.6	7.7		· 2.79 as N		

^{* -} Alkalinity as CaC03

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Ch	emica	l Consti	tuents	- mg/l	
One Location	Tested	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3*	NO3
Pechanga Indian	Reservatio	on (Continued)									·
8S/2W-29A2	08/02/06	392	242	36.2	10.9	26.6	0.43	29.4	7.94	139	2.64 as N
8S/2W-29B02	03/01/90	456	257	5.5	0,14	89	0.8	66	22	100	
	03/06/90	456	256	5.9	0.13	90	0.7	66	20	99	<0.1 as N
8S/2W-29B03	03/06/90	478	275	14	1.9	84	8.0	65	16	123	<0.1 as N
8S/2W-29B05	03/02/90	397	229	29	9.5	43	1.2	35	4.9	141	1.8 as N
8S/2W-29B06	03/02/90	406	259	. 34	11	. 38	0.8	38	10	143	
	03/06/90	427	240	. 32	11	40	1.0	40	8.1	148	1.2 as N
8S/2W-29B07	03/07/90	396	230	8.6	2.5	71	0.9	51	11	102	<0.1 as N
	08/16/90	371	199	8.4	1.8	69	8.0	50	14	106	<0.1 as N
8S/2W-29B08	03/07/90	464	272	31	9.4	52	1.2	58	12	134	0.45 as N
	08/16/90	458	261	34	9.1	48	1.1	59	17	135	0.4 as N
8S/2W-29B09	03/07/90	343	210	21	9.2	39	1.0	24	6.7	131	1.3 as N
	08/17/90	317	197	26	10	26	1.1	22	3.4	130	1.6 as N
8S/2W-29B10	08/19/98	367	223	12	0.64	75	0.62	50	10	121	<.05 as N
	08/26/99	393	219	12	0.72	68	0.56	46	. 11		<.05 as N
	08/22/00	393	228	12	0.76	69	0.58	43	11		<.05 as N
	08/21/01	398	231	11	0.62	72	0.57	49	15		.04 as N
	08/12/03	387	239	11.3	0.65	75.1	0.57	47.2	18.4		2.41as N
	08/18/04	390	232	11.2	0.64	72.6	0.64	48	20.8		<.06 as N
	08/02/05	404	242	12.5	0.67	69.9	0.65	47.2	23.2		<.06 as N
	08/03/06	381	222	12.3	0.77	62.8	0.54	40.3	17.3	110	<.06 as N
8S/2W-29B11	08/02/06	483	285	30.1	7.84	51.5	0.93	57.1	11.8	138	1.44 as N
8S/2W-29F3	08/03/06	378	251	21.9	7.67	38.9	1.9	47.2	10.4	104	0.46 as N

^{* -} Alkalinity as CaC03

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids	Chemical Constituents - mg/l								
	Tested	umhos	(mg/l)	Са	Mg	Na	K	CI	SO4	HCO3*	NO3	
Pechanga Indian	Reservation	on (Continued)	040121111111111111111111111111111111111	4444			<u> </u>					
8S/2W-29J02	08/26/99	565	329	39	15	47	1.6	66	14		2.67 as N	
	08/22/00	562	337	39	15	47	1.5	65	14		2.70 as N	
	08/21/01	574	351	40	15	50	1.6	70	15		2.63 as N	
	08/21/02	554	345	41	16	50	1.8	68	14		2.93 as N	
	08/12/03	592	372	45.4	16.6	54.2	1.65	78.2	15.4		2.41 as N	
•	08/19/04	598	362	48.8	16.9		1.88	80	17		3.06 as N	
8S/2W-29J03	08/02/06	532	. 337	40.3	13.2	43.1	1.34	44.8	17.5	152	8.48 as N	
8S/2W-34B04	10/05/89	617	371	51	8.2	67	1	58	30	192	.47 as N	
	07/26/90	605	341	50	. 8	65	1	61	31	194	.50 as N	
	07/18/91	564	339	46	7.4	67	1	53	27	185	.87 as N	
	07/27/93	267	170	. 18	2.8	34	0.5	14	9.7	96	1.10 as N	
8S/2W-35D01	08/03/89	660	358	43	5.5	87	1.2	78	35	169	.35 as N	
	07/26/90	669	384	41	4.9	92	1.5	82	36	176	.40 as N	
	07/17/91	641	371	40	4.4	98	1.7	81	36	175	.39 as N	
	07/27/93	638	374	49	5.9	79	1.8	71	27	199	.34 as N	
	08/16/94	601	334	30	3.2	95	1.5	71	29	163	.16 as N	
	08/30/95	587	322.	33	4	81	1.5	68	25	178	.11 as N	
	08/27/96	596	352	28	3.3	92	1.4	72	29	167	.10 as N	

^{* -} Alkalinity as CaC03

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids	ved Chemical Constituents - mg/l						
	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3* NO3
Cahuilla Indian	Reservat	ion								
7S/2E14M01	12/14/83	1220	708	130	40	45	11 .	53	390	98 0.04 as N
7S/2E-23H01	05/18/06	428	288	39.6	5.7	33.7	3.08	31	14	8.26 as N
7S/2E-23Q01	05/18/06	245	. 160	15.6	2.55	26.6	2.45	29.5	5.4	1.07 as N
7S/2E-33N1	08/02/89	355	206	16	2.1	53	3.5	48	15	78 .73 as N
7S/2E-36J01	02/03/84		252	43	4.4	36	4.8	32	5.4	3.40 as N
7S-3E-14P03	08/10/05	1080	741	113	42.4	70	9.7	66.8	296	15 as N
7S/3E-21L01	05/27/53	750		66	20	70		67	76	·
	08/02/89	1050	675	90	19	100	3.5	84	190	216 3.1 as N
	08/01/90	1020	610	87	18	100	3.4	85	180	217 3.0 as N
	07/17/91	995	636	93	18	100	3.7	95	180	206 2.5 as N
7S/3E-31L02	02/03/84		184	23	4.8	24	2.9	24	0	2.0 as N
7S/3E-31N01	07/27/84	684	412	69	12	37		75	12	
7S/3E-34E01	07/07/76			25	4.6	21	4.2	26	7.3	4.0 as N
	09/22/77			25	4.9	23	4.4	25	6.9	
	07/19/78			26	5.1	22	4.5	24	6.5	3.7 as N
	06/28/79		190	26	5	22	4.3	24	6	
	07/02/80			26	4.9	23	4.7	28	6.9	3.7 as N
	07/08/81	309		27	5	23	4.7	26	7.7	
	06/29/82	311		27	5.3	27	4.9	27	10	
	08/10/83			27	5	23	4.8	29	7.7	
	08/21/84			30	5.3	24	4.3	29	7.2 7.0	
	08/01/85			28	5.2 5.6	24 25	4.6 4.8	29 28	7.0 8.0	
	08/14/87		207 204	29 30	5.6	25 26	4.0 5.0	20 29	7.0	
	07/20/89 07/31/91	338 337	109	31	5.5	25 25	4.5	31	6.3	
	07/31/91	335	209	31	5.9	26	4.7	32	6.3	
	01/10/91	330	209	31	J.9	20	7.1	J2.	0.0	00 0.0 40 11

^{* -} Alkalinity as CaC03

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

Site Location	Date	Specific Conductance	Total Dissolved Solids			Chemical Constituents - mg/l Na K CI SO4 HCO3*					
	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3*	NO3
Cahuilla Indian	Reservati	on (Continued)			•						
8S/2E-4P01	01/21/86 05/18/06	1870 794	 441	190 59.8	54 19.3	64 44.1	7.9 4.44	480 101	13 10.4	136 	4.0 as N 5.45 as N
8S/3E-2A01	02/05/86	591	·	54	11	43	3.2	93	21	103	3.4 as N
8S/3E-2D01	07/08/81 07/24/85	293 279		17 11	2.2 1.2	39 42	1.7 1.5	30 28	8.8 8	68 71	2.5 as N 2.1 as N
8S/3E-2E01	12/07/5 <u>0</u> 11/15/51			30 38	10 8	53 43		50 50	14 6		
	05/27/76 09/22/77		280	39 39	9.4 9.6	32 33	2.2	49 42	12 8.4		4.9 as N
	07/19/78 06/28/79 07/02/80		284	42 40 34	10 9 6.5	36 32 22	2.4 2.8 2.4	57 42 27	13 9 7.4		5.7 as N 0
	07/08/81 06/29/82	296 494		33 43	4.8 9.7	19 41	1.9 3	36 54	1 14	61 127	2.0as N 5.7 as N
	07/26/83 08/21/84 08/13/87	427 428 428	 276	40 42 39	9.6 9.3 9.4	32 32 32	3 2.9 3.2	42 39 37	9.7 9.6 9.6	131 129 129	4.8 as N 4.7 as N 4.6 as N
	08/10/05	424	283	42.4	10.2	33.6	3.4	39.9	9.14		4.88 as N
8S/3E-2K01	09/22/77 07/19/78	·		43 42	10 9.8	48 48	3.2 3.4	65 68	18 17		 3.7 as N
	06/28/79 07/02/80		342 	46 64	10 12	46 92	3.1 2.7	69 140	19 48		4.1 as N
	06/29/82 08/10/83 08/21/84	454 435 561		41 39 50	10 9.5 11	38 32 48	3.7 3.6 3.1	46 43 68	13 13 27	129 133 139	3.6 as N 3.6 as N 4.0 as N
	08/01/85 08/13/87	472 451	 282	41 40	9.7 9.9	34 31	3.4 3.4	48 41	15 16	125 133	3.7 as N 3.6 as N
	07/20/89 08/01/90 07/16/91	531 508 522	323 310 306	46 46 50	11 11 10	41 38 39	3.4 3.3 3.3	60 60 61	22 19 2 1	136 134 139	3.6 as N 3.8 as N 3.7 as N

^{* -} Alkalinity as CaC03

TABLE D-6

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

			Total								
		Specific	Dissolved	ĺ		Che	mical	Constituents	- mg/l		
Site Location	Date Tested	Conductance umhos	Solids (mg/l)	Ca	Mg	Na		CI S	O4 H	03	NO3
10S/5W-26C1)	10/60	1060	639	66.5	24.0	116.0	4.5	160 11	0.0 26	4.0	trace
(Bldg 220001)	06/62	1190	718	60.0	33.2	123.0	3.8	190 12	4.0 23	2.0	1.4
, -	07/64	1217	734	79.2	27.8	144.0	1.6	180 15	0.0 24	8.9	
	05/65	1485	896	75.2	30.3	158.0	2.4	180 12	0.0 25	3.8	. 0
	01/66		808	76.8	33.2	157.0	3.4	170 18	0.0 29	2.8	0.62
	06/66	·	684	75.2	26.8	112.0	2.4	128 14	8.0 26	3.5	3.9
	01/67		856	81.6	26.3	138.0	3.5	162 14	0.0 31	0.0	3
	08/67		. 880	99.2	38.1	156.0	3.6	160 23	0.0 32	2.1	5.3
	02/68		768	65.6	25.4	156.0	3.4	160 16	4.0 23	6.7	0
	04/69		852	66.0	32.0	162.0	3.2	166 21	0.0 24	9.0	0
	11/69		844	87.0	31.0	140.0	3.6	164 18	0.0 26	2.0	0
	07/70			99.0	32.0	139.0	3	158 20	5.0 25	9.0	2.7
	12/70	1180	712	83.0	28.0	138.0	-3	166 17	0.0 26	6.0	0
	09/71	1062	640	83.0	27.0	128.0	2.8	136 17	5.0 27	8.0	0.4
	05/72	1130	681	56.0	24.0	140.0	2.8	136 16	5.0 22	0.0	0
	10/72	1165	703	64.0		159.0	3.6	132 18	0.0 29	3.0	1.8
	10/73	1140	688	72.0	27.0	131.0	3.8	144 19	0.0 20	0.0	0.3 as N
	02/76	1140	688	70.4	28.3	143.0	3.1	132 18	2.0 27	3.3	1.8 as N
	09/76	1100	663	67.0	25.0	152.0	2.5	152 13	1.0 32	7.0	2.8 as N
	03/77	1080	651	67.0	28.0	173.0	3.1	128 · 16	0.0 25	4.0	4.4 as N
	10/78	1150	694	70.0	25.0		3.5	139 14	5.0 25	3.8	<1 as N
	06/79	1100	663	72.0	27.3		3	134 14			<1 as N
	10/80	1200	693	78.8	23.7		3.3	172 13	6.0 27	3.3	0.2 as N
	04/81	1160	737	82.4	22.4		3.6				<0.5 as N
	11/81	1300	863	97.6	31.5		2.2	204 20	9.0 24	18.9	0.8 as N
	11/81	950	573	74.0	18.3		2.1	144 13	0.0 22	24.5	0.3 as N
	05/82	1100	663	80.8	26.6		1.5			8.4	<0.5 as N
	03/83	1000	603	84.0		144.0	3.2	152 14	3.0 27	73.3	<0.5 as N
	05/84	1150	694	80.0		-126.0	3.1	133 15	0.0 28	33.0	0.2 as N
	06/85	1100	680	89.0		140.0	3		4.0 44		<0.4
•	09/85	1242		78.0		122.0	6	154 14			<0.4
	05/86	1387		85.2		130.7		166 13			
	06/89	1302		78.1	23.0			136 14			<0.4
	01/91	1271			36.1			166			<0.04
	06/91	1290		99.0		133.0		167 13		37.0	
	03/92	1210		91.0		146.0		159 13			
	06/93	1290		68.3	27.5			168 13			
	03/94				37.1			145 16			2.2
	08/94			87.5	35.5	96.1		141 18			4.23

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site Location	Date	Specific Conductance	Total Dissolved Solids	ssolved Chemical Constituents - mg/l							
	Tested		(mg/l)	Ca	Mg	Na	K	CI	SO4	нсоз	NO3
10S/5W-26C1	06/95	1330	806	97.7	37.4	142.0		207	166.0		<0.04
(Bldg 220001)	01/96	1300	764	91.0	33.0	140.0		177	142.0	363.0	<0.0
(Continued)	06/96	1300	751	93.0	30.0	130.0		164	156.0	252.0	<0.0
	06/97	1215	758	88.0	29.0	130.0	<2	151	148.0	292.0	<2 as N
	12/97	1200	690	81.0	29.0	140.0	3	155	150.0	250.0	ND
	04/98	1200	790	83.0	31.0	101.0	3	170	156.0		ND
	06/98	1230	714	85.0	30.0	136.0	3	163	ND	293.0	ND
	02/99	1250	731	84.0		127.0	3	160	140.0		ND
	04/99	1220	769	88.0	30.0	127.0	3	138		317.0	ND
	05/01	1300	794	98.0	36.0	130.0	3	173	179.0	317.0	ND
10S/4W-18M5	06/89	1156	688	74.6	24.4	67.9		130	138.0	197.0	8.9
(Bldg 230073)	01/90	1120	630	86.4	32.3	101.0		156	166.0	210.0	< 0.05
(Previously	04/90	1160	720	98.8	34.8	107.0		152	146.0	218.0	1.4
reported as	01/91	1202		84.1	40.5	117.0		162	153.0		<0.04
10S/4W-18M4)	06/91	1180	736	102.0	37.1	106.0		163	138.0	197.0	<0.4
	03/94	1020	658	69.6	27.8	104.0		135	140.0		0.89
	08/94	1110	684	81.4	32.2	178.0		144	157.0	***	<0.44
	06/95	1170	679	95.3	35.2	113.0		145	116.0		13.8
	06/96	1100	682	86.0	32.0	95.0		155	261.0	210.0	<0.0
	02/97	1180	640	79.0	32.0	110.0		142	162.0	190.0	<2 as N
	06/97	1117	709	85.0		110.0	<5	150		223.0	<2 as N
	12/97	1100	700	82.0	33.0	110.0	3	141		220.0	ND
	03/98	1100	710	83.0	33.0	100.0	3	182	158.0	150.0	ND
	06/98	1200	720	85.0	34.0	119.0	4	159	154.0	281.0	ND
	02/99	1020	613	70.0	30.0	85.0	4	130	85.0	179.0	8
	05/00	1020	709	91.0	33.0	94.0	4	146	149.0		ND
	08/00	1160	707	81.0	39.0	79.0	4	149	153.0	177.0	ND
	02/01	1200	736	85.0	35.0	116.0	4	164	180.0		ND
	04/01	1200	606	85.0	34.0	112.0	4	154		232.0	. ND
	09/01	1250	761	90.0	37.0	115.0	4	166		232.0	ND
	11/01	1290	737	91.0	37.0	118.0	3	181		256.0	ND
	02/02	1260	781	89.0	36.0	123.0	4.6	170		255.0	ND
	04/02	1250	755	90.0	37.0	116.0	4.1	175	195.0		ND
	05/02	1290	750	92.0	38.0	110.0	4	157	194.0	180.0	100 as N
	07/02	1260	753	90.0	37.0	114.0	4	171	196.0	200.0	ND

SANTA MARGARITA RIVER WATERSHED

WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site Location	Data	Specific Conductance	Total Dissolved Solids			Che	mica	l Constitue	nts - m	g/i	
Site Location	Tested		(mg/l)	Ca	Mg	Na	K	CI	\$04	HCO3	NO3
10S/4W-18M5	01/03	1350	816					160	201.0		ND
(Bldg 230073)	02/03			96.0	40.0		4.6				
(Previously	04/03	1210	738	95.0	27.0		3.9	175	210.0	192.0	ND
reported as	10/03	1290	752	91.0	37.0	134.0	5	167		199.0	0 as N
10S/4W-18M4)	01/04	1230	717	93.0	38.0	111.0	6	159		173.0	0 as N
(Continued)	04/04	1280	722	82.0	36.0	112.0	6	168	213.0	180.0	0 as N
	07/04	1080	739	88.0	37.0	92.0	7		198.0		0 as N
	11/04	1230	563	91.0	38.0	124.0	4.8	172	215.0	175.0	0 as N
	01/05	1240	687	96.0	39.0	124.0	4	172	215.0	190.0	0 as N
10S/5W-23J1	05/56	1090	685	61.5	24.3	142.0			110.0		0.06
(Bldg 230001)	12/56	1060	666	67.0	27.0	96.0		124		274.0	
	12/57		780	66.3	23.9	159.0			155.0		10.6
	05/59	1100	691	75.2		112.0			152.0		
	01/60	1120	704	72.7		116.5		112	144.0		
	10/60	1045	657	63.2	21.4	99.0	3.6	140			0
	05/61	1280	770	76.0	36.5	136.0	3	124	195.0		0
	05/62	1133	712	68.8	30.3	136.0	2	128			
	01/63	1111	698	72.0	35.1	127.0	2.8	128			
	06/63	1108	696	78.4		118.0	2.9	148		258.6	0 as N
	07/64	1165	732	74.4	27.8	128.0	1.2	139			
	05/65	1130	710	80.0	26.4	145.0	2.1	148	120.0	268.4	0.14
	01/66		736	88.0	18.1	142.0	2.8	124		263.5	1.8
	06/66		736	75.2	29.3	138.0	2.7		175.0		4.8
	01/67	·	744	76.8		118.0	3	136			2.2
	08/67		680	70.4		128.0	2.3	140			8.4
	02/68		660	48.0		130.0	2.8	124		234.0	6.1
	04/69		708	70.0	28.0	126.0	2.5	128		278.0	0
	11/69		684	73.0	28.0	126.0	2.8	138			0
	05/70		716	74.0		122.0	0.1	134	170.0	210.0	4.4
	12/70	1090	385	78.0		126.0	2.6	142	170.0		3.1
	09/71	1025	644	75.0		120.0	2.7	124		229.0	0.9
	05/72	1050	660	75.0	21.0	124.0	2.3	124			2.2
	10/73	1140	716	74.0		128.0	2.8	136			0.5 as N
	06/74	1060	680	74.0	13.0	131.0	2.9	158	138.0		0.01 as N
	02/76	1050	660	73.6	25.4	136.0	2.9	119			2.0 as N
	09/76	1100	691	58.0	32.0	146.0	2.6	140			2.6 as N
	03/77	1080	679	69.0	29.0	110.0	3	128	155.0	259.0	4.3 as N

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site Location	Date	Specific Conductance	Total Dissolved Solids	chemical Constituents - mg/l								
	Tested		(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3	
10S/5W-23J1	01/78	1100	691	70.0	23.0	147.0	3	140	135.0	259.0	4.4 as N	
(Bldg 230001)	10/78	1150	723	74.0	22.0	120.0	2.9	134	149.0	248.9	<1 as N	
(Continued)	04/79	1000	628	70.4	22.4	118.0	2.6	122	138.0	239.1	<1 as N	
	10/80	1150	745	74.0	22.5	128.0	3	152	138.0	239.1	0.2 as N	
	05/81	1020	580	67.2	17.3	116.0	3.1	132	111.0	205.0	<0.5 as N	
	03/83	900	599	65.6	19.5	129.0	2.8	136	129.0	234.2	<0.5 as N	
	12/83	1000	628	72.4	22.4	127.0	2.6	140	150.0	249.0	<0.1 as N	
	05/84	1100	691	78.8	25.9	120.0	2.8	130	150.0	254.0	0.2 as N	
	06/85	1100	691	59.0	26.0	130.0	3	140	70.0	440.0	3.5	
4. C	09/85	1203	705	66.0	26.0	110.0	6	150	144.0	226.6	<0.4	
	06/89	1139	662	71.5	21.7	80.8		117	128.0	209.0	< 0.4	
	01/90	1150	632	90.6	32.4	102.0		160	170.0	214.0	<0.5	
	01/91	1112		73.7	32.0	128.0		136	136.0		< 0.04	
	06/91	1090	662	87.4	29.7	117.0		140	121.0	204.0	< 0.4	
	03/92	1080	644	74.2	25.8	133.0		127	118.0	282.0	1.3	
	03/93	1210	674	72.8	24.5	117.0		127	124.0	261.0	< 0.4	
	06/93	1090	670	63.9	25.7	119.0		117	128.0	237.0	< 0.4	
•	03/94	1120	683	73.9	27.0	121.0		141	130.0		< 0.4	
	08/94	1160	707	78.9	28.2	129.0		139	153.0		<0.44	
	06/95	1160	742	88.2	28.8	131.0		165	147.0		< 0.04	
	01/96	1300	690	79.0	29.0	140.0		147	131.0	292.0	<0.0	
	06/96	1020	674	82.0	29.0	120.0		134	129.0	204.0	<0.0	
	02/97	1100	650	74.0	27.0	150.0		126	172.0	245.0	<2 as N	
	03/97	1073	630	77.0	28.0	130.0		142	134.0	254.0	<2 as N	
	02/99	1180	647	75.0	27.0	125.0	3	150	130.0	272.0	ND	
	04/99	1240	722	81.0	30.0	124.0	3	157	150.0	293.0	ND	
	08/99	1180	735	79.0	29.0	120.0	3	190	183.0	281.0	ND	
	12/99	1190	699	83.0	. 30.0	118.0	3	100	158.0	278.0	ND	
	02/00	1110	723	81.0	30.0	116.0	3	90	163.0	293.0	· ND	
	05/00	1070	714	81.0	29.0	115.0	3	170	152.0	273.0	ND	
	08/00	1200	735	80.0	29.0	117.0	3	150	118.0	275.0	ND	
	02/01	1230		84.0	31.0	132.0	ND	158	158.0	293.0	ND	
	04/01	1190	636	81.0	30.0	123.0	3	146	148.0	287.0	ND	
	09/01	1300	751	88.0	32.0	132.0	3	155	160.0	293.0	ND	

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site Location	Date	Specific Conductance	Total Dissolved Solids	I .		Che	emica	l Constitue	nts - m	g/l	
One Econom	Tested		(mg/l)	Ca	Mg	Na	K	CI	SO4	НСО3	NO3
10S/5W-23J1	10/01	1380	757	88.0	33.0	133.0	3	152	159.0	311.0	ND
(Bldg 230001)	02/02	1220	724	86.0	31.0	124.0	2	146	156.0	293.0	ND
(Continued)	04/02	1210	726	89.0		124.0	2.8		162.0		100 as N
	07/02	1280	735	85.0	31.0	129.0	3.1	155	165.0		ND
	10/02		701	87.0		141.0	2.9	157	170.0	257.0	ND
	11/02			87.0	31.0						
	01/03	1260	760		:			146	162.0		ND
	02/03			68.0	32.0	139.0	3.5				
	04/03	1200	708	87.0	32.0	127.0	2.8	158	175.0	245.0	ND
	10/03	1210	696	82.0		144.0	3	167	177.0		0 as N
	01/04	1170	678	87.0		121.0	4	151		227.0	0 as N
	04/04	1270	697	82.0	31.0	120.0	4		171.0		0 as N
	07/04	1030	702	87.0	31.0	98.0	5	138	151.0		0 as N
	10/04	1230	879	89.0	31.0	102.0	5	158	176.0	225.0	0 as N
	02/05	1170	704	88.0		134.0	3.1	157	171.0		0 as N
	04/05	1220	755	88.0	30.0	121.0	2.7	132	167.0		0 as N
	07/05	1190	725	83.0	29.0	117.0	2.8	153	ND	206.0	0 as N
10S/4W-18E3	06/89	1166	758	80.5	28.1	67.4	·	132	157	198.0	9.5
(Bldg 230093)	01/90	1230	748	97.4	39.7	106.0		178	179	226.0	<0.05
•	04/90	1190	733	99.6	37.5	112.0		159	156	207.0	2.5
	06/91	1130	680	97.6	37.6	100.0		139	142	166.0	2.7
	02/94	1180	731	83.3	35.5	104.0		142	159		
	08/94	1150	725	84.3	35.2	102.0		147	164		•
	06/95	932	636	75.4	29.1	86.6		102	140		
	06/96	1117	710	92.0	36.0	93.0		180	297		<0.0
	02/97	1100	686	89.0	38.0	110.0		157	. 166	220.0	<2 as N
	03/97	1116	673	87.0	36.0	110.0		147		213.0	<2 as N
	06/97	1131	779	90.0	37.0	99.0	<5	151	177	199.0	<2 as N
	09/98	1160	727	83.0	36.0	. 90.0	3	160	181	232.0	ND
·	10/99	1200	325	88.0	39.0	117.0	4	130			ND
	02/00	1100	739	84.0		100.0	4	130		281.0	ND
	05/00	1030	717	80.0	35.0	96.0	4	168		229.0	. 2
	02/01	1360	798	97.0	44.0	111.0	4	184		244.0	ND
	04/01	1310	728	94.0		114.0	4	168		232.0	ND
	09/01	1330	791	96.0		115.0	4	173		224.0	ND
	03/02	1320	778	102.0		123.0		196		242.0	ND
	04/02	1300	808	101.0		117.0		183		200.0	ND
	07/02	1390	778	96.0	42.0	114.0	3.7	180	214	209.0	ND

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site Location	Date	Specific Conductance	Total Dissolved Solids	I .		Che	emica	l Constituents - mg/l
Oile Location	Tested		(mg/l)	Ca	Mg	Na	K	CI SO4 HCO3 NO3
10S/4W-18E3	10/02	1360	763	97.0	41.0	126.0	4	180 207 214.0 ND
(Bldg 230093)	01/03	1290	749	96.0	40.0	116.0	3.7	172 200 200.0 ND
(Continued)	02/03					131.0		
	04/03	1210	783	99.0	42.0	129.0	3.9	176 201 191.0 ND
	10/03	1320	775	97.0		126.0	5	168 231 174.0 0 as N
	01/04	1270	763	101.0		106.0	6	162 220 180.0 0 as N
	04/04	1320	781	96.0		105.0	6	179 250 195.0 0 as N
	07/04	1370	784	100.0	43.0	89.0	6	169 219 203.0 0 as N
	10/04	1300	857	99.0	42.0	88.0	6	188 245 210.0 0 as N
	01/05	1270	760	99.0	42.0	115.0	4.3	170 234 185.0 0 as N
	04/05	ND		ND	ND	88.0	3.2	ND ND ND 0 as N
	07/05	1120	724	89.0	36.0	91.0	3.5	133 ND 203.0 0 as N
	11/05	1230	815			113.0	4.1	153 213 174.0 0 as N
	04/06	1350	832	110.0	44.0	120.0	3.8	180 250 220.0 0 as N
10S/4W-7R2	06/89	1281	765	76.5	25.1	82.4		149 153 209.0 10.3
(Bldg 260003)	04/89	1270	788	104.0	36.5	126.0		173 161 215.0 2.6
	06/91	1400	836	111.0	41.1	130.0		195 155 215.0 0.04
	02/94	1260	738	83.3	32.0	131.0		169 155 <0.04
	08/94	1260	738	84.3	33.7	129.0		166 149 <0.44
	06/95	1290	897	93.6	35.2	129.0		202 164 0.69
	02/97	1200	720	84.0	36.0	130.0		150 152 240.0 <1 as N
	03/97	1143	708	83.0		130.0		152 137 240.0 <2 as N
	06/97	1227	831	94.0		120.0	<5	185 147 247.0 <2 as N
	12/97	1200	700	84.0		120.0	3	150 173 240.0 ND
	03/98	1200	780	85.0	36.0	110.0	3	187 162 180.0 . ND
	06/98	1190	734	ND	ND	ND	ND	ND ND ND
	12/97	1200	700	84.0	36.0	120.0	3	150 173 240.0 ND
	03/98	1200	780	85.0	36.0	110.0	3	187 162 180.0 ND
	06/98	1190	734	ND	ND	ND	ND	ND ND ND
	02/99	1160	663	76.0	32.0	102.0	3.0	150.0 150.0 214.0 ND
	08/99	1120	727	76.0	33.0	99.0	3.0	156.0 230.0 281.0 ND
	10/99	1130	660	78.0	33.0	120.0	3.0	110.0 160.0 262.0 ND
	02/00	1030	592	79.0	35.0	95.0	3.0	120.0 160.0 244.0 ND
	05/00	1010		76.0	.33.0	96.0	3.0	129.0 127.0 229.0 ND
	08/00	1140		77.0	33.0	87.0	3.0	ND 157.0 232.0 ND
	10/02	1120	617			102.0		400 0 404 0 ND
	12/02			73.0	32.0			132.0 164.0 ND
	01/03	1150		70.0		113.0		135.0 165.0 174.0 ND
	02/03			76.0	34.0	400.0	4.5	404.0 200.0 ND
	04/03			62.0	34.0	122.0		164.0 209.0 ND
	05/03	1190						156.0 182.0

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

		Total Dissolved	 1	Chemical Constituents - mg/l							
Site Location	Date Tested	Conductance umhos	Solids (mg/l)	Ca	Mg	Na	K	CI		HCO3	NO3
10S/4W-7R2	10/03	1250	737	81	37	130	5	163.0	201.0	192	0 as N
(Bldg 260003)	01/04	1240	694	86	39	107	6		182.0	185	0 as N
(Continued)	04/04	1320	750	84	40	108	6		210.0	220	0 as N
(,	07/04	1100	761	92	41	88	7		204.0	205	0 as N
	10/04	1280	893	93	41	88	6		222.0	195	0 as N
	02/05	1270	839	99	44	121	5.2		215.0	198	0 as N
	04/05	1300	880	98	41	109	3.8	158.0	216.0	183	0 as N
	07/05	1380	870	101	43	109	4	ND	ND	176	0 as N
	11/05	1310	865	104	43	115	3.8	164	221	181	0 as N
	04/06	1220	810	100	43	110	3.8	170	240	206	0 as N
10S/4W-7H2	08/56	1060	882	78.0	30.0	112		150	82	326.0	
(Bldg 260071)	01/60	820	500	55.2	14.7	85.0		76	98	224.0	
	10/60	1300	793	74.5	20.5	126.0	4.3	182	116	320.0	
	05/61	1390	840	100.0	29.2	170.0	3.3	170	135	362.0	
	05/62	1220	744	70.4	39.0	142.0	2.4	184	86	312.3	
	01/63	1300	740	65.6	26.4	162.0	2.4	166	153	259.0	0.7
	07/63	1100	671	64.0	25.4	118.0	2.7	148	97	280.6	0.0 as N
	01/64	1020	622	70.4	33.2	117.0	2.7	172	98	302.6	3.3
	07/64	1400	854	83.2	27.3	134.0	1.4	164	98	322.1	
	04/65	1490	909	97.6	23.4	152.0	4.7	196	110	346.5	0.9
	01/66		832	102.0	28.0	166.0	3.1	194	88	414.8	6.6
	06/66	 -	768	86.4	26.3	150.0	3.1	184	110	331.8	6.9
	01/67		768	72.0	29.3	128.0	3.1	174	72	324.5	6.9
	08/67		608	57.6	24.4	116.0	2.4	132	70		10.2
	02/68		572	67.2	17.6	105.0	2.4	118		251.0	0
	09/68		636	74.0	19.0		3	144		268.0	0.4
	04/69			72.0	33.0	138.0	2.8	180		285.0	0.9
	11/69		604	66.0	24.0		2.8	140		259.0	1.8
	05/70			65.0		.115.0	2.4	142			3.1
	09/71	1075	656	77.0	24.0	120.0	2.8	144		273.0	1.3
	05/72	1000	610	46.0	24.0	117.0	2.4	140		141.0	0
	10/72	1110	677	88.0		105.0	3.6	144		283.0	3.5
	10/73	1120	683	75.0		118.0	2.7*	132		200.0	0.6 as N
	06/74	1210	712	72.0	19.0	150.0	3.1	208			0.01 as N
	01/75	850	519	61.0	21.0	93.0	2.4	102		212.0	2.3 as N
	02/76	1200	732	91.2	20.5	126.0	3.2	176		244.0	2.6 as N
	09/76	1200	732	48.0	29.0	180.0	2.4	192		336.7	4.2 as N
	03/77	1400	854	• 94.0	33.0	158.0	2.8	216	140	342.0	2.8 as N

^{*} Reported as 27

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site Location Pate Computation Pate Computation Pate Computation Pate Computation Pate Computation Pate Computation Pate Computation Pate Computation Pate Computation Pate			•	Total								
Tested Umhos (mg/l) Ca Mg Na K Cl SO4 HCO3 NO3			Specific		1		Che	emica	l Constitue	nts - m	g/l	
(Bidg 260071) 10/78	Site Location				Ca	Mg	Na	<u>к</u>	CI	SO4	HCO3	NO3
(Bidg 260071) 10/78	10S/4W-7H2	01/78	1000	610	66.0	23.0	100.0	2.7	128	123	205.0	4.4 as N
(Continued) 04/79 1200 732 84.8 28.3 144.0 3.1 164 116 312.3 <1 as N 01/80 1450 885 93.0 30.0 163.0 3 196 200 273.0 <1 as N 10/80 1050 591 70.4 21.7 104.0 3.7 140 125 219.6 2.0 as N 05/81 1000 645 72.4 21.7 104.0 3.7 140 125 219.6 2.0 as N 05/81 1000 645 72.4 21.7 104.0 3.7 140 125 219.6 2.0 as N 05/82 1330 890 669 77.2 23.7 95.0 3.4 132 209.8 <0.5 as N 12/83 1000 610 70.4 23.7 123.0 2.6 136 150 224.0 0.5 as N 05/84 1300 650 66 29.0 120.0 2.6 200 170 250.0 12 11/84 1100 671 77.2 24.6 116.0 2.7 133 155 244.0 0.2 as N 05/86 1390 669 149 269.8 0.6 29.0 120.0 2.6 200 170 250.0 12 11/84 1100 671 81.6 23.4 124.0 2.7 149 175 249.0 1.2 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 05/86 1592 994 104.0 42.1 128.0 - 157.7 167 249.0 5.4 40.1 14.0 401 - 87.3 44.4 103.1 - 167.7 167 249.0 5.4 40.1 14.0 401 - 87.3 44.4 103.1 - 167.7 167 249.0 5.4 40.1 14.0 401 - 167.0 40.1 14					82.0							<1 as N
01/80										116		<1 as N
10/80	,				93.0	30.0	163.0	3	196	200	273.0	<1 as N
05/81 1000 645 72.4 21.7 105.0 3.5 128 123 209.8 0.5 as N 0.5/82 1330 890 669 77.2 23.7 95.0 3.4 132 136 209.8 0.65 as N 12/83 1000 610 70.4 23.7 123.0 2.6 136 150 224.0 0.5 as N 0.5/84 1100 671 77.2 24.6 116.0 2.7 133 155 244.0 0.2 as N 0.5/84 1100 671 81.6 23.4 124.0 2.7 149 175 249.0 1.2 as N 0.5/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 0.6/89 1137 826 79.1 28.5 85.5 157 158 246.0 12.6 0.9/12 0.4/90 1320 817 109.0 42.1 128.0 177 167 249.0 5.4 0.1/91 0.4/91 0.3/93 1500 824 92.6 33.1 36.0 194 175 249.0 5.4 0.3/94 1370 827 103.0 36.4 135.0 163 145 0.9 0.8/94 1270 762 91.1 35.5 129.0 163 145 0.9 0.8/97 1300 830 100.0 41.0 150.0 162 172 2 as N 0.6/96 1300 751 96.0 36.0 120.0 162 172 2 as N 0.6/98 1390 830 800.0 80.0 120.0 2 152 182 20.0 ND 0.9/98 1290 748 87.0 32.0 100.0 3.0 150 169 220.0 ND 0.9/98 1290 748 87.0 32.0 100.0 3.0 150 169 220.0 ND 0.9/98 1290 748 87.0 32.0 100.0 3.0 150 169 220.0 ND 0.9/98 1290 748 87.0 32.0 100.0 3.0 150 150 238 5 0.5/99 1170 757 86.0 35.0 120.0 3.0 154 100 295 3 0.6/01 1200 729 89.0 36.0 120.0 3.0 154 100 295 3 0.6/01 1200 778 88.0 37.0 120.0 3.0 154 100 295 3 0.6/01 1200 778 88.0 37.0 120.0 3.0 154 100 295 3 0.6/01 1200 778 88.0 37.0 120.0 3.0 154 100 295 3 0.6/01 1200 779 89.0 36.0 120.0 3.0 154 100 295 3 0.6/01 1200 779 89.0 36.0 120.0 3.0 154 100 295 3 0.6/01 1200 779 89.0 36.0 120.0 3.0 154 100 295 3 0.6/01 1200 779 89.0 36.0 120.0 30.0 154 100								3.7	140	125	219.6	2.0 as N
05/82			1000	645	72.4	21.7	105.0	3.5	128	123	209.8	<0.5 as N
12/83				811	100.8	35.9	176.0	1.6	269	198	263.5	<0.5 as N
05/84 1100 671 77.2 24.6 116.0 2.7 133 155 244.0 0.2 as N 09/84 1300 650 6.6 29.0 120.0 2.6 200 170 250.0 12 11/84 1100 671 81.6 23.4 124.0 2.7 149 175 249.0 1.2 as N 05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 41 as N 06/89 1137 826 79.1 28.5 85.5 157 158 246.0 12.6 01/90 1220 772 96.3 38.6 116.0 184 179 252.0 0.9/1.2 04/90 1320 817 109.0 42.1 128.0 177 167 249.0 5.4 01/91 401 87.3 33.1 136.0 162 172 <				669	77.2	23.7	95.0	3.4	132	136	209.8	0.65 as N
09/84				610	.70.4	23.7	123.0	2.6	136	150	224.0	0.5 as N
11/84 1100 671 81.6 23.4 124.0 2.7 149 175 249.0 1.2 as N 06/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N		05/84	1100	671	77.2	24.6	116.0	2.7	133	155	244.0	0.2 as N
05/86 1592 994 104.7 39.7 167.3 4.4 232 167 301.8 <1 as N 06/89		09/84	1300	650	6.6	29.0	120.0	2.6	200	170	250.0	12
06/89 1137 826 79.1 28.5 85.5 — 157 158 246.0 12.6 01/90 1290 772 96.3 38.6 116.0 — 184 179 252.0 0.9/1.2 04/90 1320 817 109.0 42.1 128.0 — 177 167 249.0 5.4 01/91 401 — 87.3 44.4 103.1 — 205 179 — 1.07 03/93 1500 824 92.6 33.1 136.0 — 194 154 277.0 1.8 03/94 1370 827 103.0 36.4 135.0 — 163 145 — 0.9 08/94 1270 762 91.1 35.5 129.0 — 162 172 — 5.64 06/95 1260 771 100.0 35.8 127.0 — 162 172 247.0 1.1		11/84	1100	671	81.6	23.4	124.0	2.7	149	175	249.0	1.2 as N
01/90 1290 772 96.3 38.6 116.0 — 184 179 252.0 0.9/1.2 04/90 1320 817 109.0 42.1 128.0 — 177 167 249.0 5.4 01/91 401 — 87.3 44.4 103.1 — 205 179 — 1.07 03/93 1500 824 92.6 33.1 136.0 — 194 154 277.0 1.8 03/94 1370 827 103.0 36.4 135.0 — 162 172 — 0.9 08/94 1270 762 91.1 35.5 129.0 — 162 172 — 5.64 06/95 1260 771 100.0 35.8 127.0 — 197 178 — 2.8 06/96 1300 751 96.0 36.0 120.0 — 162 174 247.0 1.1 <td></td> <td></td> <td>1592</td> <td>994</td> <td>104.7</td> <td>39.7</td> <td>167.3</td> <td>4.4</td> <td>232</td> <td>167</td> <td>301.8</td> <td><1 as N</td>			1592	994	104.7	39.7	167.3	4.4	232	167	301.8	<1 as N
04/90 1320 817 109.0 42.1 128.0 — 177 167 249.0 5.4 01/91 401 — 87.3 44.4 103.1 — 205 179 — 1.07 03/93 1500 824 92.6 33.1 136.0 — 194 154 277.0 1.8 03/94 1370 827 103.0 36.4 135.0 — 163 145 — 0.9 08/94 1270 762 91.1 35.5 129.0 — 162 172 — 5.64 06/95 1260 771 100.0 35.8 127.0 — 162 174 247.0 1.1 02/97 1300 830 100.0 41.0 150.0 — 186 161 186.0 <2 as N		06/89	1137	826	79.1	28.5	85.5		157	158	246.0	12.6
01/91 401	•			772	96.3	38.6	116.0		184	179	252.0	0.9/1.2
03/93 1500 824 92.6 33.1 136.0 194 154 277.0 1.8 03/94 1370 827 103.0 36.4 135.0 163 145 0.9 08/94 1270 762 91.1 35.5 129.0 162 172 5.64 06/95 1260 771 100.0 35.8 127.0 197 178 2.8 06/96 1300 751 96.0 36.0 120.0 162 174 247.0 1.1 02/97 1300 830 100.0 41.0 150.0 186 161 186.0 <2 as N		04/90	1320	817	109.0	42.1	128.0	٠	177	167	249.0	5.4
03/94 1370 827 103.0 36.4 135.0 163 145 5.64 08/94 1270 762 91.1 35.5 129.0 162 172 5.64 06/95 1260 771 100.0 35.8 127.0 197 178 2.8 06/96 1300 751 96.0 36.0 120.0 162 174 247.0 1.1 02/97 1300 830 100.0 41.0 150.0 186 161 186.0 <2 as N		01/91	401		87.3	44.4	103.1		205	179		1.07
03/94 1370 827 103.0 36.4 135.0 163 145 5.64 08/94 1270 762 91.1 35.5 129.0 162 172 5.64 06/95 1260 771 100.0 35.8 127.0 197 178 2.8 06/96 1300 751 96.0 36.0 120.0 162 174 247.0 1.1 02/97 1300 830 100.0 41.0 150.0 186 161 186.0 <2 as N		03/93	1500	824	92.6	33.1	136.0		194	154	277.0	1.8
08/94 1270 762 91.1 35.5 129.0 162 172 5.64 06/95 1260 771 100.0 35.8 127.0 197 178 2.8 06/96 1300 751 96.0 36.0 120.0 162 174 247.0 1.1 02/97 1300 830 100.0 41.0 150.0 186 161 186.0 <2 as N		03/94	1370	827	103.0				163	145		0.9
06/96 1300 751 96.0 36.0 120.0 162 174 247.0 1.1 02/97 1300 830 100.0 41.0 150.0 186 161 186.0 <2 as N				762	91.1	35.5	129.0		162	172		5.64
02/97 1300 830 100.0 41.0 150.0 186 161 186.0 <2 as N		06/95	1260	771	100.0	35.8	127.0		197	178		2.8
06/97 1323 831 94.0 36.0 140.0 <5		06/96	1300	751	96.0	36.0	120.0		162	174	247.0	1.1
06/97 1323 831 94.0 36.0 140.0 <5		02/97	1300	830	100.0	41.0	150.0		186	161	186.0	<2 as N
12/97 1200 670 91.0 36.0 120.0 3 150 169 220.0 ND 12/97 1200 710 87.0 35.0 120.0 2 152 182 220.0 1.5 03/98 1200 810 89.0 36.0 120.0 3 201 168 240.0 ND 06/98 1390 830 ND 150 238 5 0 150 238 5 0 0 ND 180 248 ND 0 0 0				831	94.0	36.0	140.0	<5	158	149	271.0	2 as N
12/97 1200 710 87.0 35.0 120.0 2 152 182 220.0 1.5 03/98 1200 810 89.0 36.0 120.0 3 201 168 240.0 ND 06/98 1390 830 ND 150 150 238 5 150 299 ND ND 150 150 238 5 150 150 150 238 5 150 150 150 238 5 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150		12/97		670	91.0	36.0	120.0	3	150	169	220.0	ND
03/98 1200 810 89.0 36.0 120.0 3 201 168 240.0 ND 06/98 1390 830 ND 150 238 5 ND 150 238 5 ND 150 238 5 150 150 238 5 150 150 238 5 150 150 238 5 150 150 150 238 5 150 150 238 15 150 150 150 238 15 150 150 150 150 150 150 150 150				710	87.0	35.0	120.0	2	152	182	220.0	1.5
06/98 1390 830 ND 100 299 ND ND 100 400 299 ND ND 100 400 210 757 86.0 35.0 120.0 3.0 154 100 295 3 3 30 89.0 2.0 184 150 323 ND ND 154 100 295 3 ND 30 154 100 295 3 ND 30 154 100 295 3				810	89.0	36.0	120.0	3	201	168	240.0	, ND
02/99 1130 663 75.0 31.0 106.0 3.0 150 150 238 5 05/99 1170 711 75.0 32.0 85.0 4.0 ND 180 268 ND 08/99 1040 310 74.0 30.0 94.0 2.0 100 400 207 ND 10/99 1210 757 86.0 35.0 120.0 3.0 154 100 295 3 08/00 1290 766 83.0 33.0 89.0 2.0 184 150 323 ND 02/01 1140 707 85.0 .35.0 107.0 2.0 152 179 232 ND 04/01 1190 718 88.0 37.0 112.0 3.0 153 193 210 ND 09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND				830	ND	ND	ND	ND	ND	ND	ND	ND ND
02/99 1130 663 75.0 31.0 106.0 3.0 150 150 238 5 05/99 1170 711 75.0 32.0 85.0 4.0 ND 180 268 ND 08/99 1040 310 74.0 30.0 94.0 2.0 100 400 207 ND 10/99 1210 757 86.0 35.0 120.0 3.0 154 100 295 3 08/00 1290 766 83.0 33.0 89.0 2.0 184 150 323 ND 02/01 1140 707 85.0 .35.0 107.0 2.0 152 179 232 ND 04/01 1190 718 88.0 37.0 112.0 3.0 153 193 210 ND 09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND		09/98	1290	748	87.0	32.0	110.0	2.0	158	160	299	ND
08/99 1040 310 74.0 30.0 94.0 2.0 100 400 207 ND 10/99 1210 757 86.0 35.0 120.0 3.0 154 100 295 3 08/00 1290 766 83.0 33.0 89.0 2.0 184 150 323 ND 02/01 1140 707 85.0 35.0 107.0 2.0 152 179 232 ND 04/01 1190 718 88.0 37.0 112.0 3.0 153 193 210 ND 09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND 11/01 1210 693 90.0 38.0 106.0 3.0 168 209 214 ND 02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND 04/02 1190 724 91.0 38.0 107.0 2.9 153 <td></td> <td>02/99</td> <td>1130</td> <td>663</td> <td>75.0</td> <td>31.0</td> <td>106.0</td> <td>3.0</td> <td>150</td> <td>150</td> <td>238</td> <td>5</td>		02/99	1130	663	75.0	31.0	106.0	3.0	150	150	238	5
08/99 1040 310 74.0 30.0 94.0 2.0 100 400 207 ND 10/99 1210 757 86.0 35.0 120.0 3.0 154 100 295 3 08/00 1290 766 83.0 33.0 89.0 2.0 184 150 323 ND 02/01 1140 707 85.0 .35.0 107.0 2.0 152 179 232 ND 04/01 1190 718 88.0 37.0 112.0 3.0 153 193 210 ND 09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND 11/01 1210 693 90.0 38.0 106.0 3.0 168 209 214 ND 02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND <td></td> <td>05/99</td> <td>1170</td> <td>711</td> <td>75.0</td> <td>32.0</td> <td>85.0</td> <td>4.0</td> <td>ND</td> <td>180</td> <td>268</td> <td>ND</td>		05/99	1170	711	75.0	32.0	85.0	4.0	ND	180	268	ND
10/99 1210 757 86.0 35.0 120.0 3.0 154 100 295 3 08/00 1290 766 83.0 33.0 89.0 2.0 184 150 323 ND 02/01 1140 707 85.0 35.0 107.0 2.0 152 179 232 ND 04/01 1190 718 88.0 37.0 112.0 3.0 153 193 210 ND 09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND 11/01 1210 693 90.0 38.0 106.0 3.0 168 209 214 ND 02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND 04/02 1190 724 91.0 38.0 107.0 2.9 153 204 173 ND			1040	310	74.0	30.0	94.0	2.0	100	400	207	ND
08/00 1290 766 83.0 33.0 89.0 2.0 184 150 323 ND 02/01 1140 707 85.0 .35.0 107.0 2.0 152 179 232 ND 04/01 1190 718 88.0 37.0 112.0 3.0 153 193 210 ND 09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND 11/01 1210 693 90.0 38.0 106.0 3.0 168 209 214 ND 02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND 04/02 1190 724 91.0 38.0 107.0 2.9 153 204 173 ND							120.0		154	100	295	3
02/01 1140 707 85.0 .35.0 107.0 2.0 152 179 232 ND 04/01 1190 718 88.0 37.0 112.0 3.0 153 193 210 ND 09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND 11/01 1210 693 90.0 38.0 106.0 3.0 168 209 214 ND 02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND 04/02 1190 724 91.0 38.0 107.0 2.9 153 204 173 ND							89.0					
04/01 1190 718 88.0 37.0 112.0 3.0 153 193 210 ND 09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND 11/01 1210 693 90.0 38.0 106.0 3.0 168 209 214 ND 02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND 04/02 1190 724 91.0 38.0 107.0 2.9 153 204 173 ND							107.0	2.0		179		ND
09/01 1200 729 89.0 38.0 106.0 3.0 158 192 201 ND 11/01 1210 693 90.0 38.0 106.0 3.0 168 209 214 ND 02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND 04/02 1190 724 91.0 38.0 107.0 2.9 153 204 173 ND												
11/01 1210 693 90.0 38.0 106.0 3.0 168 209 214 ND 02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND 04/02 1190 724 91.0 38.0 107.0 2.9 153 204 173 ND												
02/02 1190 726 94.0 39.0 106.0 2.7 147 198 208 ND 04/02 1190 724 91.0 38.0 107.0 2.9 153 204 173 ND												
04/02 1190 724 91.0 38.0 107.0 2.9 153 204 173 ND												
		07/02			88.0	37.0					180	

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Cita Lagatian	Data	Specific	Total Dissolved			Che	mica	l Constitu	uents -	mg/	ï	
Site Location	Tested	Conductance umhos	Solids (mg/l)	Ca	Mg	Na	K	. C	ı sc	94	нсоз	NO3
10S/4W-7H2	10/02	1250	722	91.0	38.0	99.0	2.6		50 19		177	ND
(Bldg 260071)	01/03	1260	781					14	14 20)4		ND
(Continued)	02/03			95.0	39.0	119.0	3.2					
	04/03	1310	776	93.0	38.0	123.0	3.0		78 2		185	ND
	04/04	1660	890	112.0	47.0	143.0	4.0			32	370	0 as N
	07/04	1460	785	98.0	38.0	109.0	4.0		36 19		275	0 as N
	05/06	1380	870	100.0	41.0	110.0	2.3	. 18	30 24	10	210	0.69 as N
10S/4W-7A2	05/56	920	651	59.0	22.0	100					213.0	
(Bldg 260073)	05/59			52.8	16.5	60.3					207.4	
	01/60		• . •	51.2	17.6	95.0					210.0	
	10/60	870	566	62.0	23.0	80.0	4.2				234.0	0 ,
	05/61	1180	710	72.0	34.0	114.0	3.3				227.0	
	05/62	797	518	63.2	23.4	75.0	2				214.7	
	01/63	1195	730	64.0	24.9	157.0	3.1				220.0	0
	07/63	574	610	57.6	19.5	85.0	2.7				244.0	0.3 as N
	01/64	760	494	59.2	19.3	82.0	3.3				253.7	0.5 as N
	07/64	980	637	64.0	21.5	94.0	1.4				241.6	4.0
,	04/65	1230	800	73.3	22.5	106.0	4.5				248.9	1.3
	01/66					86.0	2.5				190.3	9.7
	06/66	****	0.0	60.8	21.0	81.0	2.5				222.0	9.1
	01/67		011	60.8	19.5	88.0	2.9				229.4	6.9
	08/67		- 504	54.4	20.0	79.0	2.1				214.7	8
	02/68			60.8	17.6	86.0	2.7				222.0	0
	09/68		000	67.0	18.0	90.0	3				232.0 183.0	0 3.1
	04/69			46.0	18.0	73.0 88.0	20 2.7				198.0	0.9
	11/69			59.0	18.0		2.7				151.0	2.9
	05/70	790		54.0	18.0 16.0	79.0 89.0	2.7				222.0	10.1
	12/70	780	507	64.0 77.0	24.0	86.0	2.8				207.0	. 0
	05/72	990	644				2.9				239.0	5.3
	10/72	965	627	77.0	27.0	94.0	2.8				195.0	0.9 as N
	10/73	960		72.0 68.0	19.0 19.0	105.0 101.0	3.1					0.35 as N
	06/74		548 546	58.0	22.0	87.0	2.7				217.0	2.2 as N
	01/75		533	68.8	20.5	76.0	3				217.0	2.2 as N
	02/76 09/76		585 585	48.0	45.0	98.0	2.3				258.6	3.0 as N
	03/77			70.0	23.0	76.0	2.8				195.0	2.6 as N
	03/77			64.0	24.0	100.0	2.7				200.0	4.3 as N
	01//0	930	0.10	UT.U	۲.0	100.0	۷. ۱					

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site I postion	Dete	Specific	Total Dissolved Solids	d		Che	emica	l Con	stituer	nts - m	g/l	
Site Location	Tested	Conductance umhos	(mg/l)	Ca	Mg	Na	K		CI	SO4	HCO3	NO3
10S/4W-7A2	10/78	1050	683	74.0	20.0	80.0	3		113	128	205.0	<1 as N
(Bldg 260073)	04/79	950	618	65.6	19.5	98.0	3.1		109	118	190.3	<1 as N
(Continued)	01/80	1000	650	67.0	23.0	99.0	3.1		128	111	187.0	<1 as N
,	10/80	900	546	67.2	20.5	86.0	3.4		108	86	205.0	2.3 as N
	05/81	810	585	57.2	14.4	83.0	3.4		92	84	180.6	0.7 as N
	11/81	800	451	57.2	16.3	85.0	2		92	110	185.4	0.5 as N
	05/82	930	605	68.8	21.5	97.0	1.6		115	96	205.0	<0.5 as N
	03/83	900	663	78.8	23.7	95.0	3.4		132	135	209.8	0.7 as N
	09/84	1000	530	51.0	23.0	80.0	2.9		110	110	200.0	4.2
	11/84	850	553	67.2	28.3	73.0	2.9		111	137	190.0	1.7 as N
	09/85	1007	593	66.0	26.0	64.0	5.8		124	139	180.6	6
	05/86	1051	623	72.6	26.5	79.5	3.5		131	124	153.6	8.8
	06/89	1073	688	72.1	23.9	59.6			120	140	184	15.9
	01/89	1080	572	91.2	34.2	80.2			151	178	174	1.4
	04/90	1130	718	111.0	42.1	91.0			148	167	175	9.1
	06/91	1190	718	113.0	40.3	93.8			173	180	160	7.5
	03/93	1370	708	86.9	32.8	93.3			147	93.3	200	4.9
	03/94	1210	783	100.0	37.1	100.0			145	167		2.2
•	08/94	1160	741	87.5	35.5	96.1			141	184		4.23
	06/95	1200	788	99.4	37.5	101.0			173	200		2.9
	06/96	1129	739	91.0	37.0	90.0			188	312	206	<0.0
	02/97	1100	690	82.0	35.0	140.0			127	131	180	<2 as N
	03/97	1109	695	91.0	39.0	93.0			137	191	166	2.2 as N
	06/97	1096	749	89.0	36.0	90.0	<5		138	178	187	2 as N
	12/97	1100	690	84.0	36.0	83.0	4		140	181	160	<.2 as N
	05/99	1050	648	78.0	32.0	111.0	3		171	192	207	ND
	08/99	1040	696	78.0	33.0	84.0	4		120	390	146	ND
	10/99	1070	663	78.0	34.0	90.0	4		132	120	195	6 as N
	02/00	1010	559	83.0	35.0	82.0	4		140	190	220	4 as N
	05/00	972	688	80.0	34.0	79.0	4		144	167	190	4 as N
	02/01	1200	753	92.0	40.0	100.0	3		164	212	195	ND
	04/01	1210	736	91.0	40.0	103.0	5		159	217	183	. ND
	09/01	1200	741	93.0	41.0	98.0	4		153	228	183	ND
	11/01	1220	750	92.0	41.0	106.0	4		170	228	189	ND
	02/02	1230		99.0	43.0	101.0	4.2		173	218	195	ND
	04/02	1260	796	101.0	45.0	102.0	4.5		170	229	160	100 as N
	07/02	1350	784	98.0	43.0	103.0	4.3		183	239	159	ND

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

			Total									
		Specific	Dissolve	d		Che	emica	l Cons	tituer	nts - m	g/l	
Site Location	Date	Conductance	Solids					_				
	Tested	umhos	(mg/l)	Ca	Mg	Na	K		CI	SO4	HCO3	NO3
10S/4W-7A2	10/02	1370	788	102.0	45.0	104.0	4.3	·	175	241	167	ND
(Bldg 260073)	01/03	1330	825	104.0								
(Continued)	02/03			105.0	45.0							
	04/03	1260	721	90.0	40.0	102.0	4.6		170	228	153	ND
•	10/03	1340	791	94.0	41.0	121.0	6		180	268	144	0 as N
	01/04	1390	800	99.0	46.0	105.0	7		173	264	136	0 as N
	04/04	1270	739	86.0	42.0	98.0	6		160	252	160	0 as N
	07/04	1390	764	97.0	45.0	87.0	7		176	262	163	0 as N
	10/04	1290	943	95.0	44.0	84.0	7		178	267	145	0 as N
	01/05	1030	610	76.0	35.0	93.0	3.8		136	194	155	0 as N
	04/05	1060	630	77.0	34.0	82.0	3.2		125	174	139	0 as N
	07/05	1120	750	81.0	35.0	84.0	3.4		129	ND	129	0 as N
	11/05	1170	790	94.7	41.2	97.9	3.7		138	199	156	7.53 as N
	04/06	1140	704	91.0	39.0	98.0	4.5		150	220	180.0	1.7 as N
10S/5W-23G3	06/91	1160	684	83.4	28.3	125.0			145	124	223	<0.04
(Bldg 33926)	03/92	1060	674	75.9	24.1	127.0			139	111	269	<0.4
	03/93	1182	584	67.8	21.1	110.0			135	101	274	<0.4
	06/93	1020	623	60.5	22.4	116.0			125	107	225	<0.4
	03/94	1120	665	80.0	25.0	122.0			129	117		1.8
	08/94	1150	699	78.7	26.4	125.0			141	118		<0.44
*	06/95	1060	673	75.9	23.1	118.0			158	114		<0.04
	01/96	1200	619	71.0	24.0	120.0			139	107	262	<0.0
	07/96	*****										<0.0
10S/5W-23K2	06/89	1207	698	75.6	22.8	84.0			138	137	231	<0.4
(Bldg 330924)	04/89	1240	728	100.0	32.9	129.0			158	148	245	1.3
	01/91	1193		- 80.6	35.2	131.0			21.3	146		<0.04
	06/91	1160	676	88.1	29.6	118.0			141	129	224	<0.04
	03/92	1130	705	76.7	26.0	126.0			149	125	279	<0.4
	06/92	1130	717	66.8	26.7	124.0			146	140	232	<0.4
	03/93	1285	331	72.1	23.8	115.0			131	122	273	<0.4
	02/97	1200	780	89.0	32.0	130.0			166	165	250	<2 as N
	03/97	1230	700	94.0	34.0	140.0			187	162	264	<2 ạs N
	06/97	1231	778	91.0	31.0	130.0	<2		171	165	264	<2 as N
	12/97	1200	710	82.0	30.0	130.0	2		156	162	230	ND
	03/98	1200	710	82.0	30.0	110.0	2		191	146	240	ND
	06/98	1170	658	79.0	28.0	123.0	2		157	ND		ND
	02/99	1170				123.0	3		160	130	259	ND
	04/99	1210	667	76.0	27.0	118.0	3		148	140	268	ND
	08/99	1140	714	79.0	27.0	116.0	3		180	165	268	ND

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site Location	Date	Specific Conductance	Total Dissolved Solids	i		Che	emica	l Constitue	nts - m	g/l	
	Tested	•	(mg/l)	Ca	Mg	Na	K	CI		HCO3	NO3
10S/5W-23K2	10/99	1150	721	80.0	28.0	131.0	3	110		281	ND
(Bldg 330924)	02/00	1050	619	82.0	28.0	108.0	3	100	140	293	ND
(Continued)	05/00	1060	716	80.0	29.0	112.0	3	173	141	268	ND
	08/00	1210	722	82.0	29.0	105.0	3	162	156	268	ND
	04/01	1210	705	85.0	30.0	130.0	3	163	157	281	ND
	09/01.	1210	672	85.0	30.0	125.0	3	163	149	281	ND
	10/01	1200	680	81.0	29.0	143.0	, 3	162	159	281	ND
	02/02	1160	675	80.0	29.0	129.0	3.5	143	152	268	ND
	04/02	1180	682	84.0	31.0	124.0	2.9	151	ND	230	ND
	04/02	1210	706	80.0	29.0	127.0	2.9	156	156	221	ND
	10/02	1210	669	83.0	30.0	120.0	2.9	150	162	206	ND
	01/03	1320	801	<u></u>		140.0	2.8		180	245	ND
	02/03			97.0	34.0	·					
	04/03	1330	743	89.0	32.0	133.0	2.8	162	164	234	ND
	10/03	. 1210	712	87.0	31.0	135.0	4	155	177	204	0 as N
	04/04	1320	713	85.0	32.0	121.0	5	165	167	228	0 as N
	07/04	1070	703	89.0	32.0	101.0	5	147	173	230	0 as N
	10/04	1230	806	91.0	33.0	102.0	5	166	183	248	0 as N
	02/05	1310	837	104.0	37.0	136.0	4.2	175	191	253	0 as N
•	07/05	1170	750	83.0	29.0	114.0	2.7	139	ND	210	0 as N
	11/05	1260	750	91.9	29.6	119.0	3.1	144	171	225	0 as N
	04/06	1220	774	92.0	32.0	120.0	2.8	160	180	284	0 as N
10S/5W-13R2	01/90	1030	540	*96	26.6	94.8		141	.130	200	0.7
(Bldg 230063)	06/91	1150	702	98.7	32.0	109.0		149	125	288	1.3
	06/93	1130	705	72.0	28.4	107.0		140	139	262	0.9
	03/94	1020	658	69.6	27.8			135			0.89
	06/95	1140	636	92.5		115.0		149	151		14.2
	06/96	1103	680	91.0	31.0	100.0		148		233	<0.0
	06/97	1082	708	85.0	29.0	110.0	<5	135		244	<2 as N
	12/97	1000	640	81.0	28.0	100.0	^2	119		250	, ND
	03/98	1100	620	85.0	31.0	110.0	2	161		220	ND
	06/98	1100	680	83.0	30.0	109.0	3	137		275	0.68
	09/98	1160	662	81.0	28.0	90.0	3	144		256	ND
	04/01	1100	612	83.0	29.0		3	131		238	ND
	09/01	1150	679	89.0	31.0	156.0	2	142	156	241	ND

^{* -} Reported as .96

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

			Total								
Site Location	Date	Specific Conductance	Dissolved Solids	t t		Che	mica	l Constituer	nts - m	g/l	
Ono Loodiion	Tested		(mg/l)	Ca	Mg	Na	K	CI	S04	HCO3	NO3
10S/5W-13R2	11/01	1130	658	87.0	30.0	104.0	2	148	169	262	ND
(Bldg 230063)	02/02	1120	674	85.0		112.0	3.2	140	160	257	ND
(Continued)	04/02	1130	673	79.0		113.0	3.9	145	176	200	ND
(Oorianded)	04/02	1120	682	89.0		106.0	2.7	142	167	205	ND
	07/02	1150	676	83.0		111.0	2.7	145	64	205	ND
	10/02	1220	711			110.0	2.7	149	175	203	ND
	11/02	1220			31.0						ND
	01/03	1210	713					138	165		ND
	02/03	1210				106.0	2.7				
	04/03			87.0		100.0					
	05/03	1230	728			112.0	2.9	155	183	181	ND
	10/03	1190	741	179.0		123.0	3	168	212	179	0 as N
		1200		179.0		104.0	4	151	177	177	0 as N
	04/04		731							220	
•	07/04	1270	701	220.0	32.0	103.0	4	. 163	186	220	0 as N
10S/4W-7D1	03/99	1280	765	91.0	34.0	127.0	2	190	160	272	ND
(Previously	06/99	1080	706	76.0	31.0	88.0	2.2	163	118	220	ND
reported as	08/99	1080	690	76.0	32.0	93.0	3	160	191	244	ND
10S/4W-7A3)	10/99	1070	660	76.0	32.0	100.0	3	131	120	232	4
(Bldg 260072)		1010	702	79.0	34.0	94.0	3	177	164	254	4
, , ,	08/00	1170	732	84.0	36.0	89.0	3	155	188	201	5
	02/01	1230	753	89.0	39.0	113.0	2	170	198	220	ND
•	04/01	1230	726	89.0	39.0	115.0	4	160	191	243	ND
	09/01	1210	735	89.0	39.0	107.0	4	163	185	217	ND
	11/01	1240	725	89.0	39.0	117.0	3	168	205	220	ND
	02/02	1250	765	97.0	43.0	109.0	3.4	155	184	234	ND
	04/02	1290	790	98.0	44.0	109.0	3.4	158	208	200	ND
	07/02	1320	809	96.0	43.0	117.0	3.7	182	217	200	ND
	10/02	1380	787	99.0	43.0	113.0	3.7	170	216	203	ND
	01/03	1370	810					155	194		ND
	02/03			101.0	44.0	134.0	4				
	04/03	1440	789	93.0	40.0	125.0	3.6	177	205	216	ND
	10/03	1370	820	91.0	40.0	130.0	4	175	235	180	0 as N
	01/04	1350	747	97.0	42.0	114.0	6	168	226	184	0 as N
	04/04	1400	766	92.0	42.0	112.0	6	162	228	198	0 as.N
	07/04	1410	784	98.0	43.0	92.0	6	171	231	200	0 as N
	11/04	1290	831	100.0	43.0	134.0	4.2	176	224	203	0 as N
	01/05	1310	804	102.0	44.0	125.0	3.7	184	241	200	0 as N
	04/05	1100		ND	ND	84.0	3.2	128	177	162	0 as N
	07/05	1160	716	84.0	35.0	96.0	3	136	ND	166	0 as N
	11/05	1180	790	92.5	40.4	97.1	3.8	138	202	174	5.93 as N
	04/06	1280	786	98.0	43.0	110.0	3.3	160	220	233	1.3 as N

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

Site Location	Date	Specific Conductance	Total Dissolved Solids		· ·	Che	emica	l Constituer	nts - m	g/l	
	Tested	umhos	(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/5W-23G4	06/99	1070	668	69.0		106.0	1.7	163	144	305	ND
(Bldg 330925)	08/99	1090		72.0		115.0	2	180	153	317	ND
	10/99	1150	716	79.0		140.0	2	120	140	305	ND
•	02/00	956	622	78.0		117.0	2	90	120	268	ND
	05/00	1040	686	77.0		116.0	2	181	141	307	ND
	08/00	1180	722	80.0		105.0	2	155	143	232	ND
	02/01	1100	706	73.0		125.0	2	149	164	268	ND
	04/01	1170	701	61.0		126.0	2	154	149	282	ND
	09/01	1180	671	80.0		125.0	2	149	142	271	ND
	10/01	1180	678	81.0			2	161	156	281	, ND
	02/02	1170	685	80.0	28.0	134.0	2.8	143	144	279	ND
	04/02	1200	711	87.0		127.0	2.3	150	204	235	ND
	07/02	1180	730	83.0	29.0	130.0	2.5	158	151	230	ND
	10/02	. 1180	649	78.0	27.0	115,0	2.1	135	138	214	ND
	01/03	1210	740			129.0	2.2	145	154	225	ND
	02/03				30.0						****
	04/03	1200	681	79.0	27.0	128.0	2.5	150	152	215	ND
	10/03	1160	647	80.0	27.0	136.0	3	152	156	216	0 as N
	04/04	1140	640	66.0	24.0	117.0	3	147	133	215	0 as N
•	07/04	1180	657	68.0	24.0	99.0	4	. 140	114	245	0 as N
	10/04	1170	712	85.0	29.0	97.0	5	160	172	225	0 as N
	02/05	1070	661	84.0	29.0	125.0	3.3	154	148	185	0 as N
	07/05	1050	655	72.0	23.0	118.0	2	127	ND	202	0 as N
	11/05	1080	665	75.9	23.2	121.0	2	135	125	227	0 as N
	05/06	1110	650	71.0	24.0	120.0	1.9	140	130	217	0 as N
10S/5W-23K3	06/99	1150	700	75.0		106.0	2.2	163	155	317	ND
(Bldg 330923)	08/99	1170	722	79.0	28.0	114.0	3	120	140	293	ND
	10/99	1170	723	78.0	28.0	140.0	3	120	140	293	ND
	02/00	1120	712	83.0	30.0	117.0	3	120	157	293	ND
	02/01	1240	758	85.0	. 61.0	136.0	3	167	152	305	ND
	04/01	1220	726	85.0	61.0	135.0	3	162	154	293	ND
	09/01	. 1240	682	81.0	29.0	132.0	3	162	144	281	ND
	10/01	1330	746	87.0	32.0	134.0	3	166	156	293	ND
	02/02	1190	720	83.0	29.0	140.0	3.5	150	155	280	ND
	04/02	1210	691	82.0	29.0	127.0	2.7	145	142	231	ND
•	07/02	1230	738	81.0	29.0	134.0	3.1	167	151	240	ND

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

WELLS ON CAMP PENDLETON

			Total								
Site Location	Data	Specific Conductance	Dissolved Solids	l .		Che	emica	l Constitue	nts - m	g/l	
Site Location	Tested		(mg/l)	Ca	Mg	Na	K	CI	SO4	HCO3	NO3
10S/5W-23K3	10/02	1270	716	85.0	30.0	137.0	2.9		182	221	ND
(Bldg 330923)	01/03	1340	626			141.0	2.6	·	185	252	ND
(Continued)	02/03			100.0	35.0						
,	04/03	1350	733				2.6	·	171		ND
	05/03		. 	85.0	30.0	129.0			·	225	
	10/03	867	800	84.0	30.0	141.0	3	160	173	224	0 as N
	02/04	1250	698	83.0	29.0	120.0	4	154	172	233	0 as N
	04/04	1240	706	76.0	28.0	121.0	4	153	170	220	0 as N
	07/04	1040	729	84.0	30.0	99.0	5	158	169	240	0 as N
	10/04	1180	857	86.0	30.0	97.0	5	159	172	235	0 as N
	02/05	1160	685	87.0	31.0	125.0	3.7	159	168	210	0 as N
	04/05	1230	760	91.0	30.0	122.0	2.6	149	148	213	0 as N
	04/05	1090	625	74.0	23.0	120.0	1.9	129	109	243	0 as N
	07/05	1170	755	83.0	29.0	115.0	2.6	135	ND	210	0 as N
	11/05	1230	735	92.8	29.5	123.0	3	141	165	332	0 as N
	04/06	958	720	89.0	31.0	120.0	2.7	160	170	233	0 as N
10S/5W-26C3	09/01	1410		101.0		138.0	3	173		296	ND
(Bldg 220002)	10/01	1370		104.0		131.0	3	199		317	ND
	02/02	1380	834	99.0		128.0	3	172		318	ND
	04/02	1370	808	104.0		124.0	3.2	180	184	258	ND
	07/02	1450	829	187.0	37.0	137.0	3.3	187		260	ND
	10/02	1400	793	98.0		ND	3.4	- 179	195	248	ND
	11/02			98.0	36.0						
	12/02										ND
	01/03	1300	608			144.0	2	161	180	235	ND
	02/03			94.0	33.0						
	04/03	1290	759	94.0		137.0	3.1	162		230	ND
	10/03	1340	761	90.0	31.0		4	162			0 as N
	01/04	1320	743	94.0	32.0		5		212.0		0 as N
	04/04	1350	731	90.0	32.0		5	184		235.0	0 as N
	07/04	1100	773	91.0	32.0		5	167		215.0	0 as N
	10/04	. 1290	826	93.0	32.0		5	187		225	0 as N
	02/05	1260	735	101.0	35.0	127.0	3.7	175		215	0 as N
	04/05	1300	760	98.0		122.0	2.8	160		200	0 as N
	07/05	1450	1260	97.0		119.0	2.9	154		200	0 as N
	11/05	1240	795	99.0		122.0	2.9	159		202	0 as N
	04/06	1300	796	95.0	34.0	140.0	2.9	180	170	250	0 as N

WATERMASTER SANTA MARGARITA RIVER WATERSHED

TABLE D-12

SANTA MARGARITA RIVER WATERSHED WATER QUALITY DATA

SURFACE STREAMS SAMPLED BY USGS ON CAHUILLA CREEK

Olfo I a antique	Data	Specific	Total Dissolved			Che	mical Co	onstituer	nts - m	g/l	
Site Location	Date Tested	Conductance umhos	Solids (mg/l)	Ca	Mg	Na	K	CI	<u>SO4</u>	HCO3	NO3
Cahuilla Creek	02/28/05	644	446	41.9	11.2	76.9	10.1				.23 @N
Cahuilla Creek Below Highway 371	02/28/05	476	337	34.2	10.1	51.9	3.69	36.9			.64 @N
Unnamed Tributary to Cahuilla Creek	02/14/05	783	529	64	17.5	80.7	8.94	35.2			3.05@N

WATERMASTER SANTA MARGARITA RIVER WATERSHED

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2005-06

APPENDIX E

COOPERATIVE WATER RESOURCE
MANAGEMENT AGREEMENT
REQUIRED FLOWS AND ACCOUNTS
CALENDAR YEAR 2006

AUGUST 2007

WATERMASTER SANTA MARGARITA RIVER WATERSHED

COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA SANTA MARGARITA RIVER WATERSHED

JANUARY 2006 -BELOW NORMAL YEAR

										G.	ROUNDWAT	GROUNDWATER ACCOUNT BALANCE	UNT BAL	INCE
	USGS Official	USGS Daily Website	10-Day Moving Average of Website	Minimum Flow Maintenance	Moving Average Less Required	WR-34 Make-Up Discharge	lake-Up arge	Climatic Credits	redits					Cumulative GW Account
DAY	Discharge	Discharge	Discharge	Requirement /1	Flow	MWD	MWD	Earned	-	Input /3	Input	Output	Output	Balance
	cfs —	cfs	cts	cts		cts	AF	cfs	ΑF	cts	AF	cfs	AF	AF
,						1		ć		•	Ċ	•	•	6
-	13.0	13.0				7.7		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
2	370.0	370.0				7.2	•	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
က	81.0	81.0				0.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4	14.0	14.0				3.4		0.0	0.0	0.0	0.0	0.0	0.0	5.000.0
5	13.0	12.0				10.5		3.3	6.5	0.0	0.0	0.0	0.0	5,000.0
g	12.0	12.0				10.4		3.2	6.3	0.0	0.0	0.0	0.0	5,000 0
7	12.0	12.0				10.4	20.6	3.2	6.3	0.0	0.0	0.0	0.0	5,000.0
∞	10.0	10.0				5.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
6	0.0	0.7				0.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
10	1.8	2.0				2.9	5.78 *	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	3.4	3.5	51.7	10.7	41.0	2.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
12	3.5	3.5	15.1		4.4	2.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
13	3.5	3.5	7.3	•	(3.4)	2.9	5.78 *	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
14	3.6	3.6	6.3		(4.4)	2.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
15	3.4	3.4	5.4		(5.3)	2.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
16	3.5	3.5	4.6		(6.1)	2.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
17	3.6	3.6	3.7	10.7	(7.0)	2.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
18	6.9	7.2	3.4		(7.3)	7.5	•	(37.0)	(73.4)	0.0	0.0	0.0	0.0	5,000.0
19	11.0	12.0	4.6	10.7	(6.1)	10.6	21.0	3.4	6.7	0.0	0.0	0.0	0.0	5,000.0
20	11.0	11.0	5.5		(5.2)	10.6		3.4	6.7	0.0	0.0	0.0	0.0	5,000.0
21	11.0	11.0	6.2		(4.5)	10.6		3.4	6.7	0.0	0.0	0.0	0.0	5,000.0
22	11.0	11.0	7.0		(3.7)	10.6		3.4	6.7	0.0	0.0	0.0	0.0	5,000.0
23	11.0	11.0	7.7		(3.0)	10.8		3.6	7.2	0.0	0.0	0.0	0.0	5,000.0
24	12.0	12.0	8.6		(2.1)	11.0	21.8	3.8	7.5	0.0	0.0	0.0	0.0	5,000.0
25	11.0	12.0	9.4		(1.3)	11.1		3.9	7.8	0.0	0.0	0.0	0.0	5,000.0
26	11.0	12.0	10.3	10.7	(0.4)	11.4	22.7	4.2	8.4	0.0	0.0	0.0	0.0	5,000.0
27	12.0	13.0	11.2	10.7	0.5	11.4	22.7	4.2	8.4	0.0	0.0	0.0	0.0	5,000.0
28	12.0	13.0	11.8		1.	11.4	22.7	4.2	8.4	0.0	0.0	0.0	0.0	5,000.0
29	12.0	13.0	11.9	10.7	1.2	11.4	22.7	4.2	8.4	0.0	0.0	0.0	0.0	5,000.0
30	11.0	12.0	12.0		1.3	10.7	21.3	3.5	7.0	0.0	0.0	0.0	0.0	5,000.0
31	11.0	12.0	12.1	10.7	1.4	10.4	20.7	3.2	6.4	0.0	0.0	0.0	0.0	5,000.0
TOTAL SFD	705.8	713.5	215.8	224.7	(8.9)	227.0		21.3		0.0		0.0		
TOTAL AF	1,400.0	1,415.2	428.1	445.7	(17.6)	450.3	450.3		42.3		0.0		0.0	
		•												

^{1 -} Minimum Flow Maintenance Requirement equals 11.5 cfs less 0.8 cfs CAP Credit less 0 Climatic Credit.
2 - Climatic Credits equal the WR-34 Discharge less the Actual Flow Maintenance Requirement which is the flow indicated in Section 5 of the CWRMA less applicable credits, but not less than 3.0 cfs 3 - Art. 17 - January — April Camp Pendleton rights to groundwater equal the Flow indicated in Section 5 of the CWRMA minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs.
* - Water supplied from potable system discharge on Murrieta Creek because of MWD operational shutdown

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

FEBRUARY 2006 - BELOW NORMAL YEAR

										GR	CA!	CAMP PENDLETON GROUNDWATER ACCOUNT BALANCE	ETON UNT BALA	SCE
	USGS Official	USGS Daily Website	10-Day Moving Average of Website	Minimum Flow Maintenance	Moving Average Less Required	WR-34 Make-Up Discharge	ke-Up ge	Climatic Credits	redits				J	Cumulative GW Account
DAY	Discharge	Discharge	Discharge	Requirement /1	Flow	MWD	MWD	Earned /2	12	Input /3	Input	Output	Output	Balance
	cfs	cfs	cfs		cfs	cfs	AF	cfs	AF	cfs	AF	cfs	AF	AF
7-	11.0	11.0	12.1	10.7	1.4	10.4	20.7	3.2	6.4	0	00	00	0	5 000 0
		17.0	121	107	1.4		20.7	, w		9 6	0.0	9 6		0.000,4
4 0	- 7	5. 5	- 64	10.7	† °	† 5 5 7	20.7	, c	† *	9 6	9 6	9 0	9 6	5 6
η,	10.0	0.1.7	12.0	70.7	. ·	4.0.4	7.07		4.0	0.0	0.0	0.0		5,000.0
4	10.0	11.0	11.9	70.7	1.2	10.4	20.7	3.2	6.4	0.0	0.0	0.0	0.0	5,000.0
2	10.0	10.0	11.7	10.7		10.4	20.7	3.2	6.4	0.0	0.0	0.0	0.0	5,000.0
9	10.0	10.0	11.4	10.7		10.6	21.0	3.4	6.7	0.0	0.0	0.0	0.0	5,000.0
7	10.0	10.0	11.1	•		10.6	21.1	3.4	6.8	0.0	0.0	0.0	0.0	5,000.0
89	10.0	10.0	10.8		0.1	10.7	21.3	3.5	7.0	0.0	0.0	0.0	0.0	5,000.0
6	10.0	10.0	10.6		(0.1)	10.9	21.7	3.7	7.4	0.0	0.0	0.0	0.0	5,000.0
10	11.0	11.0	10.5			11.0	21.8	3.8	7.5	0.0	0.0	0.0	0.0	5,000.0
11	11.0	11.0	10.5			11.6	23.0	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
12	12.0	12.0	10.6		. E	11.9	23.7	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
13	12.0	12.0	10.7			11.9	23.7	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
14	12.0	12.0	10.8			11.9	23.6	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
15	12.0	12.0	11.0			12.0	23.8	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
16	12.0	12.0	11.2		0.5	12.0	23.9	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
11	12.0	12.0				12.0	23.9	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
18	29.0	29.0			2.6	12.0	23.9	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
19	36.0	36.0	15.9	10.7	5.2	12.0	23.9	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
20	18.0	18.0	16.6		6.9	12.0	23.9	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
21	12.0	12.0	16.7		0.9	12.0	23.9	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
22	12.0	12.0	16.7	•	0.9	12.0	23.8	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
73	12.0	12.0	16.7		0.9	12.0	23.9	£.3	8.5	0.0	0.0	0.0	0.0	5,000.0
74	12.0		79.7		0.9	12.0	23.9	£.3	æ ç.	0.0	0.0	0.0	0.0	5,000.0
25	12.0		16.7	•	0.9	12.0	23.9	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
56	12.0		16.7		0.9	12.0	23.8	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
27	57.0	55.0	21.0	•	10.3	8.1	16.1	6.0	8.1	0.0	0.0	0.0	0.0	5,000.0
28	694.0	671.0	85.2	10.7	74.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
29	1	!	1	1	i	i	1	1	-	I	1	ł	1	
30	1	1	1	1	1			1	1	i	1	ļ		
31		1	-		1	1	l	I	1	1	1	I	1	
TOTAL SFD	1,092.0	1,069.0	442.6	299.6	143.0	306.0		103.8		0.0		0.0		
1							ļ		1				1	
TOTAL AF	2,166.0	2,120.3	877.9	594.2	283.6	607.0	0.709		205.9		0.0		0.0	

^{1 -} Minimum Flow Maintenance Requirement equals 11.5 cfs less 0.8 cfs CAP Credit less 0 Climatic Credit.
2 - Climatic Credits equal the WR-34 Discharge less the Actual Flow Maintenance Requirement which is the flow indicated in Section 5 of the CWRMA less applicable credits, but not less than 3.0 cfs 3 - Art. 17 - January — April Camp Pendleton rights to groundwater equal the Flow indicated in Section 5 of the CWRMA minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

MARCH 2006 - BELOW NORMAL YEAR

										GR	GROUNDWATER ACCOUNT BALANCE	ER ACCOU	NT BALAN	Œ
		<u>~</u>	10-Day Moving Average of	Minimum Flow	Moving	WR-34 Make-Up	ke-Up		;					Cumulative
DAY	USGS Official Discharge	Website Discharge	Website Discharge	Maintenance Requirement /1	Average Less Required Flow	Discharge MWD M\	ge MWD	Climatic Credits Earned /2	redits /2	Input /3	Input	Output	Output	GW Account Balance
	cfs	cfs	cts	cts	cfs	cţs	AF	cfs	AF	cfs	ĀF	cfs	AF	AF
1	53.0	54.0	87.0	10.7		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	12.0	12.0	86.4	10.7		1.6	3.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
က	17.0	17.0	86.9	10.7		9.6	19.4	2.6	5.1	0.0	0.0	0.0	0.0	5,000.0
4	21.0	21.0	87.8	10.7		8.1	16.0	6.0	1.7	0.0	0.0	0.0	0.0	5,000.0
ıç,	10.0	10.0	87.6	10.7		8.0	15.8	0.8	1.5	0.0	0.0	0.0	0.0	5,000.0
9	11.0	11.0	87.5	10.7		10.6	21.1	3.4	8.9	0.0	0.0	0.0	0.0	5,000.0
7	12.0	12.0	87.5	10.7	76.8	11.9	23.6	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
8	12.0	12.0	87.5	10.7		11.9	23.7	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
6	12.0	12.0	83.2	10.7		11.9	23.7	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
10	8.2	8.2	16.9	10.7		7.9	15.6	0.7	1.3	0.0	0.0	0.0	0.0	5,000.0
11	202.0	215.0	33.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
12	47.0		36.5			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
13	16.0	•	36.4			1.5	2.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
14	9.8		35.3	10.7		8.6	17.1	4.1	2.8	0.0	0.0	0.0	0.0	5,000.0
15	11.0		35.4	10.7		8.6	17.1	1.4	2.8	0.0	0.0	0.0	0.0	5,000.0
16	12.0	12.0	35.5	10.7		8.6	17.1	4.1	2.8	0.0	0.0	0.0	0.0	5,000.0
11	12.0	12.0	35.5	10.7	24.8	8.6	17.1	1.4	2.8	0.0	0.0	0.0	0.0	5,000.0
18	13.0		35.5	10.7		8.6	17.1	1.4	2.8	0.0	0.0	0.0	0.0	5,000.0
19	12.0		35.4	10.7		8.6	17.1	1.4	2.8	0.0	0.0	0.0	0.0	5,000.0
20	11.0		35.7	10.7		7.3	14.5	0.1	0.2	0.0	0.0	0.0	0.0	5,000.0
21	0.99	0.99	20.8	10.7		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	13.0		17.4			1.6	3.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
23	10.0	9.8	16.8		6.1	10.1	20.1	2.9	5.8	0.0	0.0	0.0	0.0	5,000.0
24	12.0		16.9	10.7		10.1	20.1	2.9	5.8	0.0	0.0	0.0	0.0	5,000.0
25	12.0		17.0	10.7		10.1	20.1	2.9	5.8	0.0	0.0	0.0	0.0	5,000.0
56	13.0		17.1	10.7		10.1	20.1	2.9	5.8	0.0	0.0	0.0	0.0	5,000.0
27	13.0		17.1	10.7		10.1	20.1	2.9	5.8	0.0	0.0	0.0	0.0	5,000.0
28	37.0	37.0	19.6	10.7		8.5	16.9	ل .	2.6	0.0	0.0	0.0	0.0	5,000.0
29	281.0	291.0	47.6	. 10.7		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
30	34.0	33.0	49.8	10.7	39.1	1.4	2.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
31	15.0	14.0	44.6	10.7	33.9	0.6	17.9	1 .8	3.6	0.0	0.0	0.0	0.0	5,000.0
TOTAL SFD	1,020.0	1,037.8	1,437.0	331.7	1,105.3	213.4		47.7		0.0		0.0		
TOTAL AF	2,023.1	2,058.4	2,850.3	627.9	2,192.4	423.3	423.3		94.5		0.0		0.0	

^{1 -} Minimum Flow Maintenance Requirement equals 11.5 cfs less 0.8 cfs CAP Credit less 0 Climatic Credit.
2 - Climatic Credits equal the WR-34 Discharge less the Actual Flow Maintenance Requirement which is the flow indicated in Section 5 of the CWRMA less applicable credits, but not less than 3.0 cfs 3 - Art. 17 - January -- April Camp Pendleton rights to groundwater equal the Flow indicated in Section 5 of the CWRMA minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

APRIL 2006 - BELOW NORMAL YEAR

										GRC	GROUNDWATER ACCOUNT BALANCE	ER ACCOU	INT BALAN	CE
			10-Day Moving	i		!	:							Cumulative
	HSGS Official	USGS Daily Mebsite	Average of	Minimum Flow	Moving Average	WR-34 Make-Up	ke-Up	ofination of a dife	Sodife					GW
DAY	Discharge	Discharge	Discharge	Requirement /1	Flow	MWD	MWD	Earned	12 12	Input /3	Input	Output	Output	Balance
	cfs	cfs	cfs	cfs	cfs	cfs	AF	cfs	AF	cfs	ΑF	cfs	AF	AF
•					0	ć	1	,	Ċ	ć	ć	ć		
_	12.0	0.11	44.4	7.01	7.66	0.8	B. / L	 	3.6	0.0	0.0	0.0	0.0	5,000.0
7	12.0	11.0	44.5	10.7	33.8	9.0	17.9	1.8	3.6	0.0	0.0	0.0	0.0	5,000.0
ຕ	12.0	11.0	44.5	10.7	33.8	9.0	17.9	8.	3.6	0.0	0.0	0.0	0.0	5,000.0
4	121.0	121.0	55.4	10.7	44.7	7.6	15.1	0.4	0.8	0.0	0.0	0.0	0.0	5,000.0
5	733.0	717.0	125.8	10.7	115.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
9	80.0	65.0	131.1	10.7	120.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	28.0	25.0	129.9	10.7	119.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
8	12.0	12.0	102.0	10.7	91.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
6	6.5	6.5	99.4	10.7	88.7	6.5	12.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
10	12.0	12.0	99.2	10.7	88.5	16.0	31.8	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
11	13.0	13.0	99.4	10.7	88.7	12.0	23.9	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
12	11.0	11.0	99.4	10.7	88.7	6.6	19.6	2.7	5.3	0.0	0.0	0.0	0.0	5,000.0
13	12.0	12.0	99.5	10.7	88.8	10.6	21.1	3.4	6.8	0.0	0.0	0.0	0.0	5,000.0
14	20.0	19.0	89.3	10.7	78.6	6.2	12.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
15	0.89	96.0	23.2	10.7	12.5	6.2	12.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
16	13.0	13.0	18.0	10.7	7.3	6.2	12.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
17	12.0	12.0	16.7	10.7	0.9	8.7	17.3	1.5	3.0	0.0	0.0	0.0	0.0	5,000.0
18	11.0	11.0	16.6	10.7	5.9	10.3	. 20.5	3.1	6.2	0.0	0.0	0.0	0.0	5,000.0
19	11.0	11.0	17.0	10.7	6.3	10.9	21.7	3.7	7.4	0.0	0.0	0.0	0.0	5,000.0
20	12.0	12.0	17.0	10.7	6.3	11.7	23.3	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
21	13.0	13.0	17.0	10.7	6.3	11.8	23.5	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
22	13.0	13.0	17.2	10.7	6.5	11.8	23.5	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
23	14.0	13.0	17.3	10.7	9.9	11.9	23.6	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
24	13.0	13.0	16.7	10.7	0.9	11.5	22.8	4.3	8.5	0.0	0.0	0.0	0.0	5,000.0
25	13.0	12.0	12.3	10.7	1.6	10.9	21.7	3.7	7.4	0.0	0.0	0.0	0.0	5,000.0
56	13.0	12.0	12.2	10.7	1.5	10.9	21.7	3.7	7.4	0.0	0.0	0.0	0.0	5,000.0
27	13.0	12.0	12.2	10.7	1.5	10.9	21.7	3.7	7.4	0.0	0.0	0.0	0.0	5,000.0
28	11.0	10.0	12.1	10.7	1.4	9.5	18.8	2.3	4.5	0.0	0.0	0.0	0.0	5,000.0
29	10.0	9.5	11.9	10.7	1.2	8.9	17.7	1.7	3.4	0.0	0.0	0.0	0.0	5,000.0
30	10.0	9.2	11.6	10.7	6.0	8.9	17.7	1.7	3.4	0.0	0.0	0.0	0.0	5,000.0
31	1	I	1		1	1	1	1	1	1	ł	İ	i	1
TOTAL SFD	1,334.5	1,277.9	1,512.3	321.0	1,191.3	257.3		67.4		0.0		0.0		
TOTAL AF	2.646.9	2.534.7	2.999.7	636.7	2.363.0	510.3	510.3		133.8		0 0		0	
::!:::		:	Ī	;)) -)		;		;	

^{1 -} Minimum Flow Maintenance Requirement equals 11.5 cfs less 0.8 cfs CAP Credit less 0 Climatic Credit.
2 - Climatic Credits equal the WR-34 Discharge less the Actual Flow Maintenance Requirement which is the flow indicated in Section 5 of the CWRMA less applicable credits, but not less than 3.0 cfs 3 - Art. 17 - January -- April Camp Pendleton rights to groundwater equal the Flow indicated in Section 5 of the CWRMA minus the Actual Flow Maintenance Requirement which cannot be less than 3.0 cfs.

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

MAY 2006 -BELOW NORMAL YEAR

			:							GR	GROUNDWATER ACCOUNT BALANCE	ER ACCOU	NT BALAN	SE SE
		USGS Daily	10-Day Moving Average of	Minimum Flow	Moving Average	WR-34 Make-Up	ke-Up						U	Cumulative GW
	USGS Official	Website	Website	Maintenance	Less Required	Discharge	.de	Climatic Credits	edits					Account
DAY	Discharge	Discharge	Discharge	Requirement	Flow	MWD	MWD	Earned	~	Input /2	Input	Output	Output	Balance
	cţs _	cfs	cts		cts	cls	AF	ΑF	cls	ΑF	cts	AF	cfs	ΑF
*	7.6					6.5	12.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	9.9					5.9	11.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
က						5.9	11.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4						5.9	11.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
20	9.9					5.3	10.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
9	6.0					5.3	10.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	5.5					5.3	10.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
80	5.8					5.3	10.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
6	5.8					5.3	10.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
10	5.6					5.1	10.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	5.6		5.8	5.7		5.1	10.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
12	5.7	5.7	5.8	5.7	0.1	5.1	10.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
13	5.6		5.8	5.7		5.1	10.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
14	5.7		5.8	5.7	0.1	5.1	10.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
15	5.8	5.8	5.7	5.7		5.2	10.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
16	6'9		5.7	5.7	0.0	5.2	10.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
17	6.3		5.8	5.7		5.2	10.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
18	5.9		5.8	5.7		5.2	10.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
19	5.9		5.8	5.7		5.2	10.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
20	5.9		5.8	5.7		5.2	10.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
21	5.9		5.9	5.7	0.2	5.2	10.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	9.4	9.4	6.2	5.7		5.3	10.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
23	5.9	5.9	6.3	5.7		4.9	9.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
24	5.1	5.1	6.2	5.7		4.6	9.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
25	5.1	5.1	6.1	5.7	9.4	4.6	9.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
26	5.3	5.3	6.1	5.7		4.8	9.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
27	5.3	5.3	6.0	5.7		4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
28	5.2	5.2	5.9	5.7		4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
29	5.2	5.2	5.8	5.7		4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
30	5.2	5.2	5.8	5.7	0.1	4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
31	5.2	5.2	5.7	5.7	(0.0)	4.8	9.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
TOTAL SFD	183.8	180.1	123.7	119.7	4.0	161.6			0.0	0.0		0.0		
A TATOT			246	4 700	7	000		ć			ć			
IOIALAF	364.6	7.766	245.3	237.4	f. /	320.6	320.6	0.0			0.0		0:0	

1 - Art. 7(b) not applicable for months of May through December 2 - Groundwater Account balance at 5,000 AF

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

JUNE 2006 - BELOW NORMAL YEAR

						ELOW NOR	אר י באוי			89	CAN	CAMP PENDLETON GROUNDWATER ACCOUNT BALANCE	TON INT BALAN	Щ	
	USGS Official	USGS Daily Website	10-Day Moving Average of Website	Minimum Flow Maintenance	Moving Average Less Required	WR-34 Make-Up	ke-Up	Climatic Credits	edits					Cumulative GW Account	
DAY	Discharge	Discharge	Discharge	Requirement	Flow	MWD	MWD	Earned /1	7	Input /2	Input	Output	Output	Balance	
	cfs –	cfs	cfs	ds	cfs	cfs	ΑF	AF	cfs	AF	cls	ΑF	cts	AF	
۲	5.0	5.0				4.7	9. 4.	0.0	0:0	0.0	0.0	0.0	0.0	5.000.0	
. 2	5.1	5.1				4,8	9.5	0.0	0.0	0.0	0.0		0.0	5,000.0	
က	5.1	5.1				4.7	9.4	0.0	0.0	0.0	0.0	0.0	0.0	5.000.0	
4	5.1	5.1				4.7	9.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
ĸ	5.2	5.2				4.7	9.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
9	5.0	5.0				4.5	9.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
7	4.9	4.9				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
8	5.0	5.0				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
6	4.9	4.9				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
10	4.9	4.9				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
11	4.9	4.9	5.0	4.9	0.1	4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
12	4.9	4.9	5.0	4.9	0.1	4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
13	4.9	4.9	5.0	4.9	0.1	4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
44	4.9	4.9	5.0	4.9	0.0	4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
15	4.8	4.8	4.9	4.9	0.0	4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
16	4.9	4.9	4.9	4.9	0.0	4.5	9.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
17	4.8	4.8	4.9	4.9	(0.0)	4.5	9.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
18	4.7	4.7	4.9	4.9	(0.0)	4.5	9.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
19	4.8	4.8	4.9	4.9	(0.1)	4.7	9.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
20	5.1	5.1	4.9	4.9	(0.0)	4.7	9.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
21	4.9	4.9	4.9	4.9	(0.0)	4.8	9.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
22	4.9	4.9	4.9	4.9	(0.0)	4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
23	5.0	5.0	4.9	4.9	(0.0)	4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
24	5.0	5.0	4.9	4.9	(0.0)	4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
25	9.0	5.0	4.9	4.9	0.0	4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
26	2.0	5.0	4.9	4.9	0.0	4.8	9.5	0'0	0.0	0.0	0.0	0.0	0.0	5,000.0	
27	5.1	5.1	5.0	4.9	0.0	4.8	9.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
28	5.1	4.9	5.0	4.9	0.1	4.7	9.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
29	4.8	4.6	5.0	4.9	0.0	4.5	8.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
30	4.8	4.5	4.9	4.9	(0.0)	4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	
34	<u> </u>		***	1	1	!	l	I	ł	***	-	*	1	1	
TOTAL SFD	D 148.5	147.8	98.3	98.0	0.3	138.6			0.0	0.0		0.0			
TOTAL AF	294.5	293.2	195.0	194.4	0.6	274.9	274.9	0.0		0.0	0.0		0.0	-	
		:													
100	· see clacelane i	40 110 11 10 001	1000000												

1 - Art. 7(b) not applicable for months of May through December 2 - Groundwater Account balance at 5,000 AF

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

JULY 2006 - BELOW NORMAL YEAR

					JOET 2000 - BELOW NORWAL TEAK	SELOW NON				GRO	CAM	CAMP PENDLETON GROUNDWATER ACCOUNT BALANCE	TON JNT BALA	ACE.	
		USGS Daily	10-Day Moving Average of	Minimum Flow	Moving Average	WR-34 Make-Up	ike-Up							Cumulative GW	e e
	USGS Official	Website	Website	Maintenance	Less Required	Discharge	rge	Climatic Credits	edits					Account	
DAY	Discharge	Discharge	Discharge	Requirement	Flow	MWD	MWD	Earned //	11	Input /2	Input	Output	Output	Balance	
	sts 	cfs	cfs	cls	cfs	cls	AF	ΑF	cfs	AF	cfs	ΑF	cfs	ΑF	
,		;					;	,	;	,		;			,
1	4.7	4.4				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
7	4.6	4.3				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
ო	4.6	4.4				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
4	4.6	4.3				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
70	4.7	4.4				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
9	4.6	4.4				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0,
7	4.6	4.4				4.4	8.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
œ	4.5	4.3				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
6	4.5	4.2				4.3	9.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0,
10	4.5	4.3				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
11	4.5	4.3	4.3	4.3		4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
12	4.3	4.3	4.3	4.3	0.0	4.4	8.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0
13	4.4	4.4	4.3	4.3		4.4	8.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
14	4.4	4.4	4.3	4.3		4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
15	4.4	4.4	4.3	4.3		4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
16	4.4	4.4	4.3	4.3	0.0	4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
17	4.4	4.4	4.3	4.3		4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
18	4.4	4.4	4.4	4.3		4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
19	4.3	4.3	4.4	4.3		4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	9
20	4.3	4.3	4.4	4.3		4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
21	4.4	4.4	4.4	4.3	0.1	4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
22	2.9	6.4	4.6	4.3		4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
23	4.6	4.4	4.6	4.3		4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
24	4.2	3.9	4.5	4.3		3,9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
25	4.1	3.8	4.5	4.3		3.8	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0
56	4.3	4.0	4.4	4.3		4.0	7.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0
27	4.3	4.0	4.4	4.3		4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0.
28	4.3	4.1	4.4	4.3		4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	9
29	4.3	4.1	4.3	4.3		4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	9
30	4.3	4.1	4.3	4.3		4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	0
. 31	4.4	4.1	4.3	4.3	0.0	4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	o.
TOTAL SFD	139.6	134.3	92.1	90.3	1.8	131.3			0.0	0.0		0.0			
TOTAL AF	276.9	266.4	182.6	179.1	3.5	260.5	260.5	0.0			0.0		0.0		

^{1 -} Art. 7(b) not applicable for months of May through December 2 - Groundwater Account balance at 5,000 AF

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER SEOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

AUGUST 2006 -BELOW NORMAL YEAR

					AUGUST 2006 -BELOW NORMAL YEAR	BELOW NO	RMAL YEAR			GRC	CAM	CAMP PENDLETON GROUNDWATER ACCOUNT BALANCE	TON INT BALAN	<u>C</u> E	
	USGS Official	USGS Daily Website	10-Day Moving Average of Website	Minimum Flow Maintenance	Moving Average Less Required	WR-34 Make-Up Discharge	ake-Up	Climatic Credits	edits					Cumulative GW Account	_
DAY	Discharge	Discharge	Discharge	Requirement	Flow	MWD	MWD	Earned	1	Input /2	Input	Output	Output	Balance	
	cls	cfs	cfs	cfs	cfs	cfs	ΑF	ΑF	cfs	cfs	ΑF	cĮs	ΑF	ΑF	
											7				
1	4.7	4.4				4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
7	4.6	4.4				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
т	4.7	4.7				4.4	8.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
4	4.8	4.8				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
5	4.9	4.9				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
9	4.7	4.7				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
7	4.7	4.7				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
89	4.6	4.6				4.4	8.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
6	4.6	4.6				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
10	4.7	4.7				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
11	4.6	4.6	4.7	4.4		4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
12	4.6	4.6	4.7	4.4	6.0	4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
13	4.4	4.4	4.7	4.4		4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
14	4.5	4.5	4.6			4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
15	4.4	4.4	4.6			4.1		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
16	4.3	4.3	4.5			4.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
11	4.3	4.3	4.5			3.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
18	4.3	4.3	4.5			3.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
19	4.1	4.3	4.4		0.0	3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
20	4.1	4.3	4.4	4.4		3.9		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
21	4.2	4.4	4.4	4.4		4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
22	4.2	4.5	4.4	4.4		4.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
23	4.2	4.5	4.4	4.4		4.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
24	4.2	4.4	4.4	4.4		4.		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
25	4.2	4.4	4.4	4.4		4.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
26	4.2	4.4	4.4	4.4		4.1		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
27	4.2	4.5	4.4	4.4		4.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
28	4.2	4.4	4.4	4.4		4.0		0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
29	4.2	4.4	4.4	4.4		4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
30	4.2	4.4	4.4	4.4	0.0	4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
31	4.1	4.4	4.4	4.4		4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0	_
TOTAL SFD	136.7	139.2	93.9	92.4	1.5	129.1			0.0	0.0		0.0		•	
TOTAL AF	271.1	276.1	186.3	183.3	3.0	256.0	256.0				0.0		0.0		

1 - Art. 7(b) not applicable for months of May through December 2 - Groundwater Account balance at 5,000 AF

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

SEPTEMBER 2006 -BELOW NORMAL YEAR

											SROUNDW	ATER ACCO	GROUNDWATER ACCOUNT BALANCE	띥
		USGS Daily	10-Day Moving Average of	Minimum Flow	Moving Average	WR-34 Make-Up	ike-Up							Cumulative
;	USGS Official	Website	Website	Maintenance	Less Required	Discharge	rge	Climatic Credits	redits					GW Account
DAY	Uischarge	Uischarge	Discharge	Requirement	Flow	UNVD.	MWD	cfe Larned /1	/1 AF	Input /2	Input	Cutbut	Output	Balance
	2	2	2	5	9	5	=	2		2		3	ŧ	ζ
											7.			
1	4.0	4.2				3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
2	3.9	4.1				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
m	3.9	4.1				3.8	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4	3.9	4.1				3.8	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
5	3.9	4.2				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5.000.0
9	4.0	4.3				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	3.7	3.9				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
80	4.0	4.0				4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
6	4.2	4.2				4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
10	4.2	4.2				4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	4.2	4.2	4.1	4.1	0.0	4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
12	4.1	4.1	4.1	4.1		4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
13	4.1	4.1	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
14	4.2	4.2	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
15	4.2	4.2	4.1	4.1	0.0	4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
16	4.2	4.2	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
17	4.1	4.1	4.2	4.1		4.1	8.1	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
18	4.2	4.0	4.2	4.1		4.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
19	4.3	4.1	4.1	4.1		4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
20	4.4	4.1	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
21	4.3	4.1	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	4.3	4.1	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
23	4.4	4.1	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
24	4.4	4.1	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	4.4	4.1	4.1	4.1		4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
26	4.4	4.1	4.1	4.1		4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
27	4.4	4.1	4.1	4.1	<u> </u>	4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
28	4.4	4.1	4.1	4.1		4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
29	4.3	4.1	4.1	4.1	0.0	4.1	8.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
30	4.1	3.9	4.1	4.1	(0:0)	3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
31	1	1		ŀ		!	١	1	I	1	1	i	1	1
TOTAL SFD	125.1	123.4	82.4	82.0	0.4	121.6			0.0	0.0		0.0		
TOTAL AF	248 1	244.8	163.4	1R2 R	80	241.4	241 1	c	-		c		c	
2 7 7 7 7	7.04.7	0.77.2	1.00	0.50			1.14	5		0	5		o.	

1 - Art. 7(b) not applicable for months of May through December 2 - Groundwater Account balance at 5,000 AF

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

OCTOBER 2006 - BELOW NORMAL YEAR

								The second secon						
		USGS Daily	10-Day Moving Average of	Minimum Flow	Moving Average	WR-34 Make-Up	ke-Up							Cumulative GW
;	USGS Official	Website	Website	Maintenance	Less Required	Discharge	rge	Climatic Credits	edits				į	Account
DAY	Discharge	Discharge	Discharge	Requirement	Flow	MWD	MWD	arned	11	Input /2	Input	Output	Output	Balance
	sy 	cis	cfs	cls	cfs	cţs	ц. V	cls	Ar T	cfs	ΑF	cfs	AF	ΑF
+		8				ď	7.8	0	c	c	c	c	c	2000
- (-	9 6				9 6	9 0	9 6	9 (2.	2	2 (9	0,000,0
7	4.1	3.9				3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
က	4.1	3.9				3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4	4.1	3,9				3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
O	4.0	4.0				3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
9	3.9	3,9				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	3.9	3.9				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
89	3.9	3.9				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
6	3.9	3.9				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
10	3.9	3.9				3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	3.9	3.9	3.9	3.9	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
12	3.9	3.9	3.9	3.9	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
13	3.8	3.8	3.9	3.9	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
14	4.0	4.0	3.9	3.9	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
15	4.1	4.1	3.9	3.9	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
16	4.0	4.0	3.9	3.9	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	3.9	3.9	3.9	3.9	0.0	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
18	4.1	4.1	4.0	3.9	0.1	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
19	4.2	4.2	4.0	3.9	0.1	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
20	4.1	4.1	4.0	3.9	0.1	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
21	4.3	4.3	4.0	3.9	0.1	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	4.2	4.2	4.1	3.9	0.2	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
23	3.9	3.9	4.1	3.9	0.2	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
24	3.9	3.9	4.1	3.9	0.2	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	3.8	3.8	4.0	3.9	0.1	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
26	3.8	3.8	4.0	3.9	0.1	3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
27	3.8	3.8	4.0	3.9	0.1	3.8	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
28	3.8	3.8	4.0	3.9	0.1	3.8	7.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
29	3.9	3.9	4.0	3.9	0.0	3.9	7.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
30	4.6	4.6	4.0	3.9	0.1	3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
31	4.4	4.4	4.0	3.9	0.1	3.9	7.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
TOTAL SFD	124.3	123.5	83.6	81.9	1.7	117.3			0.0	0.0		0.0		
TOTAL AF	246.5	245.0	165.8	162.4	3.4	232.7	232.7	0.0		0.0	0.0		0.0	
17/6/1	7	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1												

^{1 -} Art. 7(b) not applicable for months of May through December 2 - Groundwater Account balance at 5,000 AF

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

NOVEMBER 2006 - BELOW NORMAL YEAR

										9	ROUNDWA	TER ACCOL	GROUNDWATER ACCOUNT BALANCE	ш
			10-Day Moving											Cumulative
		USGS Daily	Average of	Minimum Flow	Moving Average	WR-34 Make-Up	ke-Up							ВW
	USGS Official	Website	Website	Maintenance	Less Required	schar	eb.	Climatic Credits	redits					Account
DAY	Discharge	Discharge	Discharge	Requirement	Flow		MWD	Earned	~	Input /2	Input	Output	Output	Balance
	cfs 	cfs	cfs	cfs	cfs	cls	AF	cls	AF	cfs	ΑF	cts	AF	AF
•		•				,	,	1	1	,	,	,		
_	4.6	4.6				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	4.5	4.5				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
es	4.6	4.6				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
4	4.6	4.6				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
5	4.6	4.6				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
9	4.7	4.7				4.4	8.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
7	4.6	4.6				4.4	8.7	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
80	4.6	4.6				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
6	4.6	4.6				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
10	4.6	4.6				4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	4.5	4.5	4.6	4.5		4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
12	4.7	4.7	4.6	4.5	0.1	4.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
13	4.6	4.6	4.6	4.5		4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
14	4.7	4.7	4.6	4.5		4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
15	5.0	5.0	4.7	4.5		4.2	8.3	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
16	4.8	4.8	4.7	4.5		3.8	7.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
11	4.8	4.8	4.7	4.5		3.4	6.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
18	4.7	4.7	4.7	4.5		3.5	6.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
19	4.6	4.6	4.7	4.5		3.5	6.9	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
20	4.9	4.9	4.7	4.5		3.7	7.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
21	4.6	4.6	4.7	4.5		4.3	8.5	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
22	4.5	4.5	4.7	4.5		4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
23	4.4	4.4	4.7	4.5	0.2	4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
24	4.5	4.5	4.7	4.5		4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
52	4.5	4.5	4.6	4.5		4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
56	4.5	4.5	4.6	4.5		4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
27	6.9	6.9	4.8	4.5		1.3	2.6	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
28	1.9	1.9	4.5	4.5	0.0	0.9	1.8	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
53	4.0	4.0	4.5	4.5	(0.0)	3.6	7.2	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
30	4.5	4.5	4.4	4.5	(0.1)	4.2	8.4	0.0	0.0	0.0	0.0	0.0	0.0	5,000.0
31	!	}	1	!	;	1	1			1	I	1	1	I
TOTAL SFD	137.6	137.6	92.9	90.06	2.9	118.7			0.0	0.0		0.0		
TOTAL AF	272.9	272.9	184.2	178.5	5.7	235.5	235.5	0.0		0.0	0.0		0.0	

1 - Art. 7(b) not applicable for months of May through December 2 - Groundwater Account balance at 5,000 AF

SANTA MARGARITA RIVER WATERSHED COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT REQUIRED FLOWS AND ACCOUNTS SANTA MARGARITA RIVER NEAR TEMECULA

DECEMBER 2006 - BELOW NORMAL YEAR

띩	Cumulative GW Account	Balance	AF	5,000.0	5,000.0	5,000.0	5,000,0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0	5,000.0			
GROUNDWATER ACCOUNT BALANCE	-	Output	AF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
ER ACCOU		Output	cls	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
UNDWAT		Input	AF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	:
GRC		Input /2	cfs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	edits	11	AF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
	Climatic Credits	Earned	cfs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
	e-Up e	MWD	AF	9.8	10.4	10.4	8.0	6.4	9.9	8.9	8.9	8.9	2.1	0.0	4.0	6.3	0.9	5.9	5.6	3.3	4.5	0.9	5.9	5.9	5.9	5.9	6.0	6.1	0.9	6.1	5.6	5.3	5.3	5.3		185.0	
	WR-34 Make-Up Discharge	MWD	cts	4.9	5.2	5.2	4.0	3.2	3.3	3.4	3.4	3.4	1.1	0.0	2.0	3.2	3.0	3.0	2.8	1.7	2.3	3.0	3.0	3.0	3.0	3.0	3.0	3.1	3.0	3.1	2.8	2.7	2.7	2.7	93.3	185.0	
	Moving Average Less Required	Flow	cfs											3.6	3.3	3.1	3.1	3.2	3.2	3.3	3.4	3.4	0.5	0.5	9.0	9.0	9.0	6'0	0.4	9.0	0.5	0.3	0.1	0.0	34.8	6.89	
	Minimum Flow 1 Maintenance	Requirement *	cfs											3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	69.3	137.5	
	10-Day Moving Average of Website	Discharge	cfs											6.9	9.9	6.4	6.4	6.5	6.5	9.9	6.7	6.7	3.8	3.8	3.9	3.9	3.9	3.8	3.7	3.9	3.8	3.6	3.4	3.3	104.1	206,4	
	USGS Daily Website	Discharge	cfs	5.3	5.6	5.5	4.3	3.1	3.5	3.4	3.4	3.4	34.0	2.5	3.0	3.4	3.8	4.1	4.1	4.4	4.1	3.7	4.5	3.3	3.8	3.5	3.2	3.3	3.6	5.7	3.2	2.2	2.3	2.5	145.7	289.0	
	USGS Official	Discharge	cfs	5.5	5.9	5.8	4.3	3.3	3.7	3.6	3.7	3.6	31.0	8.1	2.1	2.6	2.8	2.9	3.2	3.2	3.0	2.7	3.4	2.4	2.7	2.5	2.3	2.4	2.6	5.7	3.2	2.2	2.3	2.5	128.9	255.7	-
		DAY		+	7	က	4	5	9	7	89	6	10	11	12	13	14	15	16	11	18	19	20	21	22	23	24	25	76	27	28	29	30	31	TOTAL SFD	TOTAL AF	

^{1 -} Art. 7(b) not applicable for months of May through December
2 - Groundwater Account balance at 5,000 AF
* On November 30, 2006, Camp Pendleton requested to forego Make-up Water from December 4 through December 31, 2006, by reducing the required flow to simulate Critically Dry Hydrologic Conditions

ACCOUNTING UNDER THE COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT

FEBRUARY 21, 2006

The intent of this document is to memorialize the method of accounting under the Cooperative Water Resource Management Agreement (CWRMA) and quantify the credits earned by the Rancho California Water District (District) and the United States Marine Corps Base Camp Pendleton (Camp Pendleton) in calendar years (Year) 2003, 2004, and 2005. Year 2003 represents the first full year in which the CWRMA had been in effect and fully implemented. Year 2004 represents the first year in which credits were both applied and earned by the District. During a January 21, 2004, meeting between both parties, it became apparent that a common method of accounting for flows at the Gorge was required. Subsequent meetings between the technical representatives of both parties on February 17, 2004, March 2, 2004, and July 26, 2005 facilitated a mutual agreement of both accounting terms and methodology.

Three types of credits are recognized in the CWRMA: (1) "CAP Credits" for the Make-Up Water provided in any calendar year in excess of 4,000 acre-feet [§5(e)], (2) "Climatic Credits" earned by the District in Below Normal and Critically Dry years as determined by the Hydrologic Index on May 1st of each year [§5(b)], and (3) "Groundwater Bank Credits" earned by Camp Pendleton when the District's actual flow maintenance requirements are less than the flows in the table in Section 5 [§17]. A more detailed list of terms used throughout technical and legal meetings is provided in Table 1.

District releases at the Gorge have been based upon provisional data posted to the USGS website: http://waterdata.usgs.gov/ca/nwis/dv?format=html&period=10&site_no=11044000. It has been agreed upon by both parties that this data will be used in accounting for flows at the Gorge without regard to any data modifications that may be made later by the USGS. The District releases Make-Up Water from Metropolitan Water District's raw water pipeline #2 at WR-34.

The District and Camp Pendleton have agreed to use a spreadsheet model CWRMA Accounting v2.0.xls (Accounting Model) that was originally developed by the District to account and track the daily flows observed at the Gorge, Make-Up Water released by the District, and credits earned by both parties. The Accounting Model will be maintained by the District, and reviewed periodically by Camp Pendleton. Any future changes to the Accounting Model will be noted by a change in the version number and issuance of an accounting memorandum addendum developed by both parties.

TABLE 1: DEFINITION OF TERMS

Minimum Daily Flow Requirement "The Minimum Daily Flow Requirement for each winter period shall be 11.5 cfs, less any credit unused in a previous year, and less any credit established by the May 1st accounting of the prior year" [§5(b)]. The Minimum Daily Flow Requirement is a particular flow measured against a 10-day running average [§5(b)]. The winter period Minimum Daily Flow Requirement may be further reduced by the accrual of CAP Credits "when the District is required under this Section to provide Make-Up Water in any calendar year in excess of 4,000 acre-feet" [§5(e)]. For the non-winter period, the "Minimum Daily Flow Requirements (are) based upon the particular hydrologic condition established on May 1st for the prior October-April period" [§5(c)].

Actual Flow Requirement "On May 1st..., the hydrologic condition for the immediately preceding October-April period shall be determined. Such condition, and the Daily Flow Requirement set forth in this Section 5(b), shall be used to determine the Actual Flow Requirement for the prior winter period, and whether this requirement was exceeded" [§5(b)]. "Camp Pendleton may acquire rights to such groundwater above the Gorge by foregoing its right to Make-Up Water from the District; or to the extent that the District's Actual Flow Maintenance Requirements are less than the flows in the table in Section 5" [§17]. The non-winter Actual Flow Requirements are equal to the Minimum Daily Flow Requirements during the non-winter period (once the Hydrologic Condition is known) because no credits are applied in the non-winter period.

Make-Up Water "The District shall provide whatever Make-Up Water is needed to meet this (the Minimum Daily Flow) requirement" [§5(b)]. "The District shall not be required to provide more than the equivalent of 11.5 cfs Make-Up Water for any month". [§5(d)] "The District guarantees that flows, based upon the 10-day running average, shall at no time be less than 3.0 cfs" [§5(f)]. "Make-Up Water ... (is) required ... at the Gorge in order to comply with the requirements of Section 5" [§6]. "Any losses of makeup water incurred between the point of discharge by the District and the Gorge shall be borne by the District, and shall not diminish the United States' entitlement, as measured at the Gorge" [§6].

Climatic Credits are those credits earned by the District on Below Normal and Critically Dry years, when the Minimum Daily Flow Requirement for the winter period is found to be greater than the Actual Flow Requirement determined on May 1st. "In providing Minimum Daily Flows ... if the District has provided Make-Up Water in excess of its Actual Requirement, the District shall be entitled to a credit for such excess. The quantity of the excess flow shall be converted to a cfs equivalent, and applied during the following winter periods to reduce the 11.5 cfs requirement" [§5(b)].

<u>CAP Credits</u> are those credits earned by the District when Make-Up Water is in excess of 4,000 acre-feet per year. "When the District is required under this Section to provide *Make-Up Water* in any calendar year in excess of 4,000 acre-feet, measured at the Gorge, it shall be entitled to a credit for the excess, taking into account transmission losses, to be applied during the following two winter periods" [§5(e)].

Groundwater Bank (GW Bank) Credits are those credits earned by Camp Pendleton when the District's Actual Flow Maintenance Requirements are less than the flows in the table in Section 5. "Camp Pendleton may acquire rights to such groundwater above the Gorge by foregoing its right to Make-Up Water from the District; or to the extent that the District's Actual Flow Maintenance Requirements are less than the flows in the table in Section 5" [§17]. "Camp Pendleton's rights to such groundwater in storage shall not exceed 5,000 acre-feet at any one time; and ... the District's obligation to deliver stored groundwater shall not exceed 2,200 acre-feet per year over any required makeup obligation which the District may have, and in no event at a rate in excess of 11.5 cfs" [§17].

<u>Credits</u> earned by the District serve to reduce the *Minimum Daily Flow Requirement* during the winter period. *Credits* are applied in the following order (1) Climatic Credits from 2 or more years prior, (2) Climatic Credits earned in the previous year, (3) CAP Credits earned from the previous year, and finally (4) CAP Credits from 2 years prior. "In all years following the first winter period, the same procedure shall be followed, provided that the *Minimum Daily Flow Requirement* for each winter period shall be 11.5 cfs, less any *credit* unused in a previous year, and less any *credit* established by the May 1st accounting of the prior year" [§5(a)].

Calendar Year 2003

The CWRMA states that during the first winter period (January to April 2003) following the effective date of the CWRMA, the Minimum Daily Flow Requirement is 11.5 cfs, calculated on a ten-day running average. This minimum requirement is to be adjusted, if necessary, on May 1st, 2003, based upon the Hydrologic Index for the previous October through April hydrologic period. Accordingly, the hydrologic condition for Year 2003 was determined to be Above Normal, and thus the District was not entitled to earn Climatic Credit in Year 2003.

During Year 2003, the District released 5,485 acre-feet according to releases at WR-34. Since the existing location of releases by the District (WR-34) is essentially at the Gorge, it is agreed that there are no discernable transmission losses incurred between the current point of discharge by the District and the Gorge. Future releases by the District at alternate locations will require development of a methodology to quantify transmission losses incurred between the point of discharge by the District and the Gorge. Any losses "shall be borne by the District, and shall not diminish the United States' entitlement, as measured at the Gorge" [§6].

In 2003, it was agreed that the District was entitled to a CAP Credit for any water provided in excess of 4,000 acre-feet, and accordingly earned a CAP Credit of 1,485 acre-feet for Year 2003. The CWRMA calls for earned CAP Credit to be converted to a cfs equivalent (6.2 cfs) and applied during the following two winter periods to reduce the minimum winter flow requirement of 11.5 cfs. During Year 2003, Camp Pendleton's groundwater bank accumulated 2,096 acre-feet of credit.

Calendar Year 2004

For the period January 1st to January 21st, 2004, the District applied its CAP Credit at a rate of 3.1 cfs, which represents 50% of the cfs equivalent CAP Credit earned in Year 2003, to reduce the 11.5 cfs minimum flow requirement. For the period January 22nd to April 30th, 2004, it was agreed that the District would apply its CAP Credit at a rate of 4.4 cfs, which represents 70% of the cfs equivalent CAP Credit earned in Year 2003. A total of 1,002 acre-feet of CAP Credit was applied by the District during the winter period of 2004. The remaining CAP Credit, 483 acre-feet (2.0 cfs), may be applied to reduce the minimum winter flow requirement in the winter period of 2005. Any remaining CAP Credit earned in Year 2003, not applied to the minimum winter flow requirement during Year 2005, will be forfeited.

On May 1st, 2004, the hydrologic condition was determined to be Critically Dry, thus the District was eligible to earn Climatic Credit in Year 2004. Based on Accounting Model, the

Climatic Credit earned in Year 2004 was 678 acre-feet (2.8 cfs). During the same calendar year, Camp Pendleton's groundwater bank accrued 360 acre-feet of credit, for a cumulative groundwater storage volume equal to 2,456 acre-feet.

Calendar Year 2005

For the winter period of Year 2005, the District applied the Climatic Credits earned in Year 2004 (2.8 cfs) and the remaining CAP Credit from Year 2003 (2.0 cfs), to reduce the 11.5 cfs minimum flow requirement. A total of 687 acre-feet of Climatic Credit and 483 acre-feet of CAP Credit were applied by the District during the winter period of 2005. During the same winter period, Camp Pendleton's groundwater bank accrued 2,544 acre-feet of credit, reaching the maximum storage volume of 5,000 acre-feet on April 12, 2005.

On May 1st, 2005, the hydrologic condition was determined to be Very Wet, thus the District was not eligible to earn Climatic Credit in Year 2005. On November 23, 2005, the Camp Pendleton and the District took action to reduce the accumulation of 2005 CAP Credits earned by reducing the flow releases at the Gorge from Very Wet to Below Normal hydrologic conditions, resulting in 492 acre-feet of foregone Make-Up Water. Since Camp Pendleton's groundwater bank was already at the maximum allowable storage volume, the 492 acre-feet of foregone Make-Up Water does not serve to secure additional rights to groundwater above the Gorge for Camp Pendleton. The 397 acre-feet of CAP Credit earned by the District in Year 2005 translates to an equivalent winter flow rate of 1.7 cfs, which must be used before the end of the 2007 winter period to avoid forfeiture. Based on applying 50% of the available CAP Credits, the 2006 winter Minimum Daily Flow Requirement was calculated to be 10.7 cfs.

Operational Efficiency

The CWRMA states that the District is entitled to a CAP Credit for any Make-Up Water provided in excess of 4,000 acre-feet. During Year 2003, the District released 5,485 acre-feet at WR-34. The releases by the District significantly exceeded the Make-Up Water requirement due to the condition of the groundwater basin and the District's operational goal to meet the 10-day average every day of Year 2003, without going under the Section 5 requirement.

The District and Camp Pendleton agree that it is beneficial to both parties to minimize the occurrence of Make-Up Water in any calendar year in excess of 4, 000 acre-feet, thereby minimizing CAP Credits earned in a given year. The District does not want to release more water than is required or needed. Camp Pendleton does not want the District to accumulate credits during wet

years that may hinder flows during subsequent dry years. Though the difference between Make-Up Water and releases by the District is considered to be operational excess water, which is not required under the CWRMA, an arrangement was made on January 21, 2004 where Camp Pendleton agreed to the District's 2003 CAP Credit calculation of 1,485 acre-feet, on the contingency that an agreed upon method of accounting practices would be defined and set in place. During technical meetings, all parties agreed to monitor the accumulation of operational excess in the Accounting Model. The daily accounting of operational excess will allow each party to identify cumulative accumulations and deficiencies early on in the year, which will help avoid excess releases by the District during the rémainder of the year. In Year 2003, there was 443 AF of operational inefficiency, which resulted from the District trying to meet or exceed the Section 5 flow requirements on every day. Releases by the District did not exceed 4,000 acre-feet during Year 2004, thus eliminating the need to calculate CAP Credits and operational inefficiencies. During Year 2005, the District released 94 acre-feet of operational excess, again representing the quantity of water released at the Gorge greater than required under CWRMA. Camp Pendleton and the District recognize that the operational excess that occurred in 2003 is unlikely to occur again in the future. Furthermore, it appears that the District is improving upon their ability to meet the flow requirements at the Gorge using the available instrumentation and technology.

Both parties explored various methodologies during technical meetings in Years 2004 and 2005 to accurately account for operational inefficiency in the Accounting Model. Review of the various methodologies suggested that the optimal method of accounting for excess water was to improve the efficiency of the releases, thus reducing the possibility of exceeding 4,000 acre-feet in any given year. While this may not be considered to be the optimal solution to account for excess water releases, both the District and Camp Pendleton are in agreement to reduce excess water releases that result in unnecessary expense and CAP Credit accumulation. All provisions of the CWRMA, including those that identify and stipulate the Minimum Daily Flow Requirement at the Gorge, remain in effect to ensure the target flows in the Santa Margarita River are maintained.

Summary

While Camp Pendleton and the District have achieved a consensus regarding the accounting of Climatic, CAP, and Groundwater Bank Credits, there continues to be a disagreement among the two parties regarding the application of Make-Up Water to CAP Credit. While Camp Pendleton believes that not all Make-Up Water should count towards CAP Credit, the District has clearly indicated their disagreement with that methodology. This issue remains outstanding between the two parties, but does not hinder or jeopardize the intent of the CWRMA to continue to facilitate a physical solution to the water rights dispute.

The accounting solution presented in this document outlines operational guidelines agreed upon by the District and Camp Pendleton. The Accounting Model, maintained by the District and reviewed by Camp Pendleton, will be used to track flows and credits on a daily, monthly, and annual basis. This document does not modify or replace the language or intentions of the CWRMA.

A copy of this accounting agreement will be sent to the Watermaster in the U.S. v. Fallbrook case for inclusion in the Santa Margarita River Watershed Annual Watermaster Report.

RANCHO CALIFORNIA WATER DISTRICT

By: Bob Lemone

Bob Lemons

Director of Engineering

Rancho California Water District

U.S. MARINE CORPS CAMP PENDLETON

Bv.

Scott Thomas

Director, Office of Water Resources

U.S. Marine Corps Base Camp Pendleton

SANTA MARGARITA RIVER WATERSHED ANNUAL WATERMASTER REPORT WATER YEAR 2005-06

APPENDIX F

ANNUAL REPORT ISSUES SUBORDINATED
DURING EFFECTIVE PERIOD OF THE
COOPERATIVE WATER RESOURCE
MANAGEMENT AGREEMENT

AUGUST 2007

WATERMASTER SANTA MARGARITA RIVER WATERSHED

APPENDIX F

SANTA MARGARITA RIVER WATERSHED

ANNUAL REPORT ISSUES SUBORDINATED DURING EFFECTIVE PERIOD OF THE COOPERATIVE WATER RESOURCE MANAGEMENT AGREEMENT

Introduction

Prior to implementation of the Cooperative Water Resources Management Agreement (CWRMA) entered into by Rancho California Water District (RCWD) and the United States on behalf of Camp Pendleton, there were each year contentions raised by Camp Pendleton with respect to various aspects of the Annual Watermaster Report. These contentions are settled so long as that agreement is in effect. Accordingly, there is no need to raise those particular issues or publish them in the main text of the annual report or in related correspondence.

However, the respective positions on these issues need to be preserved and protected from any finding of waiver, and there is a need to continue to collect related data in the event of need in the future.

Therefore, the applicable textual material in the previous annual reports and related comments and responses have been gathered here for preservation and maintenance of rights, with the understanding that the previous annual exchange of applicable contentions in the process of preparing the annual report is no longer necessary.

Issues Reserved

Section 3, Surface Water Availability and Use: In the absence of CWRMA implementation, Camp Pendleton disputes the method of calculation used in the annual report in Subsection 3.2 (Surface Water Diversions) and Table 3.3 (Surface Water Diversions to Storage) for presentation of the information regarding Vail Lake and further asserts its belief that the Vail Dam impoundment fails to comply with the 1940 Stipulated Judgment.

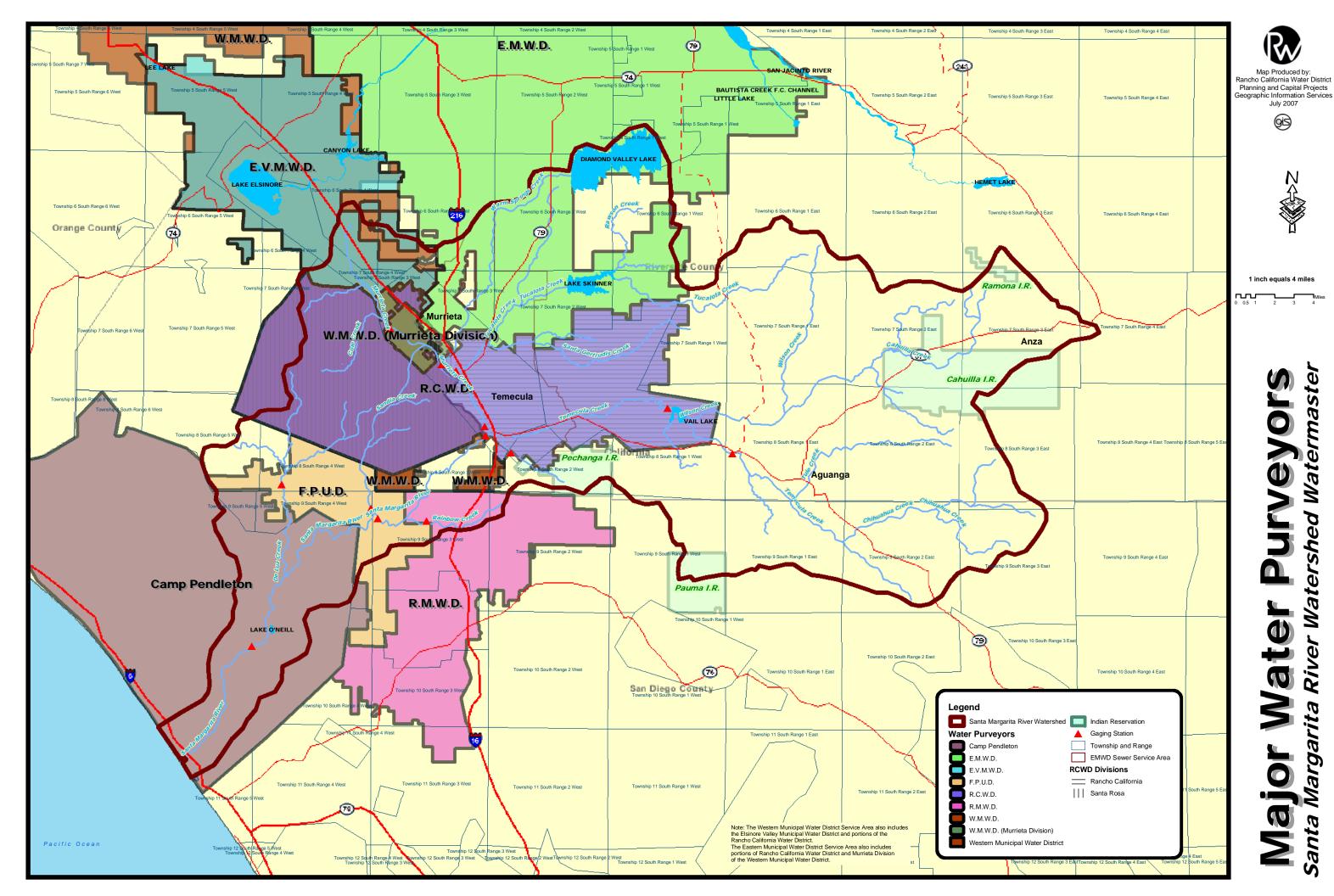
Section 4, Subsurface Water Availability and Use: In the absence of CWRMA implementation, and with respect to Figure 4.1 (Water Level Elevations – Windmill Well) and to Subsections 4.3 (Water Levels) and 4.4 (Groundwater Storage), Camp Pendleton is concerned about the apparent excessive pumping in the Upper Basin, and further asserts its belief that the lengthy and significant drawdown and concomitant loss in storage adversely affect the water supply for adjacent and downstream users holding senior water rights.

Section 7, Water Production and Use: First, in the absence of CWRMA implementation, and with regard to the local production figures shown in Table 7.1 (Water Production and Use), Camp Pendleton is concerned about the high level of groundwater production from the Upper Basin, a level that Camp Pendleton believes to be substantially greater than the safe yield.

Second, in the absence of CWRMA implementation, and with regard to Footnote 4 of Table 7.1 (distinction between RCWD pumping of older alluvium water and of Vail recovery water), Camp Pendleton has serious reservations as to the accounting system that is being used as well as the legal and technical bases upon which such system has been formulated.

Third, in the absence of CWRMA implementation, and as to the RCWD part of Subsection 7.2 (Water Purveyors), Camp Pendleton has serious reservations as to the accounting system that is being used as well as the legal and technical bases upon which such system has been formulated. These reservations include the following:

- 1. As to the "Vail Appropriation" part: Representatives of the United States contend that under the 1940 Stipulated Judgment storage of water in Vail Lake is limited to Rancho California Water District's share of the flood waters of the Santa Margarita River system. However, to date, the parties have not agreed on a definition of "flood waters."
- 2. As to the "Division of Local Water" part: In 1995 well logs and geophysical logs of all Rancho California WD wells were reviewed by representatives of the United States and Rancho California WD to determine the depths of the younger alluvium. There was general agreement between the parties about the depth of the younger alluvium in production wells, except for ten wells shown on Table 7.7 of the 1994-95 report. The remaining disagreements relate to differences about the magnitude of the clay layer needed to define the base of the younger alluvium, the importance of neighboring well logs, and general concepts about overall geologic setting.


WATERMASTER SANTA MARGARITA RIVER WATERSHED

<u>Section 8, Unauthorized Water Use</u>: In the absence of CWRMA implementation, and with respect to water use by RCWD, Camp Pendleton asserts the following:

- 1. Such use is in violation of the 1940 Stipulated Judgment by reason of, among other things, Vail Lake operations in excess of entitlement and pumping from both younger and older alluvium in excess of entitlement, which contentions RCWD disputes;
- 2. Rediversion and use of water impounded by Vail Dam are not in accord with terms of Permit 7032;
- 3. Unauthorized pumping is being done, including pumping from the younger alluvium outside of Pauba Valley without a permit and pumping from the older alluvium in violation of Court adjudications.

<u>Section 9, Threats to Water Supply</u>: In the absence of CWRMA implementation, and with respect to Subsection 9.3 (Potential Overdraft Conditions) and as noted in the foregoing comments to Sections 4 and 7, Camp Pendleton is seriously concerned regarding the apparent excessive pumping in the Upper Basin.

WATERMASTER SANTA MARGARITA RIVER WATERSHED

1 inch equals 4 miles Watershed Watermaster